HOMEWORK 7

November 1, 2017

In this text you will find solutions to the exercises of the 7th homework of Set Theory.
Exercise 1. Show that there are at least ¢ many countable order-types of linearly ordered sets.

Proof. Consider the set N{1,2} of functions from N to {1,2}. Note that [N{1,2}| = |N2| = 2%
(e.g., using the map f(0) = 1, f(1) = 2). For each function f € <N{1,2} we define a countable
linear order 7y = (A, <y) as follows:

Ar={@2n,m) |me f(n), nedom(f)}U{(2n+1,2) |z € Z, n € dom(f)},

and <y is the lexicographic order. Note that 7 is trivially a linear order.

We will prove that Ay is countable. Note that the mapping ¢(z) := 2n if 2z = n and
g(z) == 2n+11if z = —n shows that Z is countable. Now Ay C N x Z so by the Hessenberg
theorem we have |[Af| < |N x Z| = Ry.

Now let f € N{1,2} and consider 7. in this linear order we can identify special points:
every point of the form (2n,0) has no direct predecessor, that is, for every z <z (2n,0) there is
y <s (2n,0) such that x <; y. If n = 0 this is vacuously true; if n > 0 and (4, j) <; (2n,0) then
i < 2n, so that (i,7) <y (2n —1,k) for some k, but then (i,7) <y 2n—1,k+1) <; (2n,0).
Every other point does have direct predecessor: (2m, 1) has (2n,0) as its direct predecessor and
(2n+ 1,k) has (2n + 1,k — 1) as its direct predecessor.

It follows that if ¢ : Ay — A, defines an isomorphism we must have ¢(2n,0) = (2n,0) for
all n.

Next we observe that (2n,0) has a direct successor in 7, iff f(n) = 2, and that successor
is (2n,1).

It follows that if v : Ay — A, defines an isomorphism we must have: if f(n) = 2 then
¥(2n,1) = (2n,1) and hence g(n) = 2.

We conclude: if 74 and 7, are isomorphic then f = g. O

Alternative proof. Let (O, <) be a linear order. Let A be a subset of O. We will say that A is a
cut of (O0,<) iff Ve x € ANy <z —ye A A cutis proper if it is not equal to O.

Lemma 2. For all f € <N{1,2} is not order isomorphic to one of its proper cuts.

Proof. We prove this by induction on dom(f) € w.

If dom(f) = 0 there is nothing to prove.

Let dom(f) = n+ 1. Let A be a proper cut of 74 and ¢ be an order isomorphism from 7
to A. By inductive hypothesis there is no order bijection from 74, to one of its proper cuts.
First note that ¢[7s,] = 7. Indeed, since 7y, is a cut of 7, then ¢[ry},] is also a cut of 7.
Therefore, ¢[Tf1n] C g or Trin € @[Tfmn]. I @[Trin] C Tfpn then ¢ | 74}, would be an order
isomorphism from 74}, to a proper cut of 75y, which contradicts our inductive hypothesis. If on
the other hand 7¢,, C ¢[7f}n] then o1 [ 7f1n would be again an order preserving isomorphism
from 7¢},, to a proper cut of 7}, leading again to a contradiction. Therefore, p[7f1,] = T¢n. Let
us denote by w* the order type of the negative integers and by ( the order type of the integers.
Now we have four cases for the order type of A\ Tfy:

o (A\Tfin, <7,,) = 0: then trivially (74 \ A, <7;,,) = f(n) + ¢. But this is a contradiction
because f(n) + ¢ is not order isomorphic to the empty order.



o (A\Tfin, <r;,.) = f(n) +w*: note that then (77 \ A, <, ) Zw and @[ty \ A] = A\ Tfpy.
But it is easy to see that f(n)+w™ is not order isomorphic to w since f(n)+ w* is not well
ordered and w is.

o (AN Tppn, <rp,) = 1i then (77 \ A, <) 21+ CIf f(n) =2 o0r (17 \ 4, <) = (if
f(n) = 1 but then trivially 1 is not order isomorphic to either 1 + ¢ or (. So we have a
contradiction.

o (A\Tyn, <r;,,) =20 as before (77\ A, <,,,,) = (, so also in this case we get a contradiction.

