

HOMEWORK 12

SET THEORY

► **1** (Jech: 9.4). Prove that for all infinite cardinals κ we have $\kappa \not\rightarrow (\omega)_2^\omega$.

Hint (slightly different from the book: define an equivalence relation on $[\kappa]^\omega$ by $s \equiv t$ iff the symmetric difference, $(s \setminus t) \cup (t \setminus s)$, is finite. Choose a set of representatives for the equivalence classes. Define a colouring F by $F(s) = 1$ if s and its representative differ by an even number of elements, $F(s) = 0$ otherwise. Now prove there is no infinite set H such that F is constant on $[H]^\omega$.

Note: this shows why in partition theory one generally looks at finite exponents only.

► **2** (An application of Theorem 9.6). In a partially ordered set, (P, \leq) we say that two elements, p and q , are *disjoint* if there is no $x \in P$ such that $x \leq p$ and $x \leq q$. An *antichain* in P is a set of pairwise disjoint elements.

If (P, \leq_P) and (Q, \leq_Q) are two partial orders then we order the product $P \times Q$ by $(p, q) \leq (x, y)$ iff $p \leq_P x$ and $q \leq_Q y$.

Prove: if all antichains in P and in Q are countable then all antichains in $P \times Q$ have cardinality at most 2^{\aleph_0} .

► **3** (Application of Theorem 9.7). Let κ be an infinite cardinal and let \prec be some well-order of κ . Prove that there is a subset H of κ of cardinality κ such that \prec agrees with the normal well-order of κ . (This means: for all $x, y \in H$ we have $x < y$ iff $x \prec y$.)