

Solutions Set Theory HW1

Lorenzo Galeotti

September 20, 2017

In this text you will find solutions to the exercises of the first homework of Set Theory.

Exercise 1. $(\forall a)(\forall b)(\forall c)(\forall d)((a, b) = (c, d) \Leftrightarrow a = c \wedge b = d)$.

Proof. From right to left. Let us assume $a = c$ and $b = d$, we need to show $(a, b) = (c, d)$. Since $a = c$ by *extensionality* we have that

$$\{a\} = \{c\}. \quad (1)$$

Similarly, since $a = c$ and $b = d$, again by *extensionality* we have

$$\{a, b\} = \{c, d\}. \quad (2)$$

By definition $(a, b) = \{\{a\}, \{a, b\}\}$ and $(c, d) = \{\{c\}, \{c, d\}\}$. Therefore, by (1), (2) and *extensionality* we get $(a, b) = (c, d)$ as desired.

For the other direction assume $(a, b) = (c, d)$. We have two cases:

$a = b$: by definition $(a, b) = \{\{a\}, \{a, b\}\}$. Since $a = b$ by *extensionality* $\{a\} = \{a, b\}$. By applying *extensionality* again we have $\{\{a\}, \{a, b\}\} = \{\{a\}\}$. Now, by definition $(c, d) = \{\{c\}, \{c, d\}\}$ and since we assumed $(a, b) = (c, d)$, we have $\{\{c\}, \{c, d\}\} = \{\{a\}\}$. But then $\{c\} = \{a\}$ and $\{c, d\} = \{a\}$ which imply $d = a = b$ and therefore $d = b$.

$a \neq b$: by the definition of ordered pair and our assumption we have $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$.

By reverse *extensionality* we have:

$$(\forall x)(x \in (a, b) \Leftrightarrow x \in (c, d))$$

Note that since $a \neq b$ we have $\{a\} \neq \{a, b\}$. Therefore we have the following cases:

- If $\{a\} = \{c, d\}$ and $\{a, b\} = \{c\}$: then $c = a = d$ and $b = c = a$ which is a contradiction. Therefore this case is impossible.
- If $\{a\} = \{c\}$ and $\{a, b\} = \{c, d\}$: then $c = a$. Since $a \neq b$ we also have $b = d$ as desired.

Alternatively one starts from $(a, b) = (c, d)$ and concludes that both $\{a\}$ and $\{a, b\}$ belong to $\{\{c\}, \{c, d\}\}$. Hence $\{a\} = \{c\}$ or $\{a\} = \{c, d\}$.

If the first case one has $a = c$ and one then considers whether $\{a, b\} = \{c\}$ or $\{a, b\} \neq \{c\}$. In the former case one has $b = c$ as well and hence $b = a$ so that $(a, b) = \{\{a\}\}$ but then $\{c, d\} \in \{\{a\}\}$, hence $\{c, d\} = \{a\}$ and so $d = a$ as well. In the latter case $\{a, b\} \neq \{c\}$ as well, so $b \neq a$; also we must have $\{a, b\} = \{c, d\} = \{a, d\}$, so $b \in \{a, d\}$ and therefore $b = d$.

The second case, $\{a\} = \{c, d\}$ leads as above to $c = d = a$ and then to $b = a$ as well. \square

Exercise 2. Prove that there is no set X such that $\mathcal{P}(X) \subseteq X$.

Proof. Assume that X is such that $\mathcal{P}(X) \subseteq X$. By *separation* define the following set:

$$S = \{x \in X : x \notin x\}$$

Since for all $x \in S$ we have $x \in X$, the set S is a subset of X . Therefore, by definition $S \in \mathcal{P}(X)$ and by our assumption $S \in X$. But this is a contradiction since by definition $S \in S \Leftrightarrow S \notin S$. Therefore there is no X such that $\mathcal{P}(X) \subseteq X$.

Alternatively one can take X arbitrary and define S as above and then prove, possibly by contradiction, that $S \in \mathcal{P}(X) \setminus X$. \square

Exercise 3. Verify: if $a \in A$ and $b \in B$ then $(a, b) \in \mathcal{P}(\mathcal{P}(A \cup B))$ and $a, b \in \bigcup(a, b)$.

Proof. Assume $a \in A$ and $b \in B$. By the definition $A \cup B = \bigcup\{A, B\}$. By the *Axiom of union* $a \in \bigcup\{A, B\}$ and $b \in \bigcup\{A, B\}$. Therefore, by the *definition* of subset we have $\{a\} \subset A \cup B$ and $\{a, b\} \subset A \cup B$. Now, by the *Power set axiom* we get $\{a, b\} \in \mathcal{P}(A \cup B)$ and $\{a\} \in \mathcal{P}(A \cup B)$. Again by the *definition* of subset, we have $\{\{a\}, \{a, b\}\} \subset \mathcal{P}(A \cup B)$ which by the *Power set axiom* implies $\{\{a\}, \{a, b\}\} \in \mathcal{P}(\mathcal{P}(A \cup B))$. Finally by definition $\{\{a\}, \{a, b\}\} = (a, b)$, and therefore $(a, b) \in \mathcal{P}(\mathcal{P}(A \cup B))$.

Since, by definition, $a \in \{a\}$, $b \in \{a, b\}$ and both $\{a\}$ and $\{a, b\}$ are in (a, b) , by the *Axiom of union* we have $a, b \in \bigcup(a, b)$ as desired. \square

Exercise 4. Write out in full (no abbreviations) a formula that expresses

1. “ z is an ordered pair”.
2. “ z is an ordered pair and x is its first coordinate”.

Proof. First let us define the following two auxiliary formulas:

$$\varphi(x, a) := (\forall y)(y \in x \Leftrightarrow y = a), \text{ i.e., } x \text{ is the singleton of } a,$$

and

$$\varphi'(x, a, b) := (\forall y)(y \in x \Leftrightarrow y = a \vee y = b), \text{ i.e., } x \text{ is the pair } \{a, b\}$$

Now, for 1 we define:

$$\xi(z) := (\exists a)(\exists b)(\forall x)(x \in z \Leftrightarrow \varphi(x, a) \vee \varphi'(x, a, b))$$

For 2 we define:

$$\xi'(z, x) := (\exists b)(\forall y)(y \in z \Leftrightarrow \varphi(y, x) \vee \varphi'(y, x, b)) \quad \square$$