

UNIVERSITEIT VAN AMSTERDAM INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Core Logic 2007/2008; 1st Semester dr Benedikt Löwe

Homework Set # 7

Deadline: October 31st, 2007

Exercise 23 (8 points).

Consider the sentence *omnis philosophus praeter Socratem albus est* ("every philosopher except for Socrates is white".

Give a modern semantics for the *omnis praeter* construction: suppose we have a universe of discourse X, two predicates $\Phi, \Psi \subseteq X$ and $x \in X$. Give a formal definition such that

omnispraeter (x, Φ, Ψ)

is true if and only if *omnis* Φ *praeter* x *est* Ψ ("every Φ except for x is Ψ ") (2 points). *Note.* The "modern semantics" is not necessarily unique. There might be different semantics that describe the natural language sentences reasonably adequately.

Now consider the sophisma

(*) omnis homo praeter Socratem excipitur

("every man except for Socrates is excepted").

- (1) Give a background story which describes a situation in which (\star) is true (2 points).
- (2) Argue informally that (\star) is false (2 points).
- (3) Solve the apparent contradiction by explaining the fallacy as a *secundum quid et simpliciter* (2 points).

Exercise 24 (4 points).

If X is any set and $\wp(X)$ is its power set (the set of all subsets of X), we call $Q \subseteq \wp(X)$ a **generalized quantifier**. If $\Phi \subseteq X$ is a predicate on X, we say that $Q\Phi$ holds (in words: "for Q-many $x, \Phi(x)$ holds") if $\Phi \in Q$.

- (1) Let $\forall := \{X\}$ and $\exists := \{A \subseteq X ; A \neq \emptyset\}$. Argue that $\forall \Phi$ and $\exists \Phi$ have the intended meanings "for all x, $\Phi(x)$ holds" and "there is an x such that $\Phi(x)$ holds" (1 point each).
- (2) Fix some $x \in X$ and give a definition of a generalized quantifier op_x that corresponds to the *omnis praeter* construction from **Exercise 23** (2 points).

Exercise 25 (6 points).

We are considering a new system of dialogic logic, called **strictly constructive**: we restrict the proponent in a way that he also can only react to the last move of the opponent and denote the corresponding semantic relation by \models_{sc} .

- (1) Give a formal definition (in the style of the lecture, giving explicitly the rules for the two players) for \models_{sc} (1 point).
- (2) Find two different formulas φ such that $\models_{sc} \varphi$ and give dialogue proofs for them (1 point each).

(3) Find a formula φ such that $\models_{\text{dialog}} \varphi$ but not $\models_{\text{sc}} \varphi$. Give proofs of both claims (1¹/₂ point each).

Exercise 26 (4 points).

Give dialogue proofs of the following formulas in \models_{cl} (1 point each):

- $\neg \neg \neg p \rightarrow \neg p$, $((p \rightarrow q) \land \neg q) \rightarrow \neg p$.

For both formulas, decide whether they are valid in $\models_{\rm dialog}$ and give a dialogue argument for or against your claim (1 point each).

2