

# HOMEWORK 7

November 1, 2017

In this text you will find solutions to the exercises of the 7th homework of Set Theory.

**Exercise 1.** Show that there are at least  $\mathfrak{c}$  many countable order-types of linearly ordered sets.

*Proof.* Consider the set  ${}^{\mathbb{N}}\{1, 2\}$  of functions from  $\mathbb{N}$  to  $\{1, 2\}$ . Note that  $|{}^{\mathbb{N}}\{1, 2\}| = |{}^{\mathbb{N}}2| = 2^{\aleph_0}$  (e.g., using the map  $f(0) = 1, f(1) = 2$ ). For each function  $f \in {}^{\mathbb{N}}\{1, 2\}$  we define a countable linear order  $\tau_f = (A_f, <_f)$  as follows:

$$A_f = \{\langle 2n, m \rangle \mid m \in f(n), n \in \text{dom}(f)\} \cup \{\langle \langle 2n+1, z \rangle \mid z \in \mathbb{Z}, n \in \text{dom}(f)\},$$

and  $<_f$  is the lexicographic order. Note that  $\tau_f$  is trivially a linear order.

We will prove that  $A_f$  is countable. Note that the mapping  $g(z) := 2n$  if  $z = n$  and  $g(z) := 2n+1$  if  $z = -n$  shows that  $\mathbb{Z}$  is countable. Now  $A_f \subset \mathbb{N} \times \mathbb{Z}$  so by the Hessenberg theorem we have  $|A_f| \leq |\mathbb{N} \times \mathbb{Z}| = \aleph_0$ .

Now let  $f \in {}^{\mathbb{N}}\{1, 2\}$  and consider  $\tau_f$ : in this linear order we can identify special points: every point of the form  $\langle 2n, 0 \rangle$  has no direct predecessor, that is, for every  $x <_f \langle 2n, 0 \rangle$  there is  $y <_f \langle 2n, 0 \rangle$  such that  $x <_f y$ . If  $n = 0$  this is vacuously true; if  $n > 0$  and  $\langle i, j \rangle <_f \langle 2n, 0 \rangle$  then  $i < 2n$ , so that  $\langle i, j \rangle \leq_f \langle 2n-1, k \rangle$  for some  $k$ , but then  $\langle i, j \rangle <_f \langle 2n-1, k+1 \rangle <_f \langle 2n, 0 \rangle$ . Every other point does have direct predecessor:  $\langle 2n, 1 \rangle$  has  $\langle 2n, 0 \rangle$  as its direct predecessor and  $\langle 2n+1, k \rangle$  has  $\langle 2n+1, k-1 \rangle$  as its direct predecessor.

It follows that if  $\psi : A_f \rightarrow A_g$  defines an isomorphism we must have  $\psi(\langle 2n, 0 \rangle) = \langle 2n, 0 \rangle$  for all  $n$ .

Next we observe that  $\langle 2n, 0 \rangle$  has a direct successor in  $\tau_f$  iff  $f(n) = 2$ , and that successor is  $\langle 2n, 1 \rangle$ .

It follows that if  $\psi : A_f \rightarrow A_g$  defines an isomorphism we must have: if  $f(n) = 2$  then  $\psi(\langle 2n, 1 \rangle) = \langle 2n, 1 \rangle$  and hence  $g(n) = 2$ .

We conclude: if  $\tau_f$  and  $\tau_g$  are isomorphic then  $f = g$ .  $\square$

*Alternative proof.* Let  $(O, <)$  be a linear order. Let  $A$  be a subset of  $O$ . We will say that  $A$  is a *cut* of  $(O, <)$  iff  $\forall x x \in A \wedge y < x \rightarrow y \in A$ . A cut is proper if it is not equal to  $O$ .

**Lemma 2.** For all  $f \in {}^{\mathbb{N}}\{1, 2\}$  is not order isomorphic to one of its proper cuts.

*Proof.* We prove this by induction on  $\text{dom}(f) \in \omega$ .

