Annals of Pure and Applied Logic 37 (1988) 249-"96 249
North-Holland

TOPOLOGY AND DUALITY IN MODAL LOGIC

Giovanni SAMBIN
Universita di Padova, Seminario Matematico, Via Belzoni 7, 35131 Padova, Italy

Virginia VACCARO
Universita di Napoli, Dipartimento di Matematica e Applicazioni, Via Mezzocannone 8, 80134
Napoli, Italy

Communicated by D. van Dalen
Received 15 September 1985; revised 26 June 1986

Contents 3. Basicadjunction . . . . .. ... m
Foreword 240 4. Modal duality and other corollaries . 274
""""""" g 5. Frame constructions and duality . . 279

Chapter 1. Basicideasandresults. . . . 251
Introduction ... . ......... 251  ChapterIll. Classesof frimes . . . . . 284
1. Modal algebras. . . . . ... .. 252 Introduction . . . . ... ..... 284
2. Kripkeframes . . . . . .. ... 255 1. The logic of frame constructions . . 285
3. Frames and their completeness. . . 256 2. Refined frames are enough . . 286
4. From modal algebras to ﬁames .. 2% 3~ Modal axiomaticclasses . . . . . . 288

4. Some corollaries on Kripke frames . 291
Chapter I1. Dualitytheory. . . . . . . 261

Introduction . . . . .. ...... 261 Footnotes . . . . .. ... .. ... 294

1. Introducing categories and topology 262

2. Thefunctors. . . ... ... .. 266 References. . . . . . . e e e e e 295
Foreword

This paper is the result of putting together a few ingredients, namely modal
algebras, general frames, some topology, a little category theory, and mixing
them up, at the light of available literature, with the flavouring of some opinions,
technical or not, of the authors. If the recipe is good, only the reader can judge,
after tasting, but here we can try to describe the outlook.

The aim is to discuss with some detail the connections between the algebraic
approach, based on modal algebras, and the relational approach, based on
frames, to the semantics of propositional normal modal logic. The study of such
connections has been considered, by J. van Benthem [6], one of the three pillars
of modal wisdom, and called by him duality theory (the other two being
completeness and correspondence theory).

A posteriori, the first and fundamental result in duality theory is J6nsson-
Tarski representation theorem for modal aigebras [19], which was substantially
improved by Halmos [20], who implicitly introduced categories. However, after
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Kripke’s fundamental work [23], modal algebras almost disappeared (the only
exception is Lemmon [24]), until the discovery a few years later, that is roughly
twelve years ago, of the incompleteness of Kripke’s relational semantics. Then a
wider notion of frame was introduced by S.K. Thomason [33], which was
probably inspired by modal algebras and which does not suffer incompleteness,
and a global mathematical study of modal logic was undertaken (see the collective
review [9]). In particular, duality theory came into existence (see [11}, [15], [26]
and [35)).

The main novelty here is that we add a topology on any frame and extend the
functors to the category of all frames. The technical outcome is a new categorical
adjunction. More generally, beside a unified exposition of duality theory, a
deeper understanding of the subject is thus achieved. Some old notions on
frames, for instance that of p-morphism (here called contraction), acquire a new
more natural definition, while some new omes, for instance that of weak
subframe, are called into existence in a natural way. Also, applications to modal
logic are not lacking. Some new results (for instance, the fact that any frame is
equivalent to a refined frame also with respect to consequence) and simpler
proofs of important theorems (see [30], [31] and Section III 4 below) have
already been obtained, some other are in preparation; we are certain that the
interested reader will find many more {cur suggestions and hints to possible new
roads are given in the footnotes).

Chapter 1 is a re-view of modal semantics, together with a discussion of ideas
on which duality theory is based and their interplay with completeness theory.
Chapter II contains the technical development of duality theory, with complete
proofs. It can be read independently as a piece of pure mathematics.! Chapter III
is an example of how duality theory can be applied. Using weak subframes, we
obtain as corollaries both a simple description of the structure of, and the
standard results (by Goldblatt and Thomason [16] and by van Benthem [3]) on,
modal axiomatic classes of frames.

Even if we tried to keep an easily accessible language, and sometime gave
proofs also of standard results, Stone’s representation theorem for boolean
algebras (an excellent exposition is in Chapter 1 of [8]) and very little of universal
algebra, topology, category theory and modal logic are assumed to be known. In
any case, standard references will be [10], [17] and [25].

We have chosen to suppress usual headings, like theorem, proof, remark,
definition etc., in the hope that this can help avoiding fragmentation of the text.
For the same reason, we have put little effort in separating new from known
results and in giving credits, also because many of them have been deeply revised.
Some important results have been given a name. When a word is italicized, its
definition, sometimes implicit, can be found nearby (of course, this does not
mean that all italicized words have been defined).

This paper is the first published outcome of a long though discontinuous work,
which I, G.S., began a few years ago at the suggestion of Roberto Magari. My
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gratitude and indebtness to him certainly go far beyond the formality of any
acknowledgement; but since this is one, I want to recall that some of the ideas
used in Chapter II are due to him. I also like to thank personally Wolfgang
Rautenberg, who encouraged and helped me at an early stage of the work and
who let a first draft become public, [31]. V.V. joined in the project soon after and
worked in particular on the topics now in Chapter III. Finally, we thank Johan
van Benthem, Per Martin-L6f, Mario Servi and Silvio Valentini (they know why),
and impersonally all the authors cited in this foreword (they also will know why,
after reading).

CHAPTER 1. Basic ideas and results

Introduction

This chapter is an overview on algebraic and relational semantics from the
point of view of duality theory. Motivations and, where possible, intuitive
explanations are given, leaving the mathematical unfolding for the remaining
chapters.

We first briefly review notation and terminology. We use the propositional modal
language Ly, containing connectives v, &, = and [, the symbol L (falsum) and
propositional variables p, q,... The set of formulae FLy in Ly is defined
inductively as usual, including 1L as an atomic formula. @, ¥,... will be
formulae. Q¢ and @—y are defined as usual by e and vy
respectively. A logic is here a set of formulae L containing classical tautologies
and closed under the rules of Modus Ponens and Substitution

. 9()
SR: o(¥)

We deal only with normal logics, i.e., logics containing the ‘normality formula’
NF: O(p—¢q)—(@p—DOq)
and closed under the necessitation (or ‘normality’) rule

. 2
NR: Og’
even if much of the algebraic approach extends easily to a wider class of logics.
So, from now on, a logic is understood to be normal (and modal). As usual, K
denotes the minimal logic.
Finally, we will use ¢ € L and F, or L I @ as synonyms, thus assuming that -,
denotes an axiomatic system in which exactly all formulae of L are derivable.
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1. Modal algebras

Respecting historical development, we start with algebraic semantics.
Given a logic L, we define an equivalence relation =, on FLy, by identifying
two formulae which cannot be distinguished by },, i.e., by putting:

g=.v il Ltooy.
The quotient set FLy/=, can then be enriched with boolean operations +, -, v, 0
and 1 (sum, product, complementation, zero and one respectively) which,
assuming [@], denotes {y € Lyy: ¢ =, @}, are defined by:

ol + [¥l=[e v ¥l
ol -[vl.=le & ¥,
viel. =@l
0=[1]., 1=[1],.

Such a definition is justified by the rule of replacement of equivalents for classical
logic. Usual properties of classical propositional calculus are then expressed in the
fact that (FLy/=,, +, -, v, 0, 1) is a boolean algebra.

To express algebraically a!so the modal part of L, we can treat the modal
connective O similarly. So we define a unary operation = on FL\/=, by:

tlol.=[O¢l.

which is a good definition when L is closed under the rule of replacement of
equivalents

. _Pevy
" Opely’

This is certainly true when L is normal. The resulting algebra A, = (FL\/=,,
+, -, ¥, 0, 1, 7) is called the Lindenbaum algebra of the (modal) logic L. We will
soon see that A, offers all what can be said on L algebraically, in particular the
completeness of algebraic semantics. Let us then introduce algebraic models of L.
The easiest way is to look at them as models, in the classical model-theoretic
sense, for a specific first-order theory related to L. So let Ly, be a first-order
language with equality =, with no other predicate symbol and with function
symbols +, -, v, 0, 1 and v (we use the same symbols for symbols and their
interpretation). A structure adequate for Ly, is an algebra of similarity type
(2,2,1,0,0, 1). For any term ¢ of Ly, t* is its interpretation in an algebra A (of
the correct type) and for any assignment a = (ao, @, . . .) of variables in A, t4(@)
is the value of ¢ calculated in @ (but we often omit the superscript). Then, as in
the usual tarskian definition of truth, we say that the formula ¢ = u (¢, u terms) is
true in A on the assignment 4 if #4(@) = u*(a@) and that it is valid in A if it is true
on every assignment.
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So far, the only difference from usual model theory is purely linguistic: as a
habit, atomic formulae ¢t =u are called equations and equations true in A are
called identities of A. The real difference is instead the underlying idea: we let
every formula @ of the modal language Ly correspond biunivocally to a term ¢*
of the language Ly, and thus interpret @ in an algebra A through the aid of ¢".
Such correspondence is the most natural one, namely, ¢’ is obtained from ¢ by
replacing propositional variables p, p;, . . . with individual variables x,, x,, . . .
of Lya, connectives v, &, - with boolean operations +, -, v respectively,
formulae 1, 1 with constants 0, 1, and the modal operator (1 with the unary
function 7. Now first note that the same sequence a of elements of an algebra A
can be thought as an assignment in A both to propositional variables and to
individual variables. So we can define the value of a formula ¢ in A on the
assignment a to be the value of the corresponding term ¢ in A on 4, and say that
@ is true in A on the assignment a if its value is 1, i.e., if @‘(@)=1 holds in A.
Accordingly, @ is said to be valid in A if @’ =1 is an identity of A. Finally, A is
said to be an algebraic model of L, or briefly an L-modal algebra, if every
formula of L is valid in A. In other words, we transform L into the set of
equations L°={@'=1:pe L} and we say that A is a model of L if it is a
(classical) model of L°. This can also be expressed by the inclusion L° c Id(A), if
Id(A) denotes the set of identities of A.

Let us give a closer look at L-modal algebras. For any algebra A, let L(A) be
the set of formulae valid in A; L(A) is sometimes called the logic of A. Note that
L(A)*=1d'(A), where Id'(A) is the set of equations of the form ¢ =1, for some
term ¢t. (Note however that all equations in Id(A) are derivable from those in
Id'(A), since an equation ¢ =u is equivalent, in a boolean algebra, to teu=1,
where we put, as usual, t>u=vt+u and teu=(—u) - (u—1).) It is easy to
see that L(A) contains all classical tautologies iff A is a boolean algebra and that
L(A) is a logic iff, moreover, 71 =1 and t(x— y)— (7x— 7y) =1 are identities
of A (to see the latter, use 71 =1 and properties of =). Therefore, since for a
boolean algebra the pair of equations 71=1 and t(x—>y)—>(=x—>7y)=1is
equivalent to the pair 71 =1 and 7(x - y) = wx - 7y (which is easily proved with the
aid of some tautologies), we see that our definition of K-modal algebras, which
are called modal algebras for short, is equivalent to the more standard one:

Definition. A modal algebra is a pair A =(A, ) where A is a boolean algebra
and 7 is a unary operation on A such that 71=1 and t(x-y)=17x- 7y are
identities.

(To save words, here and in the whole paper, we follow the convention of
denoting by A, B, C, . . . both the domain (or universe, carrier, . . .) of a boolean
algebra and the boolean algebra itself.) It is now obvious that for instance
S4-modal algebras, usually called closure or topological boolean algebras, can be
defined as modal algebras in which the equations =x—x=1 and x—> rix =1
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hold, GL-modal algebras, called diagonalizable algebras, the equation z(=x—
x)—> =1, etc. (but note that often an order < is defined by putting x <y iff
x-y=x and therefore the equation wx— zzx =1, for instance, is equivalently
expressed by =@ < twx).

By its very definition, the class of L-modal algebras is an equational class (cf.
[17, pp. 152 and 171]); we call it MA(L). Actually, what we have seen above
shows also that the lattice of equational classes of modal algebras is (anti-)
isomc. Shic to the lattice of logics. The logic corresponding to a given equational
class of algst::s X is L(K), the set of formulae valid in every algebra of K; note
that here too L(K)" = Id%(K), where Id'(K) has the now obvious meaning.

Completeness of algebraic semantics is now the statement?:

(1) for every logic L and every formula ¢, Lt @ iff @ is valid in every

L-modal algebra

which is equivalent to a more algebraic version

(2) for every logic L, L°=Id'(MA(L)).

This is quite easily achieved, as promised, throngh A;. Since L°c
Id'(MA(L)) by the definition of MA(L), (2) is proved once we show that

(3) forevery logic L, L°=Id'(A,).

In fact, one inclusion, L°c Id'(A,), tells that A, itself is an L-modal algebra,
from which Id'(MA(L)) cId'(A,). while the other inclusion closes the chain,
thus obtaining, beside (2), also the important by-product Id'(A,) = Id'(MA(L)).

Proof of (3). By definition of L°, it is enough to prove @€’ iff ¢'=1
€1d'(A,). Note however that to prove ¢ =1 to be an identity of A, we have to
show that @*(@) =1 for every assignment 2 in A;, while what we know fron: the
- definition of A, is that

(4 @elL iff [p],=1holdsinA,.

Actually, we can easily prove by induction, using the definition of operations of
A,, that [@]. = @' (([Polr, [P1l; - - -)) and therefore @ € L iff ¢* =1 is true on
the assignment ([po]., [p1lL, - - .)- More generally, we can also prove that

(5) for all formulae Yo, Y1, ..., Yo, [@(Yos - - ., Yo)I=
?'({({Wolo, [¥1le, - - 1))

where @(v,, ..., ¥,) is the result of substituting vy, ..., ¥, for po,...,p,
respectively in @. Now the point is that L is closed under the rule SR, so that, if
all propositional variables of ¢ are among po,...,p., @eL iff

@(Yos - - . » Ya) € L for all formulae y,, ..., ¥,. But then, since (4) holds, (3) is
proved.

