

HOMEWORK 9

SET THEORY

► 1 (Jech: 5.11, 5.12, 5.13, and 5.14). Prove the following equalities:

- (a) $\prod_{0 < n < \omega} n = 2^{\aleph_0}$;
- (b) $\prod_{n < \omega} \aleph_n = \aleph_\omega^{\aleph_0}$;
- (c) $\prod_{\alpha < \omega + \omega} \aleph_\alpha = \aleph_{\omega + \omega}^{\aleph_0}$;
- (d) If GCH holds then
 - $2^{<\kappa} = \kappa$ for all κ , and
 - $\kappa^{<\kappa} = \kappa$ for all *regular* κ

► 2 (Jech 5.15). If β is such that $2^{\aleph_\alpha} = \aleph_{\alpha+\beta}$ for every α , then $\beta < \omega$.

► 3 (Jech 5.17). Show that if κ is a limit cardinal and $\lambda < \text{cf } \kappa$ then $\kappa^\lambda = \sum_{\alpha < \kappa} |\alpha|^\lambda$.

If you submit by email, use this address: lorenzo.galeotti@gmail.com

Date: 2017-11-06.