If  $\text{dom}(f) = \emptyset$  there is nothing to prove.

Let  $\text{dom}(f) = n+1$ . Let  $A$  be a proper cut of  $\tau_f$  and  $\varphi$  be an order isomorphism from  $\tau_f$  to  $A$ . By inductive hypothesis there is no order bijection from  $\tau_{f \upharpoonright n}$  to one of its proper cuts. First note that  $\varphi[\tau_{f \upharpoonright n}] = \tau_{f \upharpoonright n}$ . Indeed, since  $\tau_{f \upharpoonright n}$  is a cut of  $\tau_f$  then  $\varphi[\tau_{f \upharpoonright n}]$  is also a cut of  $\tau_f$ . Therefore,  $\varphi[\tau_{f \upharpoonright n}] \subseteq \tau_{f \upharpoonright n}$  or  $\tau_{f \upharpoonright n} \subseteq \varphi[\tau_{f \upharpoonright n}]$ . If  $\varphi[\tau_{f \upharpoonright n}] \subset \tau_{f \upharpoonright n}$  then  $\varphi \upharpoonright \tau_{f \upharpoonright n}$  would be an order isomorphism from  $\tau_{f \upharpoonright n}$  to a proper cut of  $\tau_{f \upharpoonright n}$ , which contradicts our inductive hypothesis. If on the other hand  $\tau_{f \upharpoonright n} \subset \varphi[\tau_{f \upharpoonright n}]$  then  $\varphi^{-1} \upharpoonright \tau_{f \upharpoonright n}$  would be again an order preserving isomorphism from  $\tau_{f \upharpoonright n}$  to a proper cut of  $\tau_{f \upharpoonright n}$ , leading again to a contradiction. Therefore,  $\varphi[\tau_{f \upharpoonright n}] = \tau_{f \upharpoonright n}$ . Let us denote by  $\omega^*$  the order type of the negative integers and by  $\zeta$  the order type of the integers. Now we have four cases for the order type of  $A \setminus \tau_{f \upharpoonright n}$ :

- $(A \setminus \tau_{f \upharpoonright n}, <_{\tau_{f \upharpoonright n}}) \cong \emptyset$ : then trivially  $(\tau_f \setminus A, <_{\tau_f \setminus A}) \cong f(n) + \zeta$ . But this is a contradiction because  $f(n) + \zeta$  is not order isomorphic to the empty order.

- $(A \setminus \tau_{f \upharpoonright n}, <_{\tau_{f \upharpoonright n}}) \cong f(n) + \omega^*$ : note that then  $(\tau_f \setminus A, <_{\tau_{f \upharpoonright n}}) \cong \omega$  and  $\varphi[\tau_f \setminus A] = A \setminus \tau_{f \upharpoonright n}$ . But it is easy to see that  $f(n) + \omega^*$  is not order isomorphic to  $\omega$  since  $f(n) + \omega^*$  is not well ordered and  $\omega$  is.
- $(A \setminus \tau_{f \upharpoonright n}, <_{\tau_{f \upharpoonright n}}) \cong 1$ : then  $(\tau_f \setminus A, <_{\tau_{f \upharpoonright n}}) \cong 1 + \zeta$  if  $f(n) = 2$  or  $(\tau_f \setminus A, <_{\tau_{f \upharpoonright n}}) \cong \zeta$  if  $f(n) = 1$  but then trivially 1 is not order isomorphic to either  $1 + \zeta$  or  $\zeta$ . So we have a contradiction.
- $(A \setminus \tau_{f \upharpoonright n}, <_{\tau_{f \upharpoonright n}}) \cong 2$ : as before  $(\tau_f \setminus A, <_{\tau_{f \upharpoonright n}}) \cong \zeta$ , so also in this case we get a contradiction.

