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Thii paper is the result of putting together a few ingredients, namely modal 
algebras, general frames, some topology, a little category theory, and mixing 
them up, at the light of available literature, with the flavouring of some opinions, 
technical or not, of the authors. If the recipe is good, only the reader can judge, 
after tasting, but here we can try to describe the outlook. 

The aim is to discuss with some detail the connections between the algebraic 
approach, based on modal algebras, and the relational approach, based on 
frames, to the semantics of propositional normal modal logic. The study of such 
connections has been considered, by J. van Benthem [6], one of the three pillars 
of modal wisdom, and called by him duality theory (the other two being 
completeness and correspondence theory). 
A posteriori, the first and fundamental result in duality theory is Jbnsson- 

Tarski representation theorem for modal algebras [19], which was substantially 
improved by Halmos [20], who implicitly introduced categories. However, after 
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K@l&s fundamental work [23], modal algebras almost disappeared (the only 
exception is Lemmon [24]), until the discovery a few years later, that is roughly 
twelve years ago, of the incompleteness of Kripke’s relational semantics. Then a 
wider n&m of frame was inWeed by SK. Thomason [33], which was 

ins@& by modal algebras and which does not suffer incompleteness, 
mathematical study of modal logic was undertaken (see the collective 

. In particular, duality theory came into existence (see [11], [XI], [26] 

and M)- 
‘Ihe main novelty here is that we add a topology on any frame and extend the 

functors to the category of all frames. The technical outcome is a new categorical 
beside a uni&d exposition of duality theory, a 
subject is thus achieved. Some old notions on 

at of p-morphism (here called contraction), acquire a new 
more natural definition, while some new ones, for instance that of weak 
&&ame, are called into existence in a natural way. Also, applications to modal 
logic are not lacking. Some new results (for instance, the fact that any frame is 
equivalent to a refined frame also with respect to consequence) and simpler 
proofs of important theorems (see [30], [31] and Section III 4 below) ‘have 
already been obtained, some other in preparation; we are certain that the 
interested reader will find many more ux suggestions and hints to possible new 
roads are given in the footnotes). 

Chapter I is a re-view of modal semantics, together with a discussion of ideas 
on which duality theory is based and their interplay with completeness theory. 
Chapter II contains the technical development of duality theory, with complete 
proofs. It can be read independently as a piece af pure mathematics.’ Chapter III 
is an example of how duality theory can be applied. Using weak subframes, we 
obtain as corollaries both a simple description of the structure of, and the 
standard results (by Goklblatt and Thomason [16] and by van Benthem [3]) on, 
modal axiomatic classes of frames. 

Even if we tried to keep an easily accessible language, and sometime gave 
proofs also of standard results, Stone’s representation theorem for boolean 
algebras (an excellent exposition is in Chapter 1 of [8]) and very little of universal 
algebra, topology, category theory and modal logic are assumed to be known. In 
any case, standard references will be [lo], [17] and [W]. 

We have chosen to suppress usual headings, like theorem, proof, remark, 
deli&ion etc., in the hope that this can help avoiding fragmentation of the text. 
For the same reason, we have put little effort in separating new from known 
results and in giving credits, also because many of them have been deeply revised. 
Some important results have been given a name. When a word is italicized, its 
kfbition, sometimes implicit, can be found nearby (of course, this does llot 
mean that all italic&d words have been defined). 

is the iirst published outcome of a long though discontinuous work, 
-9 began a few years ago at the suggestion of Roberto 
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gratitude and indebtness to him certainly go far beyond the formality of any 
acknowledgement; but since this is one, I want to recall that some of the ideas 
used in Chapter II are due to him. I also like to thank personally Wolfgang 
Rautenberg, who encouraged and helped me at an early stage of the work and 
who let a frrst draft become public, [31]. V.V. joined in the project soon after and 
worked in particular on the topics now in Chapter III. Finally, we thank Johan 
van Benthem, Per Martin-L6f, Mario Servi and Silvio Valentini (they know why), 
and impersonally all the authors cited in this foreword (they also will know why, 
after reading). 

CHAPTER I. Basic ideas and resuk 

This chapter is an ovetiew on algebraic and relational semantics from the 
point of view of duality theory. Motivations and, where possible, intuitive 
explanations are given, leaving the mathematical unfolding for the remaining 
chapters. 

