HOMEWORK 4

SET THEORY

Since ordinals are linear orders with respect to \in , we often write < for the element relation, i.e., " $\alpha < \beta$ " stands for $\alpha \in \beta$ if α and β are ordinals.

- ▶ 1. A function f with $dom(f) = \mathbb{N}$ is called an *infinite descending sequence* if for all $n \in \mathbb{N}$ we have $f(n+1) \in f(n)$. Show that there is no infinite descending sequence such that all elements of the sequence are ordinals.
- ▶ 2 (Jech: 2.6). Show that for every ordinal α there is a $\beta > \alpha$ such that β is a limit ordinal.
- ▶ 3 (Jech: 2.7). We call a class F a sequence of ordinals if
 - (1) all elements of F are pairs (α, β) of ordinals,
 - (2) F is functional in the sense that if $(\alpha, \beta) \in F$ and $(\alpha, \beta') \in F$, then $\beta = \beta'$, and
 - (3) F is total in the sense that for each ordinal α there is a β such that $(\alpha, \beta) \in F$.

As usual, we write $F(\alpha)$ for the unique β such that $(\alpha, \beta) \in F$. An ordinal ξ is called a *fixed point* of F if $F(\xi) = \xi$. A sequence of ordinals is called *normal* if

- (1) for $\alpha < \beta$, $F(\alpha) < F(\beta)$ and
- (2) for limit ordinals λ , $F(\lambda) = \bigcup \{F(\alpha) : \alpha < \lambda\}$.

Show that every normal sequence of ordinals has arbitrarily large fixed points, i.e., for every α there is $\xi > \alpha$ such that ξ is a fixed point of F.

- ▶ 4 (Jech: parts of Lemmas 2.21 & 2.25). Prove the following statements for ordinals α , β , and γ :
 - (a) $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$;
 - (b) if $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$;
 - (c) if $\beta < \gamma$ and $\alpha > 0$, then $\alpha \cdot \beta < \alpha \cdot \gamma$;
 - (d) if $\alpha < \beta$, then there is a unique δ such that $\alpha + \delta = \beta$; and
 - (e) if $\alpha > 0$ and γ is arbitrary, then there is a unique pair (β, ϱ) with the properties $\varrho < \alpha$ and $\gamma = \alpha \cdot \beta + \varrho$.