Since in all the cases we reached a contradiction, then  $\tau_f$  is not isomorphic to any of its proper cuts as desired.  $\square$

Now, let  $f, g \in \mathbb{N} \{1, 2\}$  be such that  $f \neq g$ . Let  $n \in \mathbb{N}$  be the least such that  $f(n) \neq g(n)$ . Without loss of generality assume  $f(n) = 2$  and  $g(n) = 1$ . Assume  $\varphi$  is an order isomorphism between  $\tau_f$  and  $\tau_g$ . By the previous lemma,  $\varphi[\tau_{f \upharpoonright n}] = \tau_{f \upharpoonright n}$ . Note that  $\varphi(\langle 2n, 2 \rangle) > \langle 2n, 1 \rangle$ . The set  $\{z \in \tau_g \mid \langle 2n, 2 \rangle < z < \varphi(\langle 2n, 2 \rangle)\}$  is infinite. Indeed,  $\varphi(\langle 2n, 2 \rangle) = \langle m, m' \rangle$  for some  $2n < m$  and  $m' \in \mathbb{Z}$ , therefore  $\{\langle 2n, z \rangle \mid z < m', z \in \mathbb{Z}\}$  is a subset of  $\{z \in \tau_g \mid \langle 2n, 2 \rangle < z < \varphi(\langle 2n, 2 \rangle)\}$ . But this is a contradiction, because there is only one point in between  $\tau_{f \upharpoonright n}$  and  $\langle 2n, 2 \rangle$ , namely  $\langle 2n, 1 \rangle$ . So  $\varphi$  cannot be an order isomorphism.

Finally, since we showed that the map sending every  $f \in \mathbb{N} \{1, 2\}$  to  $\tau_f$  is an injection from  $\mathbb{N} \{1, 2\}$  to the set of order types of countable linear orders then we have that there are at least  $\mathfrak{c}$  many such order types as desired.  $\square$

**Exercise 3.** Show that  $\mathbb{Q}$  is not the intersection of countably many open sets.

*Proof.* Assume  $\mathbb{Q} = \bigcap_{n \in \mathbb{N}} O_n$  where for each  $n \in \mathbb{N}$ , we have that  $O_n$  is an open set. Note that, since for each  $n \in \mathbb{N}$ , we have  $\mathbb{Q} \subset O_n$ , then each  $O_n$  is open dense (in  $\mathbb{R}$ ). Let  $f : \mathbb{N} \rightarrow \mathbb{Q}$  be any enumeration of  $\mathbb{Q}$ . We have that for each  $n \in \mathbb{N}$ , the set  $U_n := O_n \setminus \{f(n)\}$  is still open dense. Indeed, let  $(a, b) \subset \mathbb{R}$ , we have two cases: if  $q \in (a, b)$ , then  $(a, q)$  is an open set and  $\emptyset \neq O_n \cap (a, q) = U_n \cap (a, q)$ ; if  $q \notin (a, b)$  then  $\emptyset \neq O_n \cap (a, b) = U_n \cap (a, b)$ . So for each  $n \in \mathbb{N}$  the set  $U_n$  is dense. To show that it is also open it is enough to see that if  $x \in U_n$ , then there is  $(a, b) \subseteq O_n$  such that  $x \in (a, b)$ , if  $q \notin (a, b)$  then we have done since  $(a, b) \subset U_n$ , otherwise either  $x \in (a, q) \subseteq U_n$  or  $x \in (q, b) \subseteq U_n$ , in both cases there is an open interval containing  $x$  completely contained in  $U_n$ .

