
HOMEWORK 7

November 1, 2017

In this text you will find solutions to the exercises of the 7th homework of Set Theory.

Exercise 1. Show that there are at least c many countable order-types of linearly ordered sets.

Proof. Consider the set N{1, 2} of functions from N to {1, 2}. Note that |N{1, 2}| = |N2| = 2ℵ0

(e.g., using the map f(0) = 1, f(1) = 2). For each function f ∈ ≤N{1, 2} we define a countable
linear order τf = (Af , <f ) as follows:

Af = {〈2n,m〉 | m ∈ f(n), n ∈ dom(f)} ∪ {〈〈2n+ 1, z〉 | z ∈ Z, n ∈ dom(f)},

and <f is the lexicographic order. Note that τf is trivially a linear order.
We will prove that Af is countable. Note that the mapping g(z) := 2n if z = n and

g(z) := 2n + 1 if z = −n shows that Z is countable. Now Af ⊂ N × Z so by the Hessenberg
theorem we have |Af | ≤ |N× Z| = ℵ0.

Now let f ∈ N{1, 2} and consider τf : in this linear order we can identify special points:
every point of the form 〈2n, 0〉 has no direct predecessor, that is, for every x <f 〈2n, 0〉 there is
y <f 〈2n, 0〉 such that x <f y. If n = 0 this is vacuously true; if n > 0 and 〈i, j〉 <f 〈2n, 0〉 then
i < 2n, so that 〈i, j〉 ≤f 〈2n− 1, k〉 for some k, but then 〈i, j〉 <f 〈2n− 1, k + 1〉 <f 〈2n, 0〉.
Every other point does have direct predecessor: 〈2n, 1〉 has 〈2n, 0〉 as its direct predecessor and
〈2n+ 1, k〉 has 〈2n+ 1, k − 1〉 as its direct predecessor.

It follows that if ψ : Af → Ag defines an isomorphism we must have ψ(2n, 0) = 〈2n, 0〉 for
all n.

Next we observe that 〈2n, 0〉 has a direct successor in τf iff f(n) = 2, and that successor
is 〈2n, 1〉.

It follows that if ψ : Af → Ag defines an isomorphism we must have: if f(n) = 2 then
ψ(2n, 1) = 〈2n, 1〉 and hence g(n) = 2.

We conclude: if τf and τg are isomorphic then f = g.

Alternative proof. Let (O,<) be a linear order. Let A be a subset of O. We will say that A is a
cut of (O,<) iff ∀x x ∈ A ∧ y < x→ y ∈ A. A cut is proper if it is not equal to O.

Lemma 2. For all f ∈ <N{1, 2} is not order isomorphic to one of its proper cuts.

Proof. We prove this by induction on dom(f) ∈ ω.
If dom(f) = ∅ there is nothing to prove.
Let dom(f) = n + 1. Let A be a proper cut of τf and ϕ be an order isomorphism from τf

to A. By inductive hypothesis there is no order bijection from τf�n to one of its proper cuts.
First note that ϕ[τf�n] = τf�n. Indeed, since τf�n is a cut of τf then ϕ[τf�n] is also a cut of τf .
Therefore, ϕ[τf�n] ⊆ τf�n or τf�n ⊆ ϕ[τf�n]. If ϕ[τf�n] ⊂ τf�n then ϕ � τf�n would be an order
isomorphism from τf�n to a proper cut of τf�n, which contradicts our inductive hypothesis. If on
the other hand τf�n ⊂ ϕ[τf�n] then ϕ−1 � τf�n would be again an order preserving isomorphism
from τf�n to a proper cut of τf�n, leading again to a contradiction. Therefore, ϕ[τf�n] = τf�n. Let
us denote by ω∗ the order type of the negative integers and by ζ the order type of the integers.
Now we have four cases for the order type of A \ τf�n:

• (A \ τf�n, <τf�n) ∼= ∅: then trivially (τf \A,<τf�n) ∼= f(n) + ζ. But this is a contradiction
because f(n) + ζ is not order isomorphic to the empty order.
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• (A \ τf�n, <τf�n) ∼= f(n) + ω∗: note that then (τf \A,<τf�n) ∼= ω and ϕ[τf \A] = A \ τf�n.
But it is easy to see that f(n) +ω∗ is not order isomorphic to ω since f(n) +ω∗ is not well
ordered and ω is.

• (A \ τf�n, <τf�n) ∼= 1: then (τf \ A,<τf�n) ∼= 1 + ζ if f(n) = 2 or (τf \ A,<τf�n) ∼= ζ if
f(n) = 1 but then trivially 1 is not order isomorphic to either 1 + ζ or ζ. So we have a
contradiction.

• (A\τf�n, <τf�n) ∼= 2: as before (τf \A,<τf�n) ∼= ζ, so also in this case we get a contradiction.

Since in all the cases we reached a contradiction, then τf is not isomorphic to any of its proper
cuts as desired.