From the above proof of (3) we can also obtain an algebraic characterization of
A,. In fact, let A be any L-modal algebra and let f be any function from the set
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{[pil.:i e N} to A. Then, since {[p;].:i € N} generates the whole A,, putting
h((®]L) = (@Y ((f[Polr, flP1l, - - -)) defines a function & from the whole A, to
A; obviously, h extends f and moreover, since (5) holds, & is a homomorphism (to
see this, use (5) with @ =po Vv p, ..., Tpo). This property of A, is exactly the
definition of the fact that A, is a free algebra, with free generators
[Polz; [P1les - - - » over the equational class MA(L) (cf. [17, p. 162]).

Also, since the free algebras over the same class, with a set of free generators
of a given cardinality, are all isomorphic, we can say that A, is the free algebra
over MA(L) on @ generators. Usually the notation Fyaq,(@) is used for such
free algebra, but since we will use F for frames, we can here use the notation
F,(w)*, the * having a precise meaning which will be clear in Section 3.

2. Kripke frames

Relational semantics is based on the notion of Kripke frame, that is, a pair
(X, r) where X is a set, usually considered as a universe of possible worlds, and r
is a binary relation on X, usually considered as the relation of accessibility
between worlds. To obtain an interpretation of modal formulae in (X, r), one
must first assign to each world x the set of atomic formulae p,, p,, . . . which are
assumed to be accepted by x as true (and it is understood that no world accepts
1). Any such assignment, here called valuation and denoted by V, is then
extended to all formulae by requiring that:

(i) The theory of a world x, i.e., the set 7, of all formulae accepted by x, must
preserve the usual classical truth conditions for connectives (so that, for instance,
ovyeTl if peT, or yeT, but also el iff ¢ ¢T, for formulae @, )
and must be closed under Modus Ponens.

(ii)) A world x must accept a formula O¢ iff any world accessible from x
accepts @, that is, O@ € T, iff @ € T, for every y such that xry.

Such requirements have a uniquc solution, namely the usual inductive
definition of the relation x Iy, @, to be read “x accepts @ on the valuation V.
From a technical point of view, V is then a function which associates with each
world x the set of formulae T, = {@ € FLy:x IFy, @}. A triple (X, r, V) is called a
Kripke model based on (X, r) and a formula @ is said to be true in it, written
X,r,V)Eg, if xI-y @ for every xe X. And @ is said to be valid in (X, ),
written (X, r)E g, if 9 is true ip every model based on (X, r).

It is well known that tweive years ago the hope of proving completeness of such
semantics, which is expressed by the statement

(1) for every logic L, -, @ iff @ is valid in every Kripke frame in which every
formula of L is valid

has been shown to be badly founded by K. Fine [12] and S.K. Thomason [33]. In
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fact (1) fails for uncountably many logics, and some of them are quite simple (cf.
 [8D-

[ﬂi‘lEe]next problem was to characterize complete logics, i.e., logics satisfying (1),
and this hope too now seems to be unreachable, as the work of J. van Benthem
has shown. Waiting for a solution, Kripke frames are still used, both because they
are simple and because they provide with a sensible interpretation of modal
logic®. Their inadequacy is probably due to the lack of clarity of the notion of
power set, which is implicitly used to define valuations; or, at least, changing that
notion completeness is gained, as we now see. It is well known that this happens
also for classical second-order logic.

3. Frames and their completeness

The concepi of (general) frame arises naturally when looking at a Kripke frame
not as a universe of worlds, each with its theory, but as a field of possible values,
as we now explain.

Let (X,r) be a Kripke frame, V a valuation on it and I, the relation,
generated by V, binding points with formulae (let us use the word point, instead
of world, for elements of a frame). What we did in the preceding section was to
think of I, as a collection of theories of formulae, each theory being associated
with a point. Here we suggest to think of the same V and Iy as a collection of
sets of points, each set containing the points which accept a formula. Technically,
the given V is here a function from {p,, p;, - . .} to P(X), and it is extended to a
function, still denoted by V, taking each formula into the set V(p)={x e X:x I
@}. V(9) is called the value of @ in (X,r) under the valuation V and
Ty = {V(@): @ € FLy} is called the field of possible values of (X, r, V). When no
valuation is given, we might say that ‘he field of possible values is the whole
P(X). Of course, T, and P(X) are closed under the set-theoretic operations of
union U, intersection N, complementation —, which is exactly what is needed to
be able to find the value of compound formulae with principal signs v, &, -
respectively, once the values of the components are given. Now we also want to
be able to find the value of O, once the value of @ is given. What we need is
then an operation, call it r*, satisfying r*(V(@))=V(Og) for every ¢ and V,
which amounts to

(1) forevery Ce P(X), r*C= {xeX:for every y, xry implies y € C}.

So we take (1) as the definition of 7* and add it to the boolean algebra P(X)
(here and in the sequel, we do not indicate the usual boolean operations): what
we obtain is a modal algebra, since obviously V(O- L)=V(-L)=X and
V(O(¢ & y))=V(Og & Oy) for all formulae @, ¥ and every valuation V. For
the same reasons, (Ty, r*) too is a modal algebra, subalgebra of (P(X), r*). We
can now generalize both situations by considering Kripke frames together with a
field of possible values, which, as we have seen, must be a modal algebra.
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Definition. A frame is a triple F = (X, r, T) where (X, r) is a Kripke frame and T
is a field of subsets of X closed under the operation r* defined by (1).

T is called the field (of possible values) of F. To save words, we assume from
now on that F denotes the frame (X, r, T') and G the frame (Y, s, U). The value
of a formula in a frame F is obtained as before, except that only valuations in the
field of F are considered. We also keep the same notation. So a Kripke frame
(X, r) can be identified with the frame (X, r, P(X)). By what we have seen
above, it is immediate that

(2) for every frame F, (T, r*) is a modal algebra.

We call it the dual of F and denote it by F*.

F and F* are strongly tied together or, better, are two technical ways of
looking at the same thing, namely valuations. In fact, we can easily see, or prove
by induction, that

(3) for every formula @, every frame F and every valuation V on F,
V(@)= {xeX:xlky @} = (@)Y (V(Po), V(1) - - .))

i.e., the value of @ in the frame F coincides with the value of @ in the modal
algebra F* (recall that the same V can be seen both as a valuation on F and an
assignment on F*)*.

An immediate consequence of (3) is that for every frame F, F and F* validate
the same formulae; in other words, putting LF = {@ € FL\,: F F @} (the logic of
F) and recalling that LF* = {@ € FLy: ¢' =1eId(F*)},

(4) for every frame F, LF =LF*.

The completeness of the semantics given by frames is now at hand: it is enough
to construct a single frame & la Henkin. However, since such a construction will
be used repeatedly in the sequel, we analyse it in some detail. We can isolate two
preliminary steps:

(i) Construction of the model M, =(X_, r., V.) where: X, is the set of all
maximal consistent sets of formulae containing L; for every S, T € X, Sr. T iff
for every formula @, Op € S implies p e T; V(p;)) = {Se X.:p; € §}.

M, is called the canonical model and (X, r.) the canonical Kripke frame for
L.
(ii) Proof, by induction, of:

(5) for every formula @ and every S€ X;, Sl @ implies @ €.

Every step of the induction is straightforward except the inductive step for O,
where we need

(6) OpeS iff forevery T €X,, Sr. T implies p € T.
To prove the non-trivial direction (fiom right to left), assume O ¢ S. Then
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@ ¢ O0°'S = {y:0y €S} and, since 0'S is ciosed under Modus Ponens, there is
a maximal set T’ containing (1S but not @. This means Sr, T, but also ¢ ¢ T,

as we wanted.

From (5) we immediately derive
(7) Lt if M,kg

since pe L iff @ €S for every S € X;. (7) is sometimes called ‘the fundamental
theorem (of modal logic)’; it expresses completeness of the semantics given by
models.

Also compieteness for frames is now easily derivable. Let us say that a frame F
is a frame for L if FEL (that is, Fk¢ for every ¢ €L) or, equivalently, if
L c LF. Then we want to prove '

{8) (Completeness theorem) for every logic L, L+ ¢ iff F k ¢ for every
frame F for L.

As we did at the beginning of this section, we consider the frame F, =
(X., r., T;) generated by V,, over (X, r.); in other words the $eld of possible -
waluac T ic tha enlloction fV.0enlenm e FT_ .\ of all values actunallv taken hv
VOLWUWwD IL LD W WVILVWRIVIL l'L\Y’.Y - & AsMY) WA RAE ViMWwWY WmwLicisssy sissawiz vy
formulae on V;. F, is here called the universal (general) frame for L. Note that
the canonical (Kripke) frame is obtained from F, simply by dropping T .

In analogy with the case of modal algebras and following standard proofs of
completeness for equational logic, we obtain (8) as a corollary of

(9) foreverylogic L, L=L(F)

which is obtained from (7) almost exactly as (3) of Section 1 was obtained from
(4). Here again closure of L(M_), which is equal to L by (7), under the
substitution rule is essential. In fact, note that for any valuation V on T;, there is
a sequence of formulae y,, ¥, . . . such that V(p;) = V. (y;) for every i (a proof
by induction is straightforward); so V(@(py, p2, - - .)) = Vi(@(¥, ¥2, . . .)) for
every formula @. But then @ € L iff ¢(y,, ¥, . . .) e L iff for each sequence of
formulae y,, ¥, ..., Vi(@(¥1, ¥, - . .)) =X, iff for every valuation V on T},
V(o(p1, p2> - - ) =X, iff F E@°

As for the free algebra A,, the construction of F, gives some good suggestions.
One of these is the following: since a maximally consistent set of formulae can not
separate two formulae @, ¢ if ¢ =, ¥, we can identify it with an ultrafilter of A,
(which we do also as far as notation is concerned). Then, simply translating the
construction of F, in algebraic language, we define Sr,. T (S, T ultrafilters) to hold
iff for every a€ A, ta € S implies a € T and take T;, to be the field of all subsets
of the form {Se X;:a €S}, when a € A,. What do we achieve? The circle, or
rather the diagram, is closed, since we can easily prove:

(10) the dual (T;, r}) of the frame (X, , r., T;) is isomorphic to A, .
The proof of (10) will follow the lines of that for (9) above, and thus no wonder
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that we can obtain completeness of frames (8) directly out of it: since L= L(A,)
and A, =Fj, L= L(F}) and hence also L = L(F.) by (4).

More important, however is another idea: why don’t we repeat the same
construction starting from an arbitrary modal algebra, instead of A,;? Actually,
this is what we are going to do in the next section.

4. From modal algebras to frames

As we said above, the aim of this section is to provide a construction which
shows that any modal algebra A is (isomorphic to) the modal algebra dual of
some frame. We will obtain this by constructing a frame A,, called the dual of A,
such that A =(A,)*. Such a construction may appcar more natural if we look at it
backwards, that is postulate that we already know, .iven A, how to construct A,
and examine how it could be.

Recall that (A,)*, the dual of A,, is simply the field of possible values over A,,
together with the operation corresponding to [J. So the first step is to think of
elements of A as possible values, and 7 the additional operation. We then have to
fill in with points (of A,) every element of A. But how can we ‘create’ points of
A,? Here is the crucial point of the construction.

Note that, in any frame F, with each point x we can associate, in analogy with
the complete theory of formulae 7, in Section 2, a complete theory of possible
values, namely U, = {C € T :x € C}. In mathematical words, U, is an ultrafilter of
the boolean algebra T. >o with each point (still to be ‘created’) of A, is associated
an ultrafilter of the boolean algebra A. Now tke idea is simply to reverse this, that
is define points of A, to be the ultrafilters of A. So U(A4)={S:S is an ultrafilter
of A} is the domain of the frame A,. It is then clear, after the above heuristic
discussion, that an ultrafilter S, point of A,, will belong to the possible value a
(or better, to the possible value in (A,)* corresponding to a) if the theory S holds
a true, i.e., if a € S. Therefore the isomorphism between A and (4,)* must be the
function B:a+— {S € U(A):a € S}. Completing the construction and checking that
B is in fact an isomorphism is now easier. When is a theory T accessible from
another theory S? Since we want S to hold the value za iff all T’s accessible from
S hold the value a, again reversing things we choose the maximal relation
.compatible with this, namely the relation 7, defined by

St,T iff foreveryaeA, taeSimpliesacT.

And finally, as we said, the field of values will be A itself, but in a disguised form
now: the place of an element a is taken by the set fa = {S € U(A):a € S} of all
complete theories holding a (alias ultrafilters containing a).

Summing up, the dual A, of A is the structure (U(A), 7., BA), where
BA = {Ba:a e A).° Proving th i A, is a frame is not trivial; actually, the fact that
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A is closed under the operation (z,)* will be proved by showing that
(1) (z.)*Ba=p(va) foreachain A
which is also the only new step required to reach our aim, namely

(2) (J6nsson-Tarski representation theorem) every modal algebra A is
isomorphic to its bidual (A4,)*.

In fact, the reader who knows Stone’s representation theorem for boolean
algebras will have already noticed that, if A =(A, 7) with A a boolean algebra,
then (U(A), BA) is the Stone space dual of A, and PA is a boolean algebra
isomorphic to A, B being the isomorphism. As we already remarked, a proof of
(1) is very similar to the proof of (6) of Section 3.

An immediate consequence of (2) is that LA = L(A,)* and therefore, by (3.4),
also

(3) for every modal algebra A, LA=IA,.