We Grst briefly review notation and terminology. We use the propositional modal 
language &, containing co~estives v, &, 1 and 0, the symbol 1. (falsum) and 
propositional variables p, q, . . . The set of formulae Z?LM in LM is defined 
inductively as usual, including 1, as an atomic formula. q, 3,. . . will be 

formulae. OLD and q+r/~ are de&red as usual by -mq~ and TJJ v 91 
respectively. A logic is here a set of formulae L containing classical tautologies 
and closed under the rules of Modus Ponens and Substitution 

We deal only with normal logics, i.e., logics containing the ‘normality formula’ 

NF: q (p+q)~(op4Jq) 

and closed under the necessitation (or ‘normality’) rule 

even if much of the algebraic approach extends easily to a wider class of logics. 
So, from now on, a logic is understood to be normal (and modal). As usual, K 
denotes the minimal logic. 

Finally, we will use q E L and kL or L I- QJ as synonyms, thus assuming that l-L 
denotes an axiomatic system in which exactly all formulae of L are derivable. 



2531 G. Shbin, V. V- 

Respectmg historical development, we start with algebraic semantics. 
Given a logic L, we define an equivalence relation eL on FLM by identifying 

two formulae which cannot be di&gui&ed by l-L, i.e., by putting: 

The quotient set 4?&JsL can then be enriched with boolean operations +, l , V, 0 
and 1 (sum, product, complementation, zero and one respectively) which, 
w [& denotes {q E LM: q sL q}, are de&d by: 

L + ML = bP ” 11lL¶ 

ML l b4L = Iv & YPlLP 

NVIL = hJlL* 

o= [& 1 = [1&. 

Such a detition is just&d by the rule of replacement of equivalents for classical 
logic. Usual properties of classical propositional calculus are then expressed in the 
f&t that (F&+L, +, l , V, 0,l) is a boolean algebra. 

To express algebraically also the modal part of L, we can treat the modal 
corrective 0 similarly. So we defme a unary operation t on FLJE~ by: 

whichisagood 
equivalents 

definition when LiS Closed under the rule of replacement of 

This is certainly true when L is normal. The resulting algebra AL= (FLM/sL, 
+ , l , v, 0, 1, r) is called the Lindenbaum algebra of the (modal) lo 
soon see that AL offers all what can be said on L algebraically, 
completeness of algebraic semantics. Let us then introduce algebraic models of L. 
The easiest way is to look at them as models, in the classical model-theoretic 
sense, for a specific W-order theory related to L. So let b be a first-order 
langWge with equality =, with no other predicate symbol and with function 
symbols +, l 9 V, 0, 1 and t (we use the same symbols for symbols and their 
interpretation). A structure adequate for h is an algebra of similarity type 
(2,2,1,0,0,1). For any term t of b, p is its interpretation in an algebra A (of 
the amect type) and for any assignment a’ = (aO, al, . s .) of variables in A, P(a) 
is the value of p calculated in 4’ (but we often omit the superscript). Then, as in 
the usual tarskian deft&ion of truth, we say that the formula t = u (t, u terms) is 

on the assignment 0’ if r”(a) = &(ii) and that it is valid in A if it is true 
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So far, the only difference from usual model theory is purely linguistic: as a 
habit, atomic formulae t = u are called equations and equations true in A are 
called identities of A. The real difference is instead the underlying idea: we let 
every formula q of the modal language LM correspond biunivocally to a term Q* 
of the language L MA, and thus interpret q in an algebra A through the aid of qt. 
Such correspondence is the most natural one, namely, # is obtained from 9p by 
replacing propositional variables po, pn, . . . with individual variables x0, xl, . . . 

of LMA, connedves v, &, 1 with boolean operations +, ., v respectively, 
formulae 1, li with constants 0, 1, and the modal operator Cl with the unary 
function t. Now first note that the same sequence 0’ of elements of an algebra A 
can be thought as an assignment in A both to propositional variables and to 
individual variables. So we can define the value of a formula 43 in A on the 
assignment ii to be the value of the corresponding term q* in A on ii, and say that 
9p is trzuz in A OIL the arsignment iT if its value is 1, i.e., if #(iT) = 1 holds in A. 
Accordingly, q is said to be valid in A if q’ = 1 is an identity of A. Finally, A is 
said to be an algebraic model of L, or briefly an L-modal a&bra, if every 
formula of L is valid in A. In other words, we transform L into the set of 
equations Lc={~*=l:~~L} and we say that A is a model of L if it is a 
(classical) model of Le. This can also be expressed by the inclusion Le s Id(A), if 
Id(A) denotes the set of identities of A. 