Since in all the cases we reached a contradiction, then 7 is not isomorphic to any of its proper
cuts as desired. O

Now, let f,g € N{1,2} be such that f # g. Let n € N be the least such that f(n) # g(n).
Without loss of generality assume f(n) = 2 and g(n) = 1 Assume ¢ is an order isomorphism
between 7; and 7,. By the previous lemma, ¢[7¢,] = T¢1n. Note that ¢((2n,2)) > (2n,1). The
set {z € 75| (2n,2) < z < ((2n,2))} is infinite. Indeed, p((2n,2)) = (m,m’) for some 2n < m
and m’ € Z, therefore {(2n,z) | z < m’,z € Z} is a subset of {z € 7, | (2n,2) < z < ¢((2n,2))}.
But this is a contradiction, because there is only one point in between 74}, and (2n,2), namely
(2n,1). So ¢ cannot be an order isomorphism.

Finally, since we showed that the map sending every f € N{1,2} to Ty is an injection form
N{1,2} to the set of order types of countable linear orders then we have that there are at least ¢
many such order types as desired. O

Exercise 3. Show that Q is not the intersection of countably many open sets.

Proof. Assume Q = (), .y O, where for each n € N, we have that O,, is an open set. Note that,
since for each n € N, we have Q C O, then each O,, is open dense (in R). Let f: N — Q be
any enumeration of Q. We have that for each n € N, the set U, := O, \ {f(n)} is still open
dense. Indeed, let (a,b) C R, we have two cases: if ¢ € (a,b), then (a,q) is an open set and
0 #O,n(a,q) =U,N(a,q); if g ¢ (a,b) then O # O, N (a,b) = U, N (a,b). So for each n € N
the set U, is dense. To show that it is also open it is enough to see that if x € U, then there
is (a,b) C O, such that x € (a,b), if ¢ ¢ (a,b) then we have done since (a,b) C U, otherwise
either z € (a,q) C U, or z € (¢,b) C U, in both cases there is an open interval containing x

completely contained in U,.
Now note that (1, .y Un is a countable intersection of dense open sets so by the Baire category
theorem it is not empty. But this is a contradiction since (), .y Un = [1,enOn \ {f(n)} =
O

ﬂneN On, \ UneN{f(n)} = Q \ Q = 0.

Exercise 4. Given a set X of real numbers we define by transfinite recursion the following
sequence:

X = X,

X(Jt-i-l = X(/ya

X, = ﬂ X, for \ limit.
a<

We call Cantor-Bendizson rank of X the smallest ordinal o such that X, = X,41. Give examples
of sets X such that:

(a) X has Cantor-Bendixson rank 2;
(b) X has Cantor-Bendixson rank 3.

Proof. Consider the set X = {1 | n € N*}. Note that since lim, o, + = 0, then 0 is a limit
point of X. Moreover every point <0 is not a limit point of X since every point of the sequence
is strictly bigger than 0. If 1 > r > 0 then let n € N such that n < 1 <n+1 then n%rl <r<i

let = min{;- — 7,7 — 45} then the interval (r —m,r +m) will contain at most one point of
X namely r. If r > 1 the it is trivially isolated since the interval (r — 51,7 + “51) does not
contain any point of X.




Therefore we have Xo = X, X; = {0}. Finally since 0 is trivially isolated in X; we get
XQ - @ == Xg.

We want to define a set X of rank 3. Note that for every interval (a,b) C R, the map
flap () == $=2 is an order isomorphism from [a,b] to [0,1]. Trivially this map preserves con-
vergency, i.e., if 2 is a limit point for Y C [a, b] iff f(2) is a limit point of f[Y]. For each n € N*,
let f,, :== f(n%l’%) and fy :=id.

For each n € N, define S, := {fn_l(ﬁ) | m € N}. Take Xg := [J,cnSn- Note that,

since for each n,m € N such that m # n we have that S, C (n%rl,%), S C (ﬁ, L) and
(%H, Hn (ﬁ, L) = (), the set of limit points of X is {J,,cy S, Since each S, is an isomorphic

copy of X then the previous proof shows that each S,, has exactly one isolated point namely
f21(0). Then we have that X1 = {f;'(0) [ n € N} = {0} U {;35 | n € N} and we already
showed in (a) that X3 = 0 and X3 = 0 = X, as desired.

O