So, for any modal algebra there is an equivaient frame, and conversely. In
particular

(4) for every frame F, LF=L(F*),

so that any frame is equivalent to its bidual. Note however that we have not
derived (4) from an analogue of (2) for frames, simply because it is not true that
any frame F is isomorphic to its bidual (F*),. This is due to the fact that bidual
frames have a rather rich structure, which will be described in Chapter II. The
frames with such a structure, that is isomorphic to the bidual of some frame, have
been called descriptive by Goldblatt. They are the only frames for which an
analogue of (2) can be proved, namely

(5) aframe F is isomorphic to its bidual (F*), iff F is descriptive

that is, iff F itself is isomorphic to the bidual of some frame. This follows easily
from F* = ((F*),)*, which is an instance of (2).

So, from a mathematical point of view, if we want a duality, in the sense of the
category theory, to hold between modal algebras and frames, we must restrict to
descriptive frames. From the point of view of logic, such a restriction is harmless
as long as we are interested only in questions of completeness, in view of (3) or
(4) above. However, it is philosophically debatabic if such a restriction is
justified. Moreover, we will show (Section II1.2) that as soon as we extend our
interest from validity of formulae to semantical consequence, descriptive frames
are no longer enough. Finally, when one is working concretely with frames, it is
much simpler to use all of them without bothering if they are descriptive or not.
This is why we have chosen to keep on considering the class of all frames, also
when looking at them as a category.
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CHAPTER II. Duality theory

Introduction

We are now ready to begin, following the ideas discussed so far, and thus
saving comments, the technical development of duality theory. The main known
result, explicitly stated in [15] for the first time, is that the category Mal, of modal
algebras and homomorphisms, and the category DFra, of descriptive frames and
contractions (alias p-morphisms), are dual to each other (precise definitions are
given below). A similar duality theorem is well known for boolean algebras (<f.
[21]). In this case, the dual category is that of boolean spaces and continuous
functions, where a boolean space is a topological space which is compact,
Hausdorff and with a base of open and closed sets. A frame A,=
(U(A), ., PA), dual of the modal algebra A, is such a space when we forget z,,
and BA is the base for its topology. The idea here is to extend this to all frames,
that is, to take the field T of a frame F = (X, r, T') as the base of a topology on
X. We thus will have a category Fra of all frames and suitable morphisms (weak
contractions), of which DFra is a full subcategory, and functors between Mal and
the whole Fra. We will show that such functors form an adjunction between Fra
and ‘Mal whose restriction to DFra will give the desired duality. Following an idea
of Halmos, we think of modal algebras and frames as particular arrows in two
‘bigger’ categories. We can thus prove a general result (basic adjunction) which
includes all the above as particular cases.

Two tables may help the reader: Table 1 informally summarizes the definitions
of the categories to be introduced while Table 2 indicates the various categorical
connectiors to be established.

The exposition will be detailed enough to avoid references to other sources and
repetitions in later chapters (but the reader with little interest in adjunctions can
skip Sectior 3 and most of Section 4, and instead follow the instructions given in
footnots 7). Of coursc also in this purely technical chapter the reader will often
see the relevance to modal semantics of some mathematical results, even if we do
not explicitly mention it.

Table 1. Categories (in order of appearance).

Bal = boolean algebras A + hemimorphisms 7 (t1 =1, t(a - b) = 1a - tb)
Mal = modz! algebras A (i.e., A= A in Bal) + homomorphisme A
Spa = spaces X + continuous relations (r 'U< T)
Fra = frames F (i.e., X -5 X in Spa) + weak contractions ¢ (crx = scx)
PSpe = spaces + point-closed continuous relations with composition %
Ba = boolean algebras + homomorphisms
HSpa = zero-dimensional Hausdorff spaces + continuous functions
BSpa = boolear (i.e., compact Hausdorff) spaces + continuous functions
CHSpa = boolean spaces + point-closed continuous relations
RFra = refined frames (i.e., X > X with r point-closed, X Hausdorff) + weak contractions
DFra = descriptive frames (i.e., X 5> X in CHSpa) + contractions ¢ (crx =scx)
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adjoint
HSpa % g, RFra 249 _"Mal

WG T

B8Spa DFra

1. Introducing categories and topology

To simplify matters, we follow an idea of Halmos [20] and think of the category
Mal, of modal algebras and homomorphisms, as obtained from a bigger auxiliary
category Bal, of boolean algebras and hemimorphisms, where a hemimorphism
from A to B is a function 7 satisfying

Tl =15
and
foreverye,beA, t(a-4b)=7va-pth.

It is then clear that any modal algebra A is nothing but a pair (4, ) where A is
an object of Bal and v a hemimorphism from A into itself. So A can be identified
with a diagram of the form A->A in Bal (a rigorous definition of this
identification is possible, but apparently useless, with the aid of the category of
morphisms of Bal). Thus the notion of hemimorphism will aliow us to treat at the
same time operators T on boolean algebras and homomorphisms between them.

We now want to do the same for frames, that is consider a frame F =(X,r, T)
as an arrow (X, T)-> (X, T) in a bigger category. Thus objects will simply be the
pairs (X, T), where X is a set and T is a subalgebra of P(X); we call them spaces.
A morphism from (X, T) to (Y, U) will be any relation r c X X Y satisfying the
condition imposed on accessibility relations, but on any pair of spaces. Namely,
for every D c Y we put

r*D=(xeX:foreveryyeY, xry impliesy e D)
and say that r is a morphism from (X, T) to (Y, U) if
(1) foreveryDeU, r*DeT.

Just like that of hemimozphism, this definition will permit to treat at the same
time accessibility relations on frames and morphisms between them.

Any space (X, T) is here meant to be endowed with the topology generated by
taking T as a base for open subsets. Since T is closed under complements, T is
then also a base for closed subsets and any set in T is both closed and open, alias
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clopen. Note however that T need not contain all clopen subsets of X (a typical
example is when T is the family of finite and cofinite subsets of X, in which case
all subsets of X are clopen), unless X is compact:

(2) if (X, I) is compact, then T coincides with the family of all clopen subsets
of X.

Proof. Let D be clopen in X. Then, since D is open, D = C for some family
C c T, and therefore, since D is closed and hence compact, D =_J C’ for some
finite subfamily C’' c C. But then D € T, because T is closed under finite unions.

So in general two different spaces may coincide if regarded as topological
spaces and hence we can not forget the base; nevertheless, from now on we will
write X for (X, T) and Y for (Y, U).

One should keep in mind that a morphism 7 from X to Y is not necessarily a
function from X to Y; instead, we can think of it either as a function from P(X)
to P(Y) by putting

(3) forevery CcX, rC={yeY:xryforsomexeC}
or as a function from X to P(Y), where the image of x € X under r is the set rx,

short for r{x} (and note that the case in which rx is empty is not excluded). This
allows us to rewrite the definition of r* in a simpler form:

(4) foreveryDcY, r*D={xeX:xcD}.

The relation r~!, defined by yr~'x iff xry, is usually called the inverse of r.
However, some of the properties of inverse functions carry over to r* rather than
1 For instance, since rC =, ¢ rx, we immediate'v have:

(5) foreveryCcXand DcY, rCcDiff Ccr*D.

In categorical terms, (5) says that r and r* are adjoint, when considered as
functions between P(X) and P(Y). Taking D=rC and C=r*D, (5) gives
respectively
(6) (i) foreveryCcX, Ccr*rC,
(ii) foreveryDcY, rm*DgcD.
Actually, when r is a function, that is rx is a ‘singleton for every x € X, the

definition of r* boils down to the usual definition of inverse. In fact in this case
rx c D iff rx N D #0, and hence x e r*D iff x e r~'D. So

(7) if ris a function, then r* =r"".

-1

In general, a similar argument only shows how r* and r~" are connected:

xer*—Diff xND=@iff x¢r D, that is,
(8) foreveryDcY, r*—D=-r"'D.

Of course, from (8) we have —r'—D =r*D and r~'D =~r*—D for every
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D c Y, which shows that r~! bears the same relation to > as r* to 0. Anothe
consequence of (8) is that, since T and U are closed under complements, the
condition (1) is equivalent to

9) foreveryDeU, r'Del.
Since obviously
(10) for every fam.ily {Dg:i € I} of subsets of Y, r'l(Uie, D‘) = U‘etr-le

(9) becomes the usual definition of continuity as soon as r is a function. Thus a
morphism may, and will, be called a continuous relation. Actually, extending to
relations the familiar terminology for functions, we also say that r is closed when
rC is closed whenever C is closed; and similarly for ™, open, clopen, etc. So a
continuous relation always has an open inverse. Note, however, that unfortun-
ately 7~ may be open without r being continuous even if r is a function (consider
any space (X, T') in which T does not coincide with the family C of all clopen
subsets, and the identity function (X, T')— (X, C)). On the other hand, r may be
continuous without ! being clopen (we omit counterexamples, which however
are not too difficult). All what we can say, up to now, is that r ! is open (closed)
iff r* is closed (open), by (8), and hence that r™! is clopen iff 7* is clopen.

The composition of continuous relations ° is the usual set theoretic composition
of relations, but note that we write sor for {(x, z):xry and ysz, for some y} since
we want the equality (sor)C =s(rC) to hold, for every C. It is immediate to
check that the composition of two continuous relations is still continuous, and
that {(x, x):x € X} is the identity morphism on X. Hence spaces and continuous
relations form the category we were looking for, and we call it Spa. However,
though fairly natural, this definition has to be modified a little if we want to
obtain an adjunction with Bal, as we will see in the next section.

Any frame F =(X, r, T) will be identified with the pair ((X, T), r), where
(X, T) is a space and r is a continuous relation from X to X. So objects of Fra are
diagrams of the form X -5 X in Spa.

The definition of morphisms in Fra is a bit less inmediate and can be grasped
better after the introduction of functors between Spa and Bal. We can follow two
different lines of thought. The first is to adopt the general more traditional
pattern of defining morphisms as functions which preserve the structure of
objects. We then obtain the notion of contraction: given two frames F and G, a
function ¢ from X to Y is called a contraction (following the terminology of
Rautenberg [28]) if it satisfies both

(11) foreveryDeU, ¢ 'DeT
and
(12) foreveryxeX, crx=scx.

Of course a function satisfying (11) is continuous, but remind that the converse is
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in general not true. Condition (12) might puzzle some readers, but is simply a
way of saying, using our conventions by which crx denotes c(r{x}), that the two
relations soc and ceor are equal. Now c, r, s are morphisms in Spa and hence
soc = cor is exactly what categorists usually express by saying that the diagram is
commutative. So a contraction ¢ from F to G is just a continuous relation from X

X—Y

X—=Y

to Y which is a function and makes the above diagram commute. Note that this
parallels the characterization of a homomorphism h from A to B, A, B modal
algebras, as a hemimorphism from A to B which is a boolean homomorphism and
makes the following diagram commutative:

> B

i

A—>3

A closer look shows that (12) is only a new dress for a weli known requirement.
In fact, simply by writing out the meaning of crx =scx, we see that for every
x € X, crx c scx is equivalent to

(13) for every y e X, xry implies (cx)s(cy)
and that scx c crx is equivalent to
(14) for every z €Y, if (cx)sz then for some y € X, xry and cy =z.

So (12) is equivalent to (13) and (14) together, which are traditionally used to
define p-morphisms. Note that (12) is equivalent also to

(15) foreveryzeY, ric'z=c"%s"'2z

1 1

because r~'oc™!=(cor)™! and similarly for s.

The second approach is to impose on a continuous relation c:X—Y the
minimal conditions in order to obtain that its image c¢* under the functor ( )*,
defined in the next section, is a homomorphism between modal algebras. We will
see that c* is a boolean homomorphism iff c is a function and (11) holds, while c*
preserves the additional operator iff

(16) forevery DeU, r*c*D=c*s*D.
Since c* = ¢! whenever c is a function, and because of (8), (16) is equivalent to
(17) foreveryDeU, r'c"'D=c's7'D.
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So we call weak contraction any function c satisfying (11) and (17) The name is
due to the fact that

(18) every contraction is also a wer : contraction

which is true because obviously (15) implies (17). Of course, the two notions
coincide if only Kripke frames are considered (and, as we will show in Secton 4, -
this holds also for descriptive frames). This probably explains why the notion of
weak contraction has never appeared before (even if one could have reached it
simply noting that (17) rather than (15) is used to prove the ‘p-morphism lemma’,
i.e., to show that c preserves validity of modal formulae, cf. Section I11.1 below).
On the other hand, we believe that the results to follow justify our choice of
taking weak contractions, rather than contractions, as morphisms in the category
Fra.

2. The fanctors

The definition of functors is quite natural, and follows the ideas presented in
Chapter I. In particular, the functor ( )* from Spa to Bal gives no problems. For
every space X, we let X* be the field T of X; so X* is a boolean algebra by
definition. The image under ( )* of a continuous relation r: X— Y is the function
r*:P(Y)— P(X) defined in the preceding section. By the definition of continuous
relations, r* maps U into T, and it is routine to check, using (1.4), that r*Y =X
and r*(CND)=r*CNr*Dforevery C,DeU. So

(1) foreveryr:X—Y, r*isahemimorphism from Y* to X*.

Finally, given two morphisms r: X— Y ands:Y—Z, foreveryCe Z* and x € X,
xer*s*Ciff rx cs*Ciff, by (1.5), srx c Ciff x € (sor)*C; that is, (sor)* =r*os*.
We thus have

(2) ()*is a contravariant functor from Spa to Bal.

The functor ( ), from Bal to Spa is obtained as an elaboration on Stone’s
representation theorem for boolean algebras. Let us recall that U(A) is the set of
all ultrafilters of a boolean algebra A, and that §,:A— P(U(A)), defined by

foreveryaeA, B a={SeU(A):aecS}

is an isomorphism from A to the subalgebra A = {B,a:a € A} of P(U(A)). The
space (U(A), BA) is usually called the Stone space of A; it is compact and
Hausdorff and hence, having by definition a base of clopen subsets, it is a boolean
space. (This is all we need of Stone’s representation theory; the reader can easily
reconstruct the proofs or consult any standard reference, like [8] or [21]}.)