Let us give a closer look at L-modal algebras. For any algebra A, let L(A) be 
the set of formulae valid in A; L(A) is sometimes called the logic of A. Note that 
L(A)‘= IdI( where Id’(A) is the set of equations of the form t = 1, for some 
term t. (Note however that all equations in Id(A) are derivable from those in 
Id’(A), since an equation t = u is equivalent, in a boolean algebra, to t-u = 1, 
where we put, as usual, t-u =vt+uandt-u=(t-*u)-(u+t).)Itiseasyto 
see that L(A) contains all classical tautologies i@ A is a boolean algebra and that 
L(A) is a logic if& moreover, zl= 1 and t(x-*y)+(rx+ry) = 1 are identities 
of A (to see the latter, use zl = 1 and properties of =). Therefore, since for a 
boolean algebra the pair of equations xl= 1 and z(x+ y)-* (IX-* zy) = 1 is 
equivalent to the pair tl = 1 and z(x my) = zx l ry (which is easily proved with the 
aid of some tautologies), we see that our definition of K-modal algebras, which 
are called mo&l algebras for short, is equivalent to the more standard one: 

Beflnition. A modal algebra is a pair A = (A, z) where A is a boolean algebra 
and z is a unary operation on A such that zl = 1 and t(x l y) = tx l ry are 
identities. 

(TO save words, here and in the whole paper, we follow the convention of 
denoting by A, B, C, . . . both the domain (or universe, carrier,. . .) of a boolean 
algebra and the boolean algebra itself.) It is now obvious that for instance 
S4-modal algebras, usually called closure or topological boolean algebras, can be 
defined as modal algebras in which the equations rx+x = 1 and xx+ rzx = 1 



hold, GL-modal algebras, cakd diagonalizable aIgebras, the equation T(~x+ 
x)+ u = 1, etc. (but note that often an order s is defined by putting x by iff 
x l y =x and therefore the equation zx+ rrx = 1, for instance, is equivalently 
exI#essedbyarSra). 

By its very definition, the class of L-modal algebras is an equational class (cf. 
117, pp. 152 and 1711); we c&II it MA(L). Actually, what we have seen above 
shows also that the lattice of equational classes of modal algebras is (anti-) 
isort&.; ic to the lattice of logks. The logic wrresponding to a given equational 
class of a&@:: s K is L(K), the set of formulae valid in every algebra of K; note 
that here too L(K)” = Id’(K), where Id’(K) has the now obvious meaning. 

Completeness of algebraic semantics is now the statement% 

(1) for every logic L and every formula QD, L k 9p iE q is valid in every 
L-modal algebra 

which is equivalent to a more algebraic version 

(2) for every logic L, Le = Id’(MA(L)). 

‘Ihis is quite easily achieved, as promised, through At. Siice Lcr 
Id’(MA(LL)) by the defmition of MA(L), (2) is proved once we show that 

(3) for eveq logic L, Le = Idi( 

In fact, one inclusion, Le cId’(A3, tells that AL itself is an L-modal algebra, 
from which Id’(MA(L)) cId’(AL), while the other inclusion closes the chain, 
thus obtaining, beside (2), also the important by-product Idl(AL) = Id’-(L)). 

proof of (3). By defmition of L’, it is enough to prove Q, E !. iff q+= 1 
E Id’(A,). Note however that to prove Q’ = 1 to be an identity of AL wt have to 
show that q’(a) = 1 for every assignment a’ in AL, while what we know fkom the 

. definition of At is that 

(4) qxL ifE [q],=lholdsinAL. 

Actually, we can easily prove by induction, using the definition of operations of 
AL, that [ cp]L = Q)‘(&&, [pl]t, . l l )) and therefore q E L i@ 9’ = 1 is true on 
the assignment (Ipo]~, [PIIL, l . . ). More generally, we can also prove that 

whe= WO, . . . 9 ly,) is the result of substituting vo, . . . , qn for po, . . . ,pn 
reqectively in q. Now the point is that L is closed under the rule SR, so that, if 
all propositional variables of QI are among po, . . . ,pn, q EL iff 
Qpwo, l - l 9 flln) EL for all formulae vo, . . . , vn. But then, since (4) holds, (3) is 
proved. 

From the above proof of (3) we can also obtain an algebraic characterization of 
be any L-modal algebra and Iet f be any function from the set 
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{[&:i~lV} to A. Then, since {[pi]L:idV} generates the whole AL, putting 
WPIL) = (&W[POlL~ f[prL l . l )) defines a function h from the whole AL to 
A; obviously, h extendsfand moreover, since (5) holds, h is a homomorphism (to 
seethis,use(5)withg,=povpl,..., zpo). This property of AL is exactly the 
definition of the fact that At is a free algebra, with free generators 
boltt M&t ’ l l P over the equational class MA(L) (cf. [17, p. 1621). 