Now, let f, g ∈ N{1, 2} be such that f 6= g. Let n ∈ N be the least such that f(n) 6= g(n).
Without loss of generality assume f(n) = 2 and g(n) = 1 Assume ϕ is an order isomorphism
between τf and τg. By the previous lemma, ϕ[τf�n] = τf�n. Note that ϕ(〈2n, 2〉) > 〈2n, 1〉. The
set {z ∈ τg | 〈2n, 2〉 < z < ϕ(〈2n, 2〉)} is infinite. Indeed, ϕ(〈2n, 2〉) = 〈m,m′〉 for some 2n < m
and m′ ∈ Z, therefore {〈2n, z〉 | z < m′, z ∈ Z} is a subset of {z ∈ τg | 〈2n, 2〉 < z < ϕ(〈2n, 2〉)}.
But this is a contradiction, because there is only one point in between τf�n and 〈2n, 2〉, namely
〈2n, 1〉. So ϕ cannot be an order isomorphism.

Finally, since we showed that the map sending every f ∈ N{1, 2} to τf is an injection form
N{1, 2} to the set of order types of countable linear orders then we have that there are at least c
many such order types as desired.

Exercise 3. Show that Q is not the intersection of countably many open sets.

Proof. Assume Q =
⋂
n∈NOn where for each n ∈ N, we have that On is an open set. Note that,

since for each n ∈ N, we have Q ⊂ On, then each On is open dense (in R). Let f : N → Q be
any enumeration of Q. We have that for each n ∈ N, the set Un := On \ {f(n)} is still open
dense. Indeed, let (a, b) ⊂ R, we have two cases: if q ∈ (a, b), then (a, q) is an open set and
∅ 6= On ∩ (a, q) = Un ∩ (a, q); if q /∈ (a, b) then ∅ 6= On ∩ (a, b) = Un ∩ (a, b). So for each n ∈ N
the set Un is dense. To show that it is also open it is enough to see that if x ∈ Un, then there
is (a, b) ⊆ On such that x ∈ (a, b), if q /∈ (a, b) then we have done since (a, b) ⊂ Un, otherwise
either x ∈ (a, q) ⊆ Un or x ∈ (q, b) ⊆ Un, in both cases there is an open interval containing x
completely contained in Un.

Now note that
⋂
n∈N Un is a countable intersection of dense open sets so by the Baire category

theorem it is not empty. But this is a contradiction since
⋂
n∈N Un =

⋂
n∈NOn \ {f(n)} =⋂

n∈NOn \
⋃
n∈N{f(n)} = Q \Q = ∅.

Exercise 4. Given a set X of real numbers we define by transfinite recursion the following
sequence:

X0 = X,

Xα+1 = X ′α,

Xλ =
⋂
α<λ

Xα for λ limit.

We call Cantor-Bendixson rank of X the smallest ordinal α such that Xα = Xα+1. Give examples
of sets X such that:

(a) X has Cantor-Bendixson rank 2;

(b) X has Cantor-Bendixson rank 3.

Proof. Consider the set X = { 1n | n ∈ N+}. Note that since limn→∞
1
n = 0, then 0 is a limit

point of X. Moreover every point <0 is not a limit point of X since every point of the sequence
is strictly bigger than 0. If 1 ≥ r > 0 then let n ∈ N such that n ≤ 1

r < n+ 1 then 1
n+1 < r ≤ 1

n

let m = min{ 1n − r, r −
1

n+1} then the interval (r −m, r +m) will contain at most one point of

X namely r. If r > 1 the it is trivially isolated since the interval (r − r−1
2 , r + r−1

2 ) does not
contain any point of X.
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Therefore we have X0 = X, X1 = {0}. Finally since 0 is trivially isolated in X1 we get
X2 = ∅ = X3.

We want to define a set X of rank 3. Note that for every interval (a, b) ⊂ R, the map
f(a,b)(x) := x−a

b−a is an order isomorphism from [a, b] to [0, 1]. Trivially this map preserves con-

vergency, i.e., if x is a limit point for Y ⊂ [a, b] iff f(x) is a limit point of f [Y ]. For each n ∈ N+,
let fn := f( 1

n+1 ,
1
n ) and f0 := id.

For each n ∈ N, define Sn := {f−1n ( 1
m+1 ) | m ∈ N}. Take X0 :=

⋃
n∈N Sn. Note that,

since for each n,m ∈ N such that m 6= n we have that Sn ⊂ ( 1
n+1 ,

1
n ), Sm ⊂ ( 1

m+1 ,
1
m ) and

( 1
n+1 ,

1
n )∩( 1

m+1 ,
1
m ) = ∅, the set of limit points of X0 is

⋃
n∈N S

′
n. Since each Sn is an isomorphic

copy of X then the previous proof shows that each Sn has exactly one isolated point namely
f−1n (0). Then we have that X1 = {f−1n (0) | n ∈ N} = {0} ∪ { 1

n+1 | n ∈ N} and we already
showed in (a) that X2 = 0 and X3 = ∅ = X4 as desired.
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