The image A, of a boolean algebra A under ( ), is thus its Stone space
(U(A4), BA), which clearly is a space. The image of a hemimorphism 7 from A to
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B is the relation z, c B, X A, defined by

(4) for every Se U(B) and T € U(A), St,Tiff foreveryaecA, taeS
implies a € T.
Note that if, like many authors, we had used o as primitive, here defined by
o = vtv, the definition of 7, would have been

(5) St,T iff foreveryae A, aeTimplies oaeS

which instead is here an easy consequence of (4).
Showing that z, is indeed a continuous relation is not immediate at all.
Actually, it follows only from

(6) forevery 1:A—Banda€A, (t,)*Bia=Psta

which is essentially the key step to obtain both the J6nsson-Tarski representation
theorem 1.4.2 and the fundamental theorem (cf. 1.3.6).

Proof. First note that, putting 'S = {b € A: b € S}, we obtain that Sz, T iff
t71S c T. By the definition of ( )* and B, S € (7,)*B4a iff 7.5 = B,a and S € fra
iff Ta € S. So only

(7) twaeS iff 1.ScpPaa

is left to be proved. First assume va € S and let T € 7,.S; then 7-1S = T and hence
aeT, that is T € Ba. Conversely, assume 7a ¢ S. We will show that there is an
ultrafilter which belongs to S but not to Ba. It is easy to check that T8 is
always a filter, because 7 is a hemimorphism. Under the assumption za € S, we
can also show that t™'SU{va} has the finite intersection property. In fact,
suppose that b, . .. - b, - va =0 for some by,...,b,et7'S; then by-... - b, <
a, and thus a € 7S, against the assumption. So, by the ultrafilter theorem, there
is an ultrafilter T’ extending tT™'SU {va} which means, as we wanted, both
TS T, thatis T'e1,S, anda ¢ T, thatis T ¢ Pa.

We now still have to prove that ( ), preserves composition, which also is not
trivial. To prove it, we call topology on the stage. Recall that for any space X, the
closure D of a subset D of X is the intersection of all clopen subsets Ce T
containing D, because T is also a base for closed subsets; so D=N{CeT:Dc
C} (and this is all we need on the closure operator). This implies that, for any
r:X—Y, m={DeU:xer*D)} and hence rx is closed, that is rx =7%, iff
rx = {y e Y :for every D € U, x € r*D implies y € D}. In other words,

(8) for every x € X, the following are equivalent:

(i) rxisclosed;
(ii) xry iff for every D € U, x e r*D implies y € D

(and again, if one prefers r~! to r*, he will use
xry iff forevery D e U, y € D impliesx e r~'D
which is equivalent to (ii) because of (1.5)).
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Let us say that r is point-closed if rx is closed for every x € X. The point is that,
for any hemimorphism z:A— B, t, satisfies (ii) above. In fact, by definition,
St T iff for every ae A, taeS implies ae T. Observe that, by (3), aeT iff
T € Ba, and hence also za €S iff S € pza iff S €(z,)*Pa, by (6). So ST iff for
every Pa € BA, S €(t,)*pa implies T € fa, which is the claim since fA is a base
for A,. Therefore, by (8),

(9) for any hemimorphism 7, 7, is a point-closed continuous relation.

(The reader aware of the correspondence between filters on A and closed subsets
of A, can get a cheaper proof of (9): since 'S is a filter, the set {T e
U(A):t"'Sc T} =1,S is closed.)

We still need two lemmas on point-closed relations. For any r: X—Y, let us
define the pointwise closure of r as the minimal point-closed relation 7 containing
r; so ix =7x for every x € X, that is x7y iff y e7x. For every D e U, rxc D iff
7x c D, and hence r*D =7*D. So

(10) foreveryr,s:X—Y, if7f=5thenr*=s*

that is, r* does not determine r univocally. However this is true if we require r to
be point-closed, since by (8) we have:

(11) iir,s:X— Y are point-closed and r*D =s*D for every D € U,
then r=s.

The second lemma is an exteasion to relations of a standard result on
continuous functions on compact spaces (cf. [10, p. 104, Theorem 9], but note
that the structure of the proof has to be changed and that we do not need the
assumption that the co-domain is Hausdorff). Our proof is quite different from
that in [20, p. 165], and involves less notions and assumptions.

(12) if r:X—Y is continuous and point-closed and X is compact,
then r is closed.

Proof. Suppose that D is a closed subset of X. We prove that rD is closed by
showing that for every y ¢ rD there exists a clopen subset C of Y containing rD
but not y. So, let y ¢ rD. For every x € D, y ¢ rx and hence, since rx is closed,
there is a clopen subset C, containing rx but not y. So xer*C, and Dc
Ukep r*C.. Since D is closed and every r*C, is open because r is continuous, by
the compactness of X there exists a finite subset D'c D such that Dc
Uken: r*C,. But then also

rD gr(‘U r*C,)= U n*C.c U C,
€D’ xeD’

xeD’

the last inclusion being true by (1.6). Since U, ¢p- C; is itself clopen and does not
contain y, it is the clopen subset C we wanted and the proof is complete.

The use of (12) is, for the moment, merely to show that, given 7:A— B and
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tv':B—C, 1,°7, is point-closed. In fact, 7, and 7, are point-closed by (9), and
hence also closed by (12), because C, and B, are compact. So t,°7, too is
closed, and a fortiori point-closed. We can then finally show that 7, o7, =
(t'°7),. Since both members are pointclosed, by (11) it is enough to show that
for every ae A, ((z'°7),)*pa = (t,°7:)*Pa. This follows by repeated use cf (6)
and the fact that ( )* preserves composition:

((z'°7),)*Ba = Pr'ta = (1.)*Bra = ((z2)* > (v.)*)Ba = (t, °7))*Pa.
We thus have completed the proof of
(13) ( ), is a contravariant functor from Bal to Spa.
We have actually proved that we have a little more than two functors, namely
(14) B is a natural isomorphism from the identity functor Idg,, into (( ),)*

which is just what (6) says, together with the fact that §,:A— A =(A,)* is an
isomorphism for each boolean algebra A.

It should be clear that thers is no reasonable similar natural isomorphism in
Spa, because (X*), is a boolean space, whatever space X is. However, for every
space X we can define a function yx:X— (X*), by putting as usual

(15) foreveryxeX, yxx={CeT:xeC}

and we can show that y is ‘almost’ the inverse of §. First note that, by definition,
both B and y reverse the membership relation, in the sense that

(16) (i) foreveryaeA and Se U(A), aeSiff S € fa;
(ii) foreveryxe Xand CeT,xeCiff Ce yx.

So, denoting by 1,4, 1y, . .. the identity morphisms of A, X, ..., we can easily
prove

(17) (Triangular identities)

(i) for every boolean algebra A, (B4).°va, =14,;
(ii) for every space X, (yx)*°PBx-=1x-.

Proof. (i) For every a € A and S € U(A), using (16) we obtain a € S iff S € fa
iff BaeyS iff ae B~(yS), and it is clear that, since B is a homomorphism,
B, =B (cf. (4.2) below). So S = B,7S.

(ii) for every xe X and CeT, x € C iff C € yx iff yx € BC iff yx c BC (remind
that yx, the image of x under the relation v, is a set) iff x € y*BC. So C = y*BC.

We wil! make essential use of triangular identities in the next sections. Here we
derive from them some properties of y. Since the base of (X*), is {8C:Ce T},
from C = y*pC we have in particular

(18) 7, is continuous.

Since y is a function and hence y* =y~! by (1.7), applying y to both sides of
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C = y*BC we obtain
(19) forevery CeT, yC=pCNyX

(where of course yC is just the image of the set C under y, namely
yC = {yx:x € C}). So in particular yX intersects properly every nonempty open
subset in the base of (X*),, whick means that
(20) yxX is a dense subset of (X*),
(this little fact, which passed unobserved by modal logicians, will be quite useful).
Applying, y* to both sides of (19) we obtain y*yC=y*fCNy*yX=CNX=C,
which is just another way of saying that, for every C - ¥, yx € yC iff x € C. This
also holds for all closed subsets of .:" In fact, for an; subset D of X and every
CeT, D cCimplies y*yD c y*yC = C and conversely y*yD ¢ C implies D "
because D c y*yD. So, for every Ce T, D c Ciff y*yD c C, irom which

(21) for every closed subset D of X, y*yD=D.

Some additional propertics of y are tied to the structure of X. Since all our
spaces have a base of clopen subsets, X is Hausdorff iff the closure of a point is
the point itself. That is, X is Hausdorff iff

(22) ifforeveryCeT,xeCiffyeC, thenx=y

holds for every x, y € X. But then the definition of y says that (22) is equivalent
to: if yx = yy then x =y. Therefore

(23) yxisone—one iff X is Hausdorff.
Proving that

(24) yxisonmto iff Xiscompact iff yyis closed
is also easy. Recall that a spuc. X is compact iff every ultrafilter of neighbour-
hoods converges (cf. [10, p. 100;), that is iff

(25) forevery Se’/(T), MNS#9.
Assuming that yy is onto, (25) is inmediate: for every S € U(T') there exists x € X
such that S = yx, and hence x €{") S. Now assume X is compact. Then ¥, is closed
because it is a continuous function with compact domain (cf. [10, p. 106] or just
apply (12) above). Finally, if yx is closed, then in particular yX is closed and
hence yX = U(T) by (20).

Finally, it is not difficult to see that y behaves well with respect to relations:

(26) foreveryr:X—Y, xryiff yx(r*),vy.

In fact, by the definition of (r*),, yx(r*),yy iff for every D € U, r*D € yx implies
D € yy. By (16(ii)) this is equivalent to: for every D € U, x e r*D implies y € D.
And hence by (8) also to x7y.”
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3. Basic adjunction

The aim of this section is to prove the most general result we could find
connecting boolean and modal algebras on one side with spaces and frames on
the other. This takes the form of an adjunction between Bal and PSpa, a
category of spaces defined below which is strictly related to Spa. From such an
adjunction, all other similar result will follow either as particular cases or
corollaries.

We use a few lines to recall the categorical notions we need. Let C, D be any
categories, and let A, B, . .. be objects of D, and X, Y, . .. be objects of C. We
say that two contravariant functors ( ),:C— D and ( )*:D—> C form an adjoint
pair (on the right)® if:

(1) for every A and X, there is a bijection

Px.a: Homc(X, At)—) HomD(A: X*);

(2) o is natural in the variables A, X, that is, for every f: X—A,, h: Y- X

and k:B— A, the following hold:

@(feh)=h*egf, @k.°f)=gf k.
It is easily seen (it is just an exercise to reverse almost all arrows and
compositions in the proof of Theorem 2.v in [25, p. 81]) that _

(3) the functors ( ), and ( )* form an adjoint pair iff there exist two natural
transformations, y:Idc—(( )*), and B:Idp—(( ),)*, satisfying the
triangular identities:
forevery A, (Ba)e°¥a.=lao
forevery X, (vx)*°PBx-=1x-.

Sketch of proof. Assume that (1) and (2) hold. Then for every A put
Ba=@(1,.) and for every X put yx=¢@ '(1x.). Let k:B—>A. Then from
ko°o1l,.=15.°k, using (2) we obtain @(1..)ok=(k,)*°@(15.), ie., B is a
natural transformation. Now from yx = 1(x+). ° yx using (2) we obtain

Ly = @(vx) = 9(1ix+). 2 ¥x) = (¥x)* ° @(1(x+).) = (¥x)* °Bx-.
Quite similarly, the other triangular identity and the fact that y is a natural

transformation follow from the fact that, since @ is bijective, also @~ is natural.
Note that @ can be completely described using y: from f=1,,°f we obtain

of =f*°@(14.), thatis gf =f*B,. Also, p~'(g) =g.°7.
Conversely, define ¢ by ¢f =f*<f8,. To prove that ¢ is bijective, we show
that 6g =g,y (where g:A— X*) is its inverse. In fact,

0¢f =(f*B).°y by the definition of ¢ and 6
=p.°(f*).°y  because ( ), is a contravariant functor
=B.07°f because ¥ is 2 natural transformation
=f by triangular identities.
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Quite similarly, we can show 960g = g. Finally,
@(foh)=(foh)*sB=h*f*=p=h*gf and
Pkyof)=f*o(k) o B=F*"°Bok=o@(f)°k

show that @ is natural.

One must be very careful at this point: while it is true that § and y, as defined
in the preceding section, satisfy the triangular identities (see 2.17), it is not t-ue
that y is a natural transformation from Idgp, to (( )*),. In fact, it is easy to find a
space X and a relation r: X— X such that yor #(r*),°y. Let X be the natural
numbers N, T = P(X) and r the usual order <. Then for every Cc N, r*Cis the
maximal end segment contained in C, and so T e(r*),yx whenever T is a
nonprincipal ultrafilter. On the other hand, by the definition of y, yrx contains
only principal ultrafilters.

This is quite unfortunate, because it compels us to consider another category of
spaces. The idea is to identify all relations with the same image under ( )* or,
which is equivalent by (2.11), to take only point-closed continuous relations as
morphisms. But then another problem arises, namely that the composition of
poini-closed relations is not, in general, point-closed (the reader can easily find
counterexamples). Before giving up , however, we invent a new composition of
morphisms %, simply by defining s % r to be the minimal point-closed relation
containing s°r. So ‘

(4) for every point-closed continuous relations r: X— Y and s : Y — Z, we put
skr=5or.
The trouble now is to show that % is a good composition. Let us show it step by
step.
(5) = is associative.
Proof. Assume r:X—Y, s:Y—Z and t:Z— W are point-closed continuous
relations. Let C be any clopen in W*. Then

(tx(skr)*C=(to(s xr))*C because of (2.10) and (4)
=({s xr)*ot*)C  because ( )*is a functor
=((sor)*ot*)C again by (2.10)
=r*s*t*C.
Quite similarly, we obtain also ((¢ % 5) * r)*C =r*s*t*C and hence we can apply

(2.11) to obtain the claim ¢ % (s % r)=(t *s) * r since both members are
point-closed by definition.

