

UNIVERSITEIT VAN AMSTERDAM Institute for Logic, Language and Computation

Core Logic 2007/2008; 1st Semester dr Benedikt Löwe

Homework Set #10

Deadline: November 21st, 2007

Exercise 34 (7 points).

It is often said that Frege was an anti-semite. What is our source for this claim? Please describe the source with full bibliographical data (2¹/₂ points).

Frege's anti-semitism is often contrasted with his work in logic. He is sometimes mentioned as an example for a researcher with unacceptable political views that had no influence on his research. Find a scholarly source for a claim like this (2½ points).

A famous Frege expert X was shocked when he find out that Frege held anti-semitic opinions. A reviewer Y of X's major work on Frege writes "This was a great shock for X but not for me". Y had gathered from Frege's choice of example sentences in his logical texts that he was very much in line with late XIXth century German conservative thought. Who are X and Y? (1 point each; give bibliographic references to Y's review and the 'major work' of X)

Important. In this exercise, all citations have to be sources that could also be cited in a historical research paper, i.e., published books or journal articles in respectable scientific journals. Quoting wikipedia.org or some webpage is not acceptable and will give no credit.)

Exercise 35 (7 points).

Let $\mathcal{L} := \{+, \cdot, 0, 1, -\}$ be the language of Boolean algebras and Φ_{BA} be the axioms of Boolean algebras. Let

$$\begin{split} \varphi &:= \quad \forall x \forall y \bigg(\big((x \neq x \cdot y) \land (y \neq x \cdot y) \big) \to (x \cdot y = 0) \bigg), \\ \psi &:= \quad \exists x \big((x \neq 0) \land (x \neq 1) \big). \end{split}$$

Let Φ_0 , Φ_1 , Φ_2 , and Φ_3 be the deductive closures of Φ_{BA} , $\Phi_{BA} \cup \{\neg\psi\}$, $\Phi_{BA} \cup \{\varphi\}$, and $\Phi_{BA} \cup \{\varphi,\psi\}$, respectively. Investigate whether Φ_i is a complete theory. If it isn't, give a formula σ such that $\sigma \notin \Phi_i$ and $\neg\sigma \notin \Phi_i$. If it is complete, give a brief argument why. (1 point each for Φ_0 and Φ_1 , 2 points for Φ_2 , 3 points for Φ_3 .)

Exercise 36 (8 points).

Consider the language of arithmetic $\mathcal{L} = \{ \dot{+}, \dot{\times}, \dot{S}, \dot{0}, \dot{1}, \dot{<}, \dot{=} \}$ and its standard model

$$\mathbf{N} := \langle \mathbb{N}, +, \cdot, \operatorname{succ}, 0, 1, <, = \rangle.$$

(Here succ is the successor function $n \mapsto n + 1$.) The language of arithmetic allows to define formulas that describe the natural numbers:

$$\chi_n(x) := x = \underbrace{\dot{S} \dots \dot{S}}_{n \text{ times}} \dot{0}$$

We say that a set of \mathcal{L} -sentences T is an *arithmetic* if $N \models T$. Prove that every arithmetic has a model which is not isomorphic to N.

Hint. Define an extension $\mathcal{L}^* := \mathcal{L} \cup \{\dot{c}\}$ of \mathcal{L} where \dot{c} is a constant symbol and look at the theory $T^* := T \cup \{\neg \chi_n(\dot{c}); n \in \mathbb{N}\}$. Prove that there is no value c of \dot{c} such that $\langle \mathbf{N}, c \rangle$ is a model of T^* . Prove that T^* is consistent by using the compactness theorem. Use these two facts to prove the claim. (You may use that isomorphic models satisfy the same sentences.)

http://staff.science.uva.nl/~bloewe/2007-08-I/CoreLogic.html