

HOMEWORK 11

SET THEORY

► 1 (Jech: 9.1). Prove the following

- (a) Every infinite partially ordered set has an infinite chain or an infinite set of mutually incomparable elements.
- (b) Every infinite linearly ordered set has an infinite increasing sequence or an infinite decreasing sequence

► 2 (Jech 9.3). Prove that $\omega_1 \rightarrow (\omega_1, \omega + 1)^2$.

Note: the task is to show that for every partition $\{A, B\}$ of $[\omega_1]^2$ there is either an uncountable subset H of ω_1 such that $[H]^2 \subseteq A$ or a subset K of ω_1 of order-type $\omega + 1$ such that $[K]^2 \subseteq B$.

Hint, adapted from the book: show that one can choose for every α a maximal subset K_α of α such that $[K_\alpha \cup \{\alpha\}]^2 \subseteq B$. If some K_α is infinite then we are done; if every K_α is finite then use the Pressing-Down Lemma to find a stationary set and one finite set K such that $K_\alpha = K$ for all $\alpha \in S$. Show that $[S]^2 \subseteq A$.

► 3 (Special case of Lemma 9.3). Prove $2^{\aleph_0} \not\rightarrow (3)_{\aleph_0}^2$ using the structure of \mathbb{R} . *Hint:* Let $\langle q_n : n < \omega \rangle$ be an enumeration of \mathbb{Q} and define $F : [\mathbb{R}]^2 \rightarrow \omega$ by $F(\{x, y\}) = \min\{n : q_n \text{ lies between } x \text{ and } y\}$.