Since the identity morphism 1, : X — X must be point-closed, it is quite natural
to define it as {(x, y):y € {x}}, alias 1x:x+~> {x}. However, the proof that 1,
is in fact the identity morphism of X is a bit tedious, and can be jumped with no
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harm by the reader who sees no problems in always restricting to Hausdorff
spaces. In fact, in this case 1y is simply the identity function on X, since every
point is closed.

(6) for every space X, the relation 1y:x+~> {x} is the identity morphism on X
with respect to composition *.

Proof. For any point-closed s:Z— X and every ze Z, (14 *s)z = 1xsz by
definition of *, but since sz is closed, 1ysz=sz and hence 1ysz=sz. So
lx *s=s.

Now assume r:X—Y is point-closed. First note that r can not distinguish
points of X with equal closure, i.e.

(7) if r:X— Y is point-closed and {x} = {y}, then rx =ry.

In fact, from {x} = {y} we have that for every D e U, x er*D iff y € r*D, that is
rx c D iff ry c D. Since rx and ry are closed, this means rx =ry. From (7) we
obtain r{x} = rx and hence

rxlx)x=(rely)x=(rely)x=r{x}=mx=rx,

that is r % 1, = r as we wanted.

Summing up, we have shown that

(8) taking spaces as objects and continuous point-closed relations as morph-
isms, with composition * defined in (4), gives a category, called PSpa.

Note that the functor ( )* of the preceding section is also a functor from PSpa
to Bal (recall that r* =7* for every relation r); similarly, ( ), is a functor from
Bal to PSpa (because of (2.9) and because 7,°7,=71, * T,, since T,°71, is
point-closed). So we can finally start to go downhill towards our aim, which is
proving

(9) (Basic adjunction) the functors ( ), :Bal— PSpa and ( )*:PSpa— Bal
form an adjoint pair.

After theorem (3), (2.14) and triangular identities (2.17), the only fact left to
be proved is that y is a natural transformation. We deduce it from a more general
lemma, which will be essential in the next section.

(10) for every point-closed relations 7, s, ¢, d, the diagram
X—Y

cl ld

Z—>W
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commutes in PSpa, that is, scx =drx for every x € X, iff the diagram
) & - Y*
c-] ]a-
zZ* PAE Ml w*
commutes in Bal, that is, 7*d*C = ¢*s*C for every Ce W*.

Proof. By the definition of closure, 6% = drx iff for every C e W*, scx c C iff
drx c C. But using (1.5) we see that scx c C iff x ec*s*C, and similarly drxc C
iff x e r*d*C, from which the claim.

We then also have
(11) yis a natural transformation from Idps,, into (( )*)..

Proof. First note that y: X— (X*), is a morphism in PSpa: it is point-closed
simply because it is a function and every point in (X*), is closed, and it is a
continuous relation by (2.18). Now to obtain the claim we have to show that

(12) foreveryxeXandr:X—Y, ymx=(r*),yx.
By (10), it is enough to show that r*y*gD = y*((r*),)*BD for every gD e U.
This can easily be obtained using triangular identities and (2.6) applied to r*:
r*y*BD =r*D =y*fr*D = y*((r*),)* 6D.

4. Modal duality and other corollaries

As we promised in Section 3, modal duality as well as some other similar
dualities or adjunctions, are easy corollaries of basic adjunction.

We first see what happens if we restrict to the usual case, in which morphisms
r:X—Y and v:A— B are functions and homomorphisms respectively. Assume
that r:X—Y is a function. Then by (1.7) r*=r"" and hence, by (1.8),
r*—D=—r*D for every D e U. So

(1) ifr:X—Y is a function, then r*:Y*— X* is a boolean homomorphism.

On the other side, assume that 7:A—> B 1s a homomorphism. Since 7 is a
hemimorphism, TS is a filter for every S € U(B) (see the proof of (2.6)); but
from vra = 7va for everyaec A, we have alsoa ¢t 'S iff ta ¢ S iff via=1tvaeS
iff va € t™'S, which means that ™S is an ultrafilter. Hence 7,.S, which is equal to
{T € U(A):T~'S c T} by definition, is a singleton for every S € U(B), and hence

(2) if r:A— B is a homomorphism, then t,:B,— A, is a function.

As a first little corollary of basic adjunction, we can prove also the converse of
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(1) and (2) (but also a direct proof is possible, cf. [20, p. 57)):

(3) (i) tis a homomorphism iff 7, is a function; '
(ii) under the assumption that Y is Hausdorff, 7: X— Y is a function iff r*
is a homomorphism.

Proof. (i) Assume 7, is a function. Then (z,)* is a homomorphism by (1); so
(t4)*°B =B°7 is a homcmorphism and, B being an isomorphism, = must be a
homomorphism.

(ii) Assume 7* is a homomorphism. Then (r*), is a function by (2), and hence
also (r*), oy is a function, that is (r*), yx is a singleton for every x € X. But since
Y is Hausdorff, (r*),yx =(r*),yx and hence, by (3.12), yrx is a singleton.
Finally, rx is a singleton, because y is one-one by (2.20).

Ignoring hemimorphisms which are not also homomorphisms, we obtain Ba,
the usual category of boolean algebras and homomorphisms, as a subcategory of
Bal. Similarly, we do ignore continuous relations which are not functions, but we
do not obtain only continuous functions, because our definitions depend on bases
(cf. the remarks following (1.10)). So, disregarding useless generalities, we also
restrict to spaces (X, T) where T coincides with the family C(X) of all clopen
subsets of X, which we call zero-dimensional (note that usually a topological
space is called zero-dimensional just in case C(X) is a base and, in this sense, all
our spaces are zero-dimensional; the difference is due, once more, to the fact that
we consider the base T as part of the space). We then have:

(4) (Boolean adjunction) the category Ba is adjoint to the category HSpa of

zero-dimensional Hausdorff spaces and continuous functions

Proof. The functors between Bal and PSpa continue to be functors here, by
(3) and the fact that the composition of morphisms % in PSpa reduces to the
usual composition of functions, because of the restriction to Hausdorff spaces.
and y continue to be natural transformations, because f, is always a homo-
morphism and yy is always a continuous function, and they obviously satisfy
triangular identities. So we can apply (3.3).

An immediate corollary is the better known boolean duality. Here two
categories are said to be dual of each other if one is equivalent to the opposite of
the other, or, more directly, if they are equivalent via two contravariant functors
(cf. [27, p. 18]). A duality is just a particular case of adjunction (in our sense), in
which the units are natural isomorphisms. So boolean adjunction gives a duality
simply by restricting to subcategories in which f and y are isomorphisms. Since
B4 is an isomorphism for each boolean algebra A, Ba is left unchanged. By
(2.20), yx is an isomorphism iff the space X is compact, beside being Hausdorff,
that is X is a boolean space. Also note that, by (1.2), every boolean space is
zero-dimensional. We thus have:

(5) (Boolean duality) the categories Ba and BSpa, of boolean spaces and

continuous functions, are dual to each other.
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Actually, the same argument can be applied to basic adjunction, and we
obtain:

(6) (Halmos® duality) the categories Bal and CHSpa, of boolean spaces and
continuous point-closed relations, are dual to each other.

Continuous point-closed relations between boolean spaces were called boolean
relations by Halmos [20]. Note that CHSpa, as 2 subcategory of PSpa, inherits
the fancy composition %, which however coincides with  on boolean relations by
(2.12) (and Halmos had to prove a similar lemma simply to show that CHSpa is
indeed a category).

We have now finally arrived at modal duality. Recall that a frame F = (X, r, T)
is here identified with a morphism (X, T)-> (X, T) in Spa. We have seen
however that no adjunction exists between Bal and Spa, having B and y as units.
We are thus led to consider, as we did for spaces, another category of frames, in
which objects are morphisms X -5 X in PSpa. Moreover, in order that any weak
contraction c¢:F— G shall be point-closed and hence a morphism in PSpa, we
also have to restrict to Hausdorff spaces. Frames (X, r, T) with r point-closed and
(X, T') Hausdorff have already been considered in the literature, under the name
of refined frames (cf. Section II1.2 below). The category of refined frames and
weak contractions is here called RFra.

Let us now give a second look at weak contractions. As a corollary of (3.10),
we have

(7) a function c:F— G, where F, G are arbitrary frames, is a weak
contraction iff c~'(U) c T and &7x =35cx for every x € X.

We will often use this characterization from now on, even without explicit
mention. Restricting to RFra it has an even sharper form: a function c:F— G,
with F, G reimed, is a weak contraction iff ¢ is a morphism in PSpa which makes
the diagram

X—X

Yy =Y

commute in PSpa. Moreover, note that by (7) every closed weak contraction in
RFra is always a contraction, since in this case from ¢7Xx =5cx we also have
crx =scx; this by the way gives support to our claim that weak contractions are
more basic than contractions, the latter corresponding to closed continuous
functions in topology.

Now modal duality is only a matter of putting together what we already know.
The functors ( )* and ( ), between Bal and PSpa immediately yield functors
between Mal and RFra, which we denote by the same symbols. Of course, if
F=(X,T),r), we put F*=((X, T)*, r*), which clearly is a modal algebra;
similarly, if A = (A, 7) we put A, =(A,, 7,), which is a (compz.t) refined frame
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2/ N\ ww

since A, is a boolean space and 7, is poini-ciosed by (2.9). We aiready know how
the functors act on weak contractions and modal homomorphisms, since they are
particular cases of continuous relations and hemimorphisms respectively.

Moreover, (3.10) and (3) teil that

(8) c:F— G is a weak contraction iff c*:G*— F* is a modal
homomorphism.

Using this and the fact that g is a natural isomorphism in Bal, we also have
(9) h:A— B is a homomorphism iff h,:B,— A, is a weak contraction.

In particular, ( ), and ( )* are indeed functors between Mal and RFra, and we
can finally prove:

(10) (Modal adjunction) the functors ( ), and ( )* between Mal and RFra
form an adjoint pair.

In fact, assume that c:F — G is a weak contraction. Then all the information we
need is contained in the following commutative cube of PSpa:

X X
~
\ | (X*)*

(4
c [« 3
().

Y —|— (Y*).

™~

Y—— (Y*),

The assumption that ¢:F— G is a weak contraction tells that the left face is
commutative, and hence also its image under (( )*),., which is the right face. The
remaining four faces are commutative because y is a natural transformation in
PSpa; but then, by the remark following (7), the top (bottom) face shows that
y:F—(F*), (v:G—(G*),) is a weak contraction, that is a morphism in RFra
(actually, one of the aims of the introduction of weak contractions and of %, as
well as much of the work up tc now, was just to reach this apparently innocuous
result). What do the front and back faces express? To see it, let us compress the
cube by juxtaposing them. We obtain the commutative square

F -1 (F*),

{ e

G— (G*)*

which tells that y is a natural transformation from Idge.a into (( )*),-
Exactly similar (or actually, dual) is the proof of the fact that B is a natural
isomorphism from Idy, into (( ),)*. So, since of course triangular identities
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continue to hold for § and y (relations and hemimorphisms do not affect them),
we can apply( 3.3) and hence (10) is proved.

As for boolean and Halmos’ duality, modal duality is obtained from (10) by
restricting to the subcategory of RFra in which y is an isomotphism. So let us first
characterize isomorphisms. An isomorphism c:F—G must be a bijective
continuous function with a continuous inverse, that is a (topological) home-
omorphism. Conversely, if a weak contraction c:F— G is a homeomorphism,
then from &7% =5¢x for all x € X, we have in particular crc™'y = scc™'y =35y for all
y € Y, and hence also ¢~ sy =rc 1y, but still c~* may fail to be a weak contraction
(for example, consider F = (N, r, P(N)), G =(N, r, T) where r is any relation, T
" is the family of finite and cofinite subseis of N and c is the identity function); to
characterize isomorphisms we thus have to add the assumption that for every
CeT, cCeU, or equivalently, that c* is onto. Since y* is always onto, by (2.20)
we have:

(11) y:F—(F?*), is an isomorphism in RFra iff F is compact.

A compact refined frame is here called descriptive (and we will show in Section
II1.2 that this definition is equivalent to that of Goldblatt, who introduced the
name). Restricting to descriptive frames, the distinction between weak contrac-
tions and contractions vanishes: a weak contraction c:F—G, with F, G
descriptive, is always also a contraction, because for every x € X from ¢7x =5¢cx
we obtain crx = scx, since c, 7, s are point-closed and hence closed by (2.12). We
thus have

(12) (Modal duality) the categories Mal and DFra, of descriptive frames and
contractions, are dual to each other.

Unlike in the case of spaces, we can here also extend modal adjunction (10) to
an adjunction between Mal and the whole of Fra, because, contrary to PSpa with
respect to Spa, RFra is a subcategory of Fra, and actually of a rather nice kind:

(13) RFra is a reflective subcategory of Fra.

That is, there is a functor R:Fra— RFra which is left adjoint to the inclusion
functor (note that here we follow [25, p. 89] word by word, since functors are
covariant). To prove it, it is enough to show that for every frame F there is a
refined frame F; and a morphism pg:F— F; such that every morphism
¢:F— G, with G refined, splits uniquely through p, that is ¢ =& p for a unique
¢:Fp— G (cf. [25, p. 89)).