Now note that  $\bigcap_{n \in \mathbb{N}} U_n$  is a countable intersection of dense open sets so by the Baire category theorem it is not empty. But this is a contradiction since  $\bigcap_{n \in \mathbb{N}} U_n = \bigcap_{n \in \mathbb{N}} O_n \setminus \{f(n)\} = \bigcap_{n \in \mathbb{N}} O_n \setminus \bigcup_{n \in \mathbb{N}} \{f(n)\} = \mathbb{Q} \setminus \mathbb{Q} = \emptyset$ .  $\square$

**Exercise 4.** Given a set  $X$  of real numbers we define by transfinite recursion the following sequence:

$$\begin{aligned} X_0 &= X, \\ X_{\alpha+1} &= X'_\alpha, \\ X_\lambda &= \bigcap_{\alpha < \lambda} X_\alpha \text{ for } \lambda \text{ limit.} \end{aligned}$$

We call *Cantor-Bendixson rank* of  $X$  the smallest ordinal  $\alpha$  such that  $X_\alpha = X_{\alpha+1}$ . Give examples of sets  $X$  such that:

- $X$  has Cantor-Bendixson rank 2;
- $X$  has Cantor-Bendixson rank 3.

*Proof.* Consider the set  $X = \{\frac{1}{n} \mid n \in \mathbb{N}^+\}$ . Note that since  $\lim_{n \rightarrow \infty} \frac{1}{n} = 0$ , then 0 is a limit point of  $X$ . Moreover every point  $< 0$  is not a limit point of  $X$  since every point of the sequence is strictly bigger than 0. If  $1 \geq r > 0$  then let  $n \in \mathbb{N}$  such that  $n \leq \frac{1}{r} < n+1$  then  $\frac{1}{n+1} < r \leq \frac{1}{n}$  let  $m = \min\{\frac{1}{n} - r, r - \frac{1}{n+1}\}$  then the interval  $(r - m, r + m)$  will contain at most one point of  $X$  namely  $r$ . If  $r > 1$  the it is trivially isolated since the interval  $(r - \frac{r-1}{2}, r + \frac{r-1}{2})$  does not contain any point of  $X$ .

Therefore we have  $X_0 = X$ ,  $X_1 = \{0\}$ . Finally since 0 is trivially isolated in  $X_1$  we get  $X_2 = \emptyset = X_3$ .

We want to define a set  $X$  of rank 3. Note that for every interval  $(a, b) \subset \mathbb{R}$ , the map  $f_{(a,b)}(x) := \frac{x-a}{b-a}$  is an order isomorphism from  $[a, b]$  to  $[0, 1]$ . Trivially this map preserves convergency, i.e., if  $x$  is a limit point for  $Y \subset [a, b]$  iff  $f(x)$  is a limit point of  $f[Y]$ . For each  $n \in \mathbb{N}^+$ , let  $f_n := f_{(\frac{1}{n+1}, \frac{1}{n})}$  and  $f_0 := id$ .

For each  $n \in \mathbb{N}$ , define  $S_n := \{f_n^{-1}(\frac{1}{m+1}) \mid m \in \mathbb{N}\}$ . Take  $X_0 := \bigcup_{n \in \mathbb{N}} S_n$ . Note that, since for each  $n, m \in \mathbb{N}$  such that  $m \neq n$  we have that  $S_n \subset (\frac{1}{n+1}, \frac{1}{n})$ ,  $S_m \subset (\frac{1}{m+1}, \frac{1}{m})$  and  $(\frac{1}{n+1}, \frac{1}{n}) \cap (\frac{1}{m+1}, \frac{1}{m}) = \emptyset$ , the set of limit points of  $X_0$  is  $\bigcup_{n \in \mathbb{N}} S'_n$ . Since each  $S_n$  is an isomorphic copy of  $X$  then the previous proof shows that each  $S_n$  has exactly one isolated point namely  $f_n^{-1}(0)$ . Then we have that  $X_1 = \{f_n^{-1}(0) \mid n \in \mathbb{N}\} = \{0\} \cup \{\frac{1}{n+1} \mid n \in \mathbb{N}\}$  and we already showed in (a) that  $X_2 = 0$  and  $X_3 = \emptyset = X_4$  as desired.  $\square$