The most natural way to obtain a refined frame from any given frame F is to
extend r into its pointwise closure 7 and identify points which are not separated
by T. The latter aim is accomplished by the image of (X, T') under the morphism
y:F—>(F*),. That is, we put Xp={yx:xeX} and T ={yC:CeT}. Now,
defining a relation 7z on (Xg, Tz) by putting yxrzyy iff x7y, we obtain that the
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triple (Xx, 7z, Tr) is exactly the substructure induced by (F*), on yX, that is
(14) foreveryxeX, (r*),yxNyX=rgyx.

In fact, by (2.26), yx(r*),yy is equivalent to x7y, which is the definition of
YXIRYY-

So Fr =(Xg, rg, Tz) will be a refined frame, as soon as we prove that it is
indeed a frame. We only have to show that T is closed under r (note that this is
not true of every induced substructure), which immediately follows from

(15) foreveryCeT, yr*C=rgyC.
To prove it, first note that
(16) foreveryxeX, rryx=9yrx

because yy € y7x iff y € y*¥7X, and y*y7Xx=7x by (2.21). Then, using (16) and
(2.21) again, (14) follows easily: yx e rgyC iff rgyx =y c yC iff R y*yC=C
iff x e r*Ciff yx € yr*C.

The next step is

(17) for every frame F, y:F— Fyis a weak contraction

which by (7) is proved once we show that 37X = rgyx, where ~~ now denotes
closure in Fj, to be distinguished from closure — in (F*),. But yrx = y7x N yX
(cf. [10, p. 65]) and hence, since ¥7% = (r*),yx because y:F— (F*), is a weak
contraction, ¥7% = (r*), yx N yX = rgyx by (14), as we wanted.

To complete the proof of (13), let c:F— G, with G refined, be any weak
contraction. We want to show that there is only one weak contraction ¢: Fr— G
such that ¢oy = c. Of, course, since y is onto Fg, the condition Cyx = cx uniquely
defines ¢, and so it only remains to show that ¢ is a weak contraction. First, for
every D e U we have that yx ec™'D iff cyx e D iff x ec™'D iff yx e yc™'D. So
€7D = yc™'D € T;. Finally, using the fact that c7¥ c &7x (cf. [10, p. 41]), one can
easily derive that cx=crx. Hence from crx=5cx we have sCyx =5cx =c/x =
7% = Ty7X = Crryx (the last equality by (16)), which is what we need by (7).

Putting together (9) and (13), we obtain

(18) (Modal adjunction, extended) the categories Mal and Fra are adjoint

(the scrupulous reader can check that the composition of the natural bijections
Hom(F, A,)=Hom(Fg, A,) and Hom(Fy, A,) =Hom(A, (Fz)*) is the natural
bijection needed, observing that for every F, F* = (Fg)*).’

5. Frame constructions and duality

With the tools provided by modal duality, we here analyse (continuing the
work in [11] and [15]) the usual frame constructions: subframes, images of
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contractions, disjoint union of frames. Actually, our notion of weak contraction
suggests the introduction of a new notion, namely that of weak subframe, which
will prove to be quite useful in the next chapter.

Giving all details here would mean boring the reader to death, and we thus
assume more familiarity with categories than in the preceding sections. As we
often did previously, we begin with the algebraic side:

(1) in the category Mal of modal algebras:
(i) monomorphisms coincide with injective homomorphisms,
(ii) subobjects coincide with subalgebras.

Of course, (ii) follows from (i), which is true because free modal algebras exist.
On the other hand, the problem whether epimorphisms in Mal coincide with
surjective homomorphisms remains open.

We can also describe quotients of modal algebras quite well. It is well known
that the assignment 60— F, = {a € A:a 0 1} defines a biunivocal correspondence
between congruences 8 and filters F on a boolean algebra A. We say that a filter
F on a modal algebra A =(A, ) is closed under z, briefly a z-filter, if ae F
implies ta € F. We then have

(2) the lattice of congruences of a modal algebra A is isomorphic to the lattice
of z-filters of A.

Proof. It is enough to show that @ preserves t iff F; is closed under 7. So
assume that a 6 b implies 7a 6 tb. Then from a € F,, i.e. a0 1, we have 12 0 71
and hence ta € F, since tl1 =1. Conversely, assume F, is closed under 7 and let
a6b. Then a<beF, and hence t(a<>d)€e F,, from which also ae thekF,
because t(a <> b) < ra < 1b. So 1a 6 tb.

Tuming to frames, matters are not as simple. We first see the connections
between special morphisms in the two categories. What directly follows from
modal adjunction (cf. [27, p. 94], but still modulo the exercise of reversing
arrows) is that the image under our functors of an epimorphism is a monomorph-
ism. In addition, we can easily prove that our functors are faithful, namely

(3) (i) if ¢, d are weak contractions in RFra and c* =d*, then c =d;
(ii) if A, g are homomorphisms and h, =g, then h=g.

This holds simply because f and y (in RFra) are monomorphisms. In fact, let
8« =h,. Then (g,)* = (h,)* and hence, since (g,)*B8 = Pg, Pg = Ph, from which
g =h because B is a monomorphism. The proof of (i) is identical (also, we
already proved it as (2.8)). So (cf. [27, p. 115]) the functors also ‘co-reflect’
monomorphisms, that is:

{4) (i) in RFra, c is an epimorphism iff c¢* is a monomorphism;
(i) 4 is an epimorphism iff A, is a monomorphism.

Proof. The two proofs are identical, and so let us prove (i). As mentioned
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above, one direction is just a consequence of modal adjunction, and to help the
reader here is the argument. Assume c is epic and let c*g=c*h. Then
@ 'gec=@7 Y (c*'g) =@ '(c*h) =@ 'heoc, from which ¢ 'g=¢ 'k since c is
epic. So g = h since @ is bijective. Conversely, assume c¢* is monic and let dc = ec.
Then c*d* = c*e*, from which d* = e* since c* is monic, and hence d = e because
( )* is faithful by (3(i)).

Since f is a natural isomorphism, k is a monomorphism iff (h,)* is a
monomorphism, and hence, by (4(i)) applied to A,, also

(5) h is a monomorphism iff i, is an epimorphism.

Note that this rests solely on the fact that g is a natural isomorphism. So, when
also y is a natural isomorphism, the dual statement holds, that is

(6) in DFra, c is a monomorphism iff c* is an epimorphism.
Note that one direction of (6) holds more generally:

(7) in RFra, if c* is an epimorphism, then c is a monomorphism.

This is true because y is a monomorphism in RFra: if c* is epic, then (c*), is
monic by (4(ii)), and hence also (c*),y = yc is monic, from which the claim.

All of this may be amusing, but of little use, at least until we can characterize
epimorphisms and monomorphisms in Fra more directly. Surely epimorphisms
are not always surjective. In fact, y:F— (F*), is epic for every F, by (4(i)) and
the fact that y* is an isomorphism (by triangular identities, B is its inverse).
However, we know by (2.24) that y iz onto only when F is compact. Still, y is
always ‘almost’ onto, in the sense that yX is dense in (F*),. We now see that the

same is true for all epimorphisms:
(8) if c:F— G is an epimorphism in RFra, then cX is a dense subset of Y.

Proof. By (4(i)), which applies only to refined frames, c* is monic, and hence
one-one by (1). So, for every D € U such that D @, we have c*D #§=c*0.
But then cc*D N cX #9 and hence also D N cX #@, because cc*D c D by (1.6).

In particular, when F is compact and G is Hausdorff, ¢ is point-closed and
hence closed by (2.12). In this case cX =cX =Y and c is indeed onto. Thus

(9) in DFra, epimorphisms coincide with surjective contractions.

The problem whether monomorphisms in DFra coincide with injective contrac-
tions remains open; we can only give two partial results which together with (5)
and (6), show that it is equivalent to the above mentioned problem about

epimorphisms in Mal.

(10) if c:F— G is a weak contraction in RFra and c* is onto,
then c is one-one.
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Proof. If x, y € X are distinct, there exists C € T which separates them, that is
xeC and y ¢C. Since c* is onto, there exists D € U such that C=c*D. So

xe€ c‘.'), thatiscxe D, and y ¢ c*D, that is ¢y ¢ D. This means that cx #¢y.

(ll) in DFre, if c: F— G is one—one, then c* is onto.

Proof. Since F and G are compact, c is closed and hence cX is compact. So for
every CeT, both ¢C and c — C are closed, and hence clopen in the topology
induced by U on cX. But then by (1.2) cC = D N cX for some D € U, which gives
C = ¢*D since c is one-one.

We can now turn to frame constructions. Given a frame G and a subset X of Y,
the tripie (X, r, T) where r=5sNX% and T={D NX:D € U} is here called the
substructure induced by G on X. Also, we say that X is an s-kereditary subset of
G if sX c X, that is y € X whenever x € X and xsy. A frame F is traditionally said
to be a (generated) subframe of a frame G if X c Y, F is the substructure induced
by G on X and X is s-hereditary. All of this can be expressed through
contractions. In fact, 7 =s N X? is equivalent to the requirement that irx = six for
every x € X, where i: X— Y is the inclusion function, and T={DNX:DeU} is
equivalent to the requirement that i is continuous and i* is onto, because
i*D=DNX for every DcY. So F is a subframe of G, written F cG, if
i:F— G is a contraction and i*:G*— F* is onto. It is now natural to widen this
definition as follows: F is a weak subframe of G, written Fc,, G, f i:F—> G is a
weak contraction and i* is onto. More generally, we say that F is embeddable in
G, viritten F < G, if there exists a one—one weak contraction c: F — G such that
c* is onto. Trivially, every weak subframe of G is embeddable in G. Conversely,
when F, G are refined, if F & G via c, then the substructure cF induced by G on
cX is a weak subframe of G which is isomorphic to F (a detailed verification is left
to the reader; observe that the assumption c:F— G must be uscd to be able to
say that cF c, G). In particular, since y* is always onto, we have

(12) for every frame F, F; c,, (F*), and, when F is refined, y is an
embedding of F into (F*),
which will be essential in the next chapter.
Our definitions trivially imply that
(13) if F - @G, in particular if F c,, G, then F* is a homomorphic
image of G*.

Conversely, if h:A-»>B is onto, then k,:B, <> A,. In fact, if A is onto then for
any S, T € U(A), h™'(S) = h~(T) implies S = T, that is h, is one-one, and (h,)*
is onto because (h,)*°B=poh. Since weak contractions between descriptive
frames are always contractions, we have

(14) if h:A— B is onto, then B, is isomorphic to a subframe of A,.
It is well known that the assignment F~>("){fa:a e F}=Cy defines an iso-
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morphism between boolean filters of A and closed subsets of U(A). By using
(2.6) and (1.5), one can easily show that a filter F is closed under 7 iff 7,Cr c C¥,
and hence

(15) rflters of a modal algebra A correspond biunivocally to z,-hereditary
closed subsets of U(A).

Note that a subframe F of a descriptive frame G is itself descriptive iff X is
closed, because closed and compact subsets coincide in a compact space (cf. [10,
pp. 102-103]). Therefore, combining (15) with (2) we obtain

(16) the lattice of congruences of a modal algebra A is anti-isomorphic to the
lattice of descriptive subframes of A,.

Similar results hold for weak contractions. By (1) and (4(i)), we immediately
have
(17) if c:F— G is an epimorphism, then G* is isomorphic to a
subalgebra of F*

and conversely, by (5) and (9),

(18) if A is a subalgebra of B and i is the inclusion, then
i*:B,— A, is a surjectivs contraction

However, a result corresponding to (16) is not immediate, because a
characterization of quotient objects of a frame F, in terms of F itself, is not
readily available. We now find it out. First recall that, given a space (X, T) and
an equivalence relation 6 on X, we can define the quotient space (X/6, Tp)
putting T, = {D c X/0:c5"D € T}, where cq:x+> [x]p is the canonical mapping
from X to X/6 (cf. [10, pp. 83-84]). It is known that, given an epimorphism
c:F-G, and putting 6(c)={(x,y):cx=cy}, the quotient space
(X/6(c), T () is homeomorphic to (Y, U) iff c is closed. And c is closed iff the
relation 0(c) is closed (cf. [10, pp.83-84]). So, let F be any frame and 6 a closed
equivalence relation on X. We want to add a relation r, to (X/6, Tp) in such a
way that F/0 = (X/0, ry, Tp) is a frame and c, a weak contraction from F onto
F/6. The condition cgrx = rycox itself is met by a unique point-closed 7,, and it is
a good definition iff

(19) forallx,yeX, x0y implies Orx = 6ry.

Thus a congruence on a frame F is a closcd equivalence relation 0 satisfying (19).
Now it is not difficult to check that

(20) if @ is a congruence on F, then F/0 is a frame and co:F—F/9 is a
contraction

and conversely

(21) if c:F— G is a closed onto contraction, then 6(c) is a congruence on F
and G is isomorphic to F/0(c).
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When F is descriptive, any epimorphism c:F— G is closed and onto by (9),
and thus quotient objects correspond biunivocally to congruences on F. So, since
by modal duality quotients objects of A, correspond biunivocally to subobjects of
A, we have

(22) the iattice of subalgebras of A is isomorphic to the lattice of congruences
onA,.

The isomorphism can easily be described. If F is descriptive and U is a subalgebra
of T, then the corresponding congruence 0 is defined by: x @y iff for every C e U,
xeCiffyeC.

Finally, dualizing the categorical definition of product of algebras, we obtain
the definition of coproduct, that is disjoint union of frames. Therefore the disjoint
union of a family (F);; of pairwise disjoint frames, is the frame

zA=(g%ynT)
where Ce T iff CNX; e T, for every i el (cf. [10, p. 72]). By modal duality we
then have

(23) for each family (E);, of frames, (X;.; F)* is isomorphic to [l F;.

On the other hand, given a family (A;);; of modal algebras, the frame X, A;- is
not homeomorphic to (II;; A;),, because the former is never compact when 1 is
infinite. Rather, using the fact that the functor sending F to (F*), is a reflector

(because of modal adjunction), and reflectors preserve coproducts, one can
obtain

(24) for every family (4,);c; of modal algebras, ((I;c;A:-)*), is isomorphic to
(niel Ai)s
from which, for finite J,

%A,.E(HA,-)‘.

iel

CHAPTER IIl. Classes of frames
Introduction

The mathematical theory so far deveicged would be sterile if we could not
apply it to problems usually encountered by modal logicians. To show the
contrary, we have chosen a specific area, namely the study of classes of frames,
and revised it with the aid of duality theory.

In particular, the notion of weak contraction permits to obtain easy proofs of
the preservation of consequence under usual frame constructions and a proof of
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the fact that every frame is equivalent to a refined frame also with respect to
consequence. Moreover, the notion of weak subframe, together with dualit;, is

used to give 2 new simnle descrintion of the class of frames for a civen looic and a

WOWe BV pa e & AWy Siiiiprav WeUwaapssatiad Wi v walou WA liRiave AUV & BV Wil AURRw Gliw @

purely frame-theoretic characterization of modal axiomatic classes of frames. Two
wellknown theorems on classes of Kripke frames are obtained as corollaries.

We rely by now on the reader’s confidence with the subject and thus will often
justify a step in the proofs simply ‘by modal duality’, without explicit reference to
specific resuits in Sections Ii.4 and II.5.

1. The logic of frame constructions

It is well known that frame and algebraic constructions preserve the validity of
modal formulae. For algebras this is true since identities are preserved by
homomorphic images, subalgebras and direct products. It is less known that the
corresponding frame constructions preserve also semantical consequence. The
notion of weak contraction is used here to give a complete and uniform proof of
this fact.

Let @ be a formula and I' a set of formulae. We say that ¢ is a consequence of
I over the frame F, written I'EF @, if for every valuation V and every x € X,
x Ity I (that is, x Iy ¢ for every y € I') implies x v @. In other words, putting
V(D) =N(V(y):yel),

(1) TIeF @ iff for every valuation V, V(I') c V(@).

Of ail the consequence relations considered in the literature (at least four), this is
the strongest. To save words, we denote by CF the set {(I', ¢):'EF @} and call it
the consequence of F (in analogy with LF, the logic of F). We will say that two
frames F and G are strongly equivalent if they have the same consequence, that is
if CF = CG.

A technical lemma is the common part of all preservation results to follow. Let
c:F— G be a weak contraction; for every valuation V on G we define a valuation

¢~V on F by putting: (c"‘V)(p) ¢~V (p) for every propositional variable p.
We then have:

(2) if c:F— G is a weak contraction, then for every valuation V on G and
every formula @, (c'V)(@) =c~'V(@).

Proof. The proof is by induction on the complexity of ¢. The only interesting
step is that for the modal operator, and here  is easier to handle than 0. We
have

cW(EOP)=c"s"V(p) by the detinition ot V{O@)
=r-c"V(p) because c is a weak contraction
=r~(c"'V)(¢) by induction hypothesis
=(c"V)(Op) again by definition of (c"'V)(O@).
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This result can easily be extended to the case of a set of formulae because ¢!
preserves intersections. Then we are ready to prove the next theorems. -

(3) if c:F— G is a surjective weak contraction, then CF c CG.

Proof. Assume 't @ and let y € V(I'). Then, since c is onto, there is xeX
such that y =cx and hence x ec™'V(I')=(c"'V)(I'). But then, by (1), since
o, xe(c™'V(@)=c"'V(@), thatis y e V(@). So, by (1), I't® .

(4) if Fis a weak subframe of G, then CG < CF.

Proof. By definition of weak subframe, the inclusion map i:F— G is a weak
contraction. Then, for every V on G, i~'V is a valuation on F. By (2) and the
definition of i, it follows that (i~'V)(@) = V(@) N X. On the other hand, since
T={CNX:CeUj}, for every valuation V' on F there is V on G such that
V'(9)=V(@) N X. So, let us assume that for every V on G, V(I') c V(¢). Then
V(NNXcV(p)NX, thatis (T'VXI) < ('V)(@). So, by (1), T'F* ¢.

Obviously, (3) and (4) hold a fortiori for surjective contractions and subframes
respectively. Moreover, simply by considering the case in which I' is empty, we
obtain the usual preservation results of validity of formulae.! It is worthwhile to
note explicitly that, by (4), (3) and (I1.5.12):

(5) for every frame F, C(F*),cCF.

Even if LF = L(F*), holds for every frame, the inclusion in (5) is sometimes
proper, as we will see in the next section.

Using (3) and (4) it is now immediate to prove that

(6) if ()i, is a family of frames and F = };, F,, then CF =(");¢; CF.
In fact, since each F, is a subframe of F, by (4), C(F) =\ C(F;); conversely,
since (F);e; is a family of pairwise disjoint frames, for every V on F,
V(@) =Uies V(@) and V(I)=Uie Vi(I), where V(p)=V(p)NX. Assume
that, for every i € 1, V(I') c Vi(¢). Then V(I') = U, V() cUiear V(@) = V(9),
so by (1), (Mkes C(F) < C(F).

We will later use also the following corollary of (3):

(7) if c:F-— G is a weak contraction onto and c*:G*— F* is onto,
then CF = CG.

Proof. Since c* is onto, that is c"*(U) = T, every valuation on F is of the form
¢~V for some valuation V on G. Therefore, by (1), it is enough to prove that, for
every V on G, V(cV(p) iff (c”'V)(I)<c(c”V)(@). But this follows
immediately from (2) and the assumption that c is onto.

2 Dl B L
&e NCTHECTU LEANICS AiT ew.,..

Several conditions on a frame have been considered in the literature, with the
aim of restricting to a class of frames with enough structure to make their use
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simpler, but in the meantime wide enough to obtain completeness. We have
already met descriptive frames and know that any frame F is equivalent to a
descriptive frame, that is its bidual (#*),. So one could restrict to the class of
descriptive frames with no harm for completeness, and on the other hand with all
the structure of the equational class of modal algebras offered on the tray by
modal duality. However, this choice has not gained much consent, probably
because infinite Kripke frames are not descriptive, and thus the original intuition
is partly lost. Also, from a more techniczl point of view, it is not true that any
frame is equivalent to a descriptive frame also with respect to consequence.

The aim of this section is to show, instead, that the choice of refined frames is
the best compromise. Following S.K. Thomason, who introduced the notion in
[33], a frame F = (X, r, T) is usually said to be refined when

(1) xry iff (VCeT)xer*C—ye()
and
(2 (VCeT)(xeCeoyel)—x=y

hold. Using topology we can save words and mental energy, and, by (11.2.8) and
(I1.2.23), say that F is refined if r is point-closed and F is Hausdorff (that is, the
space (X, T) is Hausdorff). It is obvious that Kripke frames are refined and,
conversely, all finite refined frames are Kripke frames. At this point it is also
worthwhile to note that adding

(3) for each ultrafilter Son T, (S = {x} for some x e X

to (1) and (2), we obtain the original definition by Goldblait [15] of descriptive
frames. Now (3) is equivalent to compactness (see II.2.24) and hence a frame F
satisfies (1)—(3) iff F is compact refined, that is, iff F is descriptive in our sense
(cf. Section I1.4).

In order to prove that the choice of refined frames is the best compromise, we
begin with:

(4) any frame is strongly equivalent to a refined frame.

Actually, since we know how to construct the refinement Fy of a frame F (cf.
Section I1.4), (4) becomes

(5) for every frame F, CF =C(Fg)

which is quite easily proved using (1.7). In fact, by (I1.4.17), vy is a weak
contraction from F onto Fg, and obviously y*: Fx— F* is onto.

We now want to show, with an example, that (4) can not be improved, in the
sense that there are refined frames which are not strongly equivalent to a
descriptive frame. An example is provided by the Kripke frame F =(N, >),
where N is the set of natural numbers and > the usual greater than order. Since
V(-O"L)= {m:m>n} for each V on F, puiting I' = {70"1:n € N} we obtain
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V(I") =9 for each V and hence I'EF 1. On the other hand, suppose I't€ 1 holds
for a descriptive frame G. Since V(—~[0"1) does not depend on V, from V(I') =9
we obtain, by compactness, that there exist n,, . . . , n, such that, for every V,

VEOSL & - - - &0 L) =4,

But then 1 is a consequence of ¢ ="0O0"L & -- - & 00™L on G, while, for
every V on G, V(@)= {m:m>max(n,, ..., n,)}. So F and G are not strongly
equivalent.

Now that our choice is made, we want to support it with something more. As it
is known, for any logic L, the class MA(L) of L-modal algebras, which is an
equational class, can be described as the class of homomorphic images of some
free L-modal algebra Fy(«)*. By duality this is immediately transferred to the
class of descripiive frames for L, and any descriptive frame becomes (isomorphic
to) a subframe of a universal frame F;(«), for some a. Of course, the same is not
true for all frames, but weak subframes enable us to improve the situation by
showing that all refined frames can somehow be embedded in a universal frame.
Let us give a precise scasc to this by saying that a frame F is embeddable in G if F
is isomorphic to a weak subframe of G. Then by (I1.5.12) we have:

(6) any refined frame F is embeddable in (F*),.

Now let F be any refined frame for L; for some ordinal @, F* is a
homomorphic image of F;(a)* and hence (F*), is (isomorphic to) a subframe of
F(«). So, by (6), since the composition of embeddings is an embedding,

{7) (Structure theorem) any refined frame for L is embeddable in the
universal frame F;(a), for some a.

In other words, the class of all refined frames for L can with no damage be
described as formed by all weak subframes of all universal frames. This explains
our choice of the name universal.

3. Modal axiomatic classcs

The aim of this sectica is to characterize modal axiomatic classes of frames in
terms of closure under specific frame constructions. The usual approach, which
we also follow, is based on the idea of transferring, through modal duality,
Birkhoff’s theorcm from modal algebras to frames. So, we certainly need closure
under subframes, contractions and disjoint unions (dual of subalgebras, homo-
morphic ir-ages and direct products respectively). In addition, for example, the
well kaown theorems by Goldbiatt~Thomason [16] and van Benthem [3] about
classes of Kripke frames, require closure under new constructions, namely that of
state of affairs (SA-based) frames and that of ultrafilter extensions, respectively.
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Since we here fix our attention on classes of refined frames, for which what we
introduced so far (including our notion of weak subframe) is sufficient, we now
put these results aside and later prove them as corollaries. This is possible since
the above rather ad hoc constructions can easily be described in terms of our
definitions and modal duality.

We begin by recalling some definition and notations. A class of frames K is
called modal axiomatic if K = {F : F kI'} for some set of modal formulae. We will
use RFr(I') to denote the class of refined frames in which I'is valid. In the other
direction, for any class of frames K, we put L(K)=\{LF:F€K}. The
operators RFr(-) and L(-) behave like their correspondent in classical model
theory; for instance, any class K cf refined frames is contained in RFr(L(K)),
which actually is the minimal modal axiomatic class containing K. So

(1) for any class K of refined frames, K is modal axiomatic iff
K =RFr{L(K)).

More typical here is the link between classes of frames and classes of modal
algebras. For any class of frames K, we put K* = {A:A =F"* for some F e K};
note that K* is by definition closed under isomorphisms. Of course, L(K)=
L(K*) because LF = LF* for every frame F. Recall that for any set of formulae
I, MA(T) is the equational class of modal algebras in which. I is valid, that is
AeMA() iff T'c LA. So, if K is any class of frames, F* € RFr(L(K))* iff
L(K) c LF iff F* e MA(L(K)), and hence

(2) for every class K of frames, RFr(L(K))* = MA(L(K))

since both classes are closed under isomorphisms. In particular, since K=
RFr(L(K)) iff K is modal axiomatic,

(3) if K is a modal axiomatic class, then K* is an equational class.

Under which conditions cn K can we prove the converse? If K* is equational,
then K* =MA(L(K)) because of Birkhofs theorem [17, p. 171] and L(K)=
L(K*). Of course, if F € K, then F £ L(K). Conversely, assume F is any refined
frame such that F £ L(K); then F* € K* and hence, by the definition of K*, there
is G € K such that G* = F*. At this point, to be able to conclude that F € K, as
we wish, it is enough that K is closed under biduals, isomorphisms and weak
subframes. In fact, under such assumptions, G € K implies (G*), € K, hence
(F*), = K because (G*), = (F*),, and finally F € K by (2.6) because F is refined.
Let us give a number to this partial result:

(4) let K be a class of refined frames closed under biduals, isomorphisms and
weak subframes and assume K* is equational; then K is modal axiomatic.

Note that the notion of weak subframe, or embedding, is exactly what we need
to express the fact that

(5) for every frame F, (F*), € K implies F € K
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which is the crucial step to obtain (4). (5) could previously be obtained only by
requiring the complement of K to be closed under biduals, that is: F ¢ K implies
(F*), ¢ K. Though not very natural, such condition, together with closure under
isomorphisms and biduals, can be used to obtain (4) in case K contains also
frames which are not refined. With some caution, also the results below can be
extended to all frames in a similar way.

We now want to get rid of the assumption in (4) that K* is equational and
substitute it with more direct assumptions on K. The idea once again is to use
modal duality and transfer to frames known results of universal algebra. It is well
known that K* is equational if H(K*)cK*, S(K*)cK* and P(K*)cK®,
where H, S and P are the usual operators forming all homomorphic images,
subalgebras and direct prcducts respectively (this fact is actually taken as the
definition itself in [17, p. 152]). We then have:

(6) let K be a class »f refined frames closed under isomorphisms and biduals;
then
(i) iof X is closed under subframes, then H(K*) c K*;
(ii) if X is closed under contractions, then S(K*) c K*;
(iii) if K is closed under disjoint unions, then P(K*) c K*.

Proof. After modal duality, all the proofs are based on the fact that A € K* iff
A, € K, which holds since K is closed under isomorphisms and biduals. Thus we
give only the proof of (iii). Let (A;);c; be a family of modal algebras in K*. Then
for every i €1, A,. € K and, since X is closed under disjoint unions, Y,;c;A;- € K.
By the definition of K*, (X;c;A;»)* € K* and hence [I;c; A; € K* by (11.5.24).

By (6) above, K* is equational whenever K is closed under subframes,
contractions and disjoint unions, beside biduals. Therefore, to obtain that K is
modal axiomatic it is enough to substitute in (4) the assumption that K* is
equational with ciosure of K under contractions. On the other hand, by the
results of the preceding section, every class which is modal axiomatic is, of
course, closed under all such constructions. We thus have proved:

(7) a class K of refined frames :5 modal axiomatic iff K is closed under
biduals, weak subframes, contractions and disjoint unions.

Results analogous to (4) and (7) for classes of descriptive frames are now an
easy corollary (cf. [15, Section 12]).

The above characterization allows us to recognize a modal axiomatic class once
we have it already, but does not give a method to construct it. We conclude this
section with two such methods. The first has a given logic L as starting point, and
is immediate: putting (2.7) and (1) together, we have

(8) aclass K of refined frames is modal axiomatic iff K consists of all universal

frames F,)(a) together with all (isomorphic copies of) their weak
subframes.
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In other words, (8) says that, up to isomorphisms, RFr(L) is exactly the class of
all universal frames for L and their weak subframes.

The second method shows how RFr(L(K)), the minimal modal axiomatic class
containing K, can be obtained from K by suitably applying some frame
constructions. It is obtained by dualizing the description of the minimal
equational class of modal algebras containing K* as HSP(K*). To save many
words in the sequel, let us ‘ntroduce some operators acting on classes of frames.
And to save many problems, from now on we confine ourselves to refined frames.
So, for any class of frames K, W(K) is the class of subframes of some G €K,
C(K) is the class of images of contractions from some G € K, and U(K) is the
class of all disjoint unions of frames in K. In addition, we need also the operators
B and W,, where B(K)= {(F*),:FeK} and W(K)={F:Fc, G for some
G eK}. It is easy to see that, for all operators O introduced, O(K) is closed
under isomorphisms if K is. We thus often omit to mention isomorphisms. We
then have:

(9) for any class K of refined frames, RFr(L(K)) = W,CBU(K); that is, the
minimal modal axiomatic class containing K is formed by weak subframes
of the image under a contraction of the bidual of a disjoint union of
frames in K.

Proof. If F € W,.CBU(K), then LK c LF because all the operators indicated
preserve validity, and therefore F € RFr(L(K)). Conversely, let F € RFr(L(K)).
Since F is isomorphic to a weak subframe of (F*),, it is enough to show that
(F*), e WCBU(K). Now, from F € RFr(L(K)) we have F F L(K) and hence, by
(2) and the equality HSP(K) = MA(L(K)), F* e HSP(K*). A picture is

H G!>B->»F*
iel
where G; € K for every i € I. After duality, this becomes
(er) »B.2@),
iel *
that is, since (ILiez G})s = ((Zicr G)*)« by (11.5.23), (F*), e WCBU(K) as we
wanted.

We can now give a dual form also to the fact that the single free algebra on @
generators is enough to generate the whole equation class [17, p. 172]. Just recall
that L(Fx,(@)) = L(K) and apply (9) to {F.«)(@)} to obtain:

(10) for any class K of refined frames, K is modal axiomatic iff

K = W.CBU(F L(x)(©))-

4. Some corollaries on Kripke frames

Throughout this section K will denote a class of Kripke frames. As previously
remarked, every Kripke frame is indeed refined, but, in spite of this, we can not
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apply the results of the preceding section without modifications (an example of
this is (3.3)). So, we still have to characterize modal axiomatic classes of Kripke
frames. However, after the results of Section 3, we can have a new approach to
the problem. In fact, we can do without diagra.as and equational classes of
algebras and operate only with refined frames and frame constructions. Let
KFr(L(K)) denote the minimal modal axiomatic class of Kripke frames contain-
ing K. So,

(1) for any class K of Kripke frames, K is modal axiomatic iff
K =KFr(L(K)).

Since FeKFr(L(X)) iff F is a Kripke frame and F e RFr(L(K)), we
immediately obtain from (3.8) and (3.9) respectively

(2) for any class K of Kripke frames, K is modal axiomatic iff K consists of all
(isomorphic copies of) Kripke subframes of all universal frames F{«)
and

(3) for any class K of Kripke frames, KFr{L(K)) is, up to isomorphisms,
exactly the class formed by Kripke frames in W,CBU(K).

In other words, (2) and (3) say that KFr(L(K)) is obtained by considering, at
first, K as any class of refined frames, and then by getting rid of every refined
frame which is not also a Kripke frame.

When K is closed under disjoint unions, (3) is easily turned into

(4) for any class K of Kripke frames, K is modal axiomatic iff K is closed
under isomorphisms, disjoint unions and for every Kripke frame F,
F € W.CB(K) implies F e K

and the theorems of Goldbiatt and Thomason and of van Benthem are then
obtained as corollaries. For every frame F, we define F? to be the discretization
of F, that is the Kripke, or discrete, frame (X, r, P(X)) underlying F. The
definition of ‘state of affairs’ frame F based cn a given Kripke frame G, briefly
SA-based cn G, introduced and somehow heuristically justified in [16], can then
be expressed in our terms. We say that a refined frame F is SA-based on a Kripke
frame G, if there is a (general) frame H such that H® = G and F is embeddable in
(H*),. Note that with every refined frame also all its isomorphic copies are taken
into account. The following result explains why SA-based frames could be used to
characterize modal axiomatic classes:

(5) for every refined frame F and every Kripke frame G, F is SA-based on G
iff F is (isomorphic to) a frame in W,CB(G).

Proof. Note that, since G is discrete, the condition H*=G is equivalent to
H* € S(G*). But it is easy to check that H* € S(G*) is equivalent, modulo some
isomorphisms, to (H*), € CB(G). Replacing this in the definition of SA-based
frames, we obtain the claim.
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Using duality, it is then very simple to prove also that F is SA-based on G iff
F* € HS(G*), which was the key step in [16]. We can now immediately obtain:

(6) (Goldblatt-Thomason theorem) a class K of Kripke frames is modal
axiomatic iff K is closed under isomorphisms, disjoint unions and
SA-based constructions.

Proof. We know that any modal axiomatic class is closed under isomorphisms
and disjoint unions. Since B, C, W, preserve the validity of modal formulae, by
(5) it is also closed under SA-based constructions. The converse immediately
follows from (5) and (4) above.

In [3], van Benthem characterizes the class of Kripke frames modally definable
by a canonical set of modal formulae using the notion of ultrafilter extension. The
ultrafilter extension ue(F) of a Kripke frame F is, in our notation, simply the
frame ((F*),)°. Before going down to the proof of van Benthem’s theorem it is
useful to note that:

(7) for any frame F and G,
(i) if F € C(G), then F®e C(G®);
(i) if F € W,(G), then F° e W,(G").

In particular, if F is a Kripke frame, F®=F and hence, by (7(ii)), F is
embeddable in ue(F). Therefore, by (1.4):

(8) if Fis a Kripke frame, then C(ue(F)) c CF.

Recall that a set I' of modal formulae is said to be canonical if, for every
descriptive frame F, F kI’ implies FOEI'. We then have:

(9) (van Benthem theorem) a class of Kripke frames K is of the form
{F:FET} for a canonical set I" of modal formulae, iff K is closed under
subframes, contractions and disjoint unions, while both K and its
complement are closed under ultrafilter extensions.

Proof. Assume K =KFr(I') with I' canonical. Obviously, K is then closed
under usual frame constructions. Moreover, if ue(F)E T, then by (8) also FEI'
and so the complement of K is closed under ultrafilter extensions. Finally, if
FET, then obviously (F*), EI' and hence also ue(F) kI because I is canonical.

Conversely, let F € W,CB(K), F a Kripke frame. Then there is a frame G e K
such that, up to isomorphisms, (F*), € WC((G*),), and so, by (7), ue(F)e
WC(ue(G)). Then the closure conditions guarantee that ue(F) € K, from which
also F € K since the complement of X is closed under ultrafilter extensions. Thus
we can apply (4) and obtain that K is modal axiomatic. So K = KFr(L(K)) and
the proof is complete once we show that L(K) is canonical. Let F be a descriptive
frame such that F E L(K). Then by (3.9) F e WCB(K), that is F € WC((G*),),
for some G € K. But then, by (7), we have F®e WC(ue(G)), .which implies
FieK, that is F*F L(K).
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We conclude with still another application of duality, namely a proof of
equivalence between the notion of canonicity above (called d-persistence in [15])
and that introduced by Fine in [13]). This solves a problem raised in [3] (and
simplifies terminology). We here say that a logic is Fine-canonical (canonical in
[13)) if L is valid in every canonical frame for L, that is if F,(a)*k L for every a.
We can always restrict to logics, rather than sets of formulae, because obviously I’
is canonical iff L = L(Fr(I')) is canonical. We then have:

(10) for every logic L, L is canonical iff L is Fine-canonical.

Proof. ¥ L is canonical, then from F;(a)k L we obtain F.(«)’E L, and hence
L is also Fine-canonical. Conversely, assume L is Fine-canonical and let F £ L for
some descriptive frame F. Then F* is a homomorphic image of F;(a)* for some
@, and hence by duality F = (F*), is (isomorphic to) a subframe of F;(«). But
then by (7(i)) we also have F®c F (a)®, and hence FPEL follows from the
assumption F(a)’EL."

Footnotes

1 Of course, the choice of some definitions, in particular that of space, is due to the fact that we
keep modal logic in mind. Forgetting modal logic, the content of Chapter II could be more generally
expressed in the framework of frames (in the categorical sense, cf. [18]) and locales. On the other
hand, our basic duality shows that a few results in that area (say in the second chapter of [18]) can be
extended to the case in which continuous relations, rather than functions, are considered.

20One could at this point follow an alternative indirect path to obtain (1). In fact, classical
completeness gives: L°F @' =1 iff ¢° =1 is an ideatity of every modal algebra. Thus (1) is proved if
we cstablish that: L+ ¢@° =1 iff L @. The implication from right to left is immediate. The cooverse is
obtained as a simple application of normalization theorem for proofs in natural deduction. In fact, any
normal derivation of @' =1 from L° is easily transformed in a proof of ¢ from L.

3We have some doubts about the conception of Kripke frames as universe of possible worlds,
because, with such highly metaphysical assumptions it is pot clear whether the interpretation can heip
to understand modal logic, as it should, or viceversa. Still we believe that Kripke frames are
acceptable and actually help comprehension if eack of them is conceived as a single world
(population, eavironment, ctc.) populated with thinking subjects (individuals, persons, etc.); in this
case accessibility from x to y means that the subject x has access to the opinions (beliefs, dogmas,
accepted truths, etc.) of y. Thea x believes in Og iff all opinions x can know about @ say that @ is
tree. Note that in the present assumptions, an individual has an opinion on everything.

4 Actually, we could at this point look at things the other way round and derive Kripke's definition
of validity from the following: for each valuation V of variables in T, the valuation of formulae is
defined to be the unique homomorphism from Ay tc F* extending the function V’:[p,]x - V(p,).

5 Comparing the proofs of (9) and (1.3), the unprejudiced reader will note their similarity in
structure, due to the requirement of closure under substitutions. This shows that the widespread
opinion that “algebraic semantics is syntax in disguised form” is, to say the least, superficial. Actually,
iliis suggests to study the possibility of a modified form of Henkin construction, where logics (i.e.,
including closure under substitutions), rather than maximaiiy consistent sets of formulae, are used.

© Adopting the picture sketched in footnote 3, the construction of A, might be described as follows.
If A is taken as the field of possible values, then U(A) is the idealized world with exactly one
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individual x for each complete theory U, (and note that also individuals with no principles are
tolerated, alias non-principal ultrafilters), x has access to the opinions of y iff y agrees on the truth of
what is necessary for x, and finally a value is identified with the class of individuals holding it.

7 One could at this point directly obtain modal duality (4.12) (but not modal adjunction (4.10)),
without passing through basic adjunction of Section 3. In fact, in the category DFra, of descriptive
frames and contractions, y is a natural isomorphism by (23), (24) and (26). We leave this as an
exercise; the reward is that one can skip Section 3 and Section 4, except (1), (2), the definition of
functors preceding (8), and (12).

"Tlse definition we adopted can be found in [14, p. 81]. In fact, contrary to McLane, we believe
that dismissing contravariant functors in favour of opposite categories would here prevent us from the
fun (1?7) of interchanging points with sets when passing from a category to the other, like shown in
Section 2.

From our treatment of modal duality one can easily derive some related results. For instance, a
duality between Kripke frames and complete atomic modal algebras, as proved in [35], is obtained
modifying the definition of ( ), by always restricting to principal ultrafilters. Moreover, with little
adjustments it has been extended to tense logic by Paola Unterholzner [36]. Also, it is possible to
adapt it to (propositional) dynamic logic (cf. [22], where however only objects are considered).

10The reader will see that we never use the full strength of the preservation results just proved.
However, we have a suggestion at least, namely to use them to characterize classes of frames in which
a given consequence, rather than a logic, is valid.

11 A modal formula @ is said to be natural if for any refined frame F, F k @ implies FOE ¢ (cf. [33]
and [13]). Thus every natural formula is canonical. After reading a preprint of this paper, J. van
Benthem has obtained an extension of his theorem (9) above to sets of natural formulae (cf. [7]).
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