Also, since the free algebras over the same class, with a set of free generators 
of a given cardinal@, are all isomorphic, we can say that AL is the free algebra 
over MA(L) on o generators. Usually the notation F-&D) is used for such 
free algebra, but since we will us P for frames, we can here use the notation 
FL(o)*, the * having a precise meaning which will be clear in Section 3. 

2. Kdpke frames 

Relational semantics is based on the notion of Kripke jhzme, that is, a pair 
(X, r) where X is a set, usually considered as a universe of possible worlds, and I 
is a binary relation on X, usually considered as the relation of accessibility 
between worlds. To obtain an interpretation of modal formulae in (X, r), one 
must first assign to each world x the set of atomic formulae po, pl, . . . which are 
assumed to be accepted by x as true (and it is understood that no world accepts 
I). Any such assignment, here called u&&o~ and denoted by V, is then 
extended to all formulae by requiring that: 

(i) The theory of a world x, i.e., the set T, of all formulae accepted by x, must 
preserve the usual classical truth conditions for connectives (so that, for instance, 
qv*eT, i.B 4pEz or *ET,, but also_gIET, iff q$c, for formulae q, t$~) 
and must be closed under Modus Ponens. 

(ii) A world x must accept a formula 09 iff any world accessible from x 
accepts p, that is, 0~ E T, iff (p E Ty for every y such that xry. 

Such requirements have a unique solution, namely the usual inductive 
definition of the relation x EV q, to be read ‘% accepts Q, on the valuation V”. 
From a technical point of view, V is then a function which associates with each 
world x the set of formulae TX = {Q, E FLM :x It-” q}. A triple (X, r, V) is called a 
Kripke model based on (X, t) and a formula q is said to be true in it, written 
(X, r, V) k q, if x It-” q~ for every x E X. And 43 is said to be valid in (X, r), 
written (X, r) b q~, if q~ is true in every model based on (X, r). 

It is well known that twelve years ago the hope of proving completeness of such 
semantics, which is expressed by the statement L 

(1) for every logic L, :-L(p iff q is valid in every Kripke frame in which every 
formula of L is valid 

has been shown to be badly founded by IS. Fine [12] and S.K. Thorn&on [33]. In 
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f&t (1) fails for uncountably many logics, and some of them are quite simple (cf. 

1% Pm* 
The next problem was to characterize complete logics, i.e., lotics satisfying (l), 

and this hope too now seems to be unreachable, as the work of J. van Benthem 
has shown. Waiting for a solution, Kripke frames are still used, both because they 
are simple and because they provide with a sensible interpretation of modal 

Their inadequacy is probably due to the lack of clarity of the notion of 
powei set, which is implicitly used to define valuations; or, at least, changing that 
notion completeness is gained, as we now see. It is well known that this happens 
also for &s&al second-order logic. 

The concept of (general) frame arises naturally when looking at a Kripke frame 
not as a universe of worlds, each with its theory, but as a field of possible values, 
as we now explain. 

Let (X, r) be a Kripke frame, V a valuation on it and Il-v the relation, 
generated by V, binding pints with formulae (let us use the word point, instead 
of world, for elements of a frame). What we did in the preceding section was to 
think of tV as a collection of theories of formulae, each theory being associated 

a point. Here we suggest to think of the same V and IFv as a collection of 
sets of points, each set containing the points which accept a formula. Technically, 
the given V is here a function from {pO, pl, . . .} to P(X), and it is extended to a 
function, still denoted by V, taking each formula into the set V(q) = {x E X:x Ii- 
q}. V(q) is called the uahe of q in (X, r) under the valuation V and 
TV = {V(q) : ep E Fh} is called the #elii ofpossible values of (X, r, V). When no 
valuation is given, we might say that &he field of possible values is the whole 
P(X). Of course, TV and P(X) are closed under the set-theoretic operations of 
union U, intersection n, complementation -, which is exactly what is needed to 
be able to Gnd the value of compound formulae with principal signs v, &, 1 
reqxtively, once the values of the components are given. Now we also want to 
be able to find the value of Oq, once the value of q is given. What we need is 
then an operation, call it r*, satisfying r*(V(tp)) = V(Oq) for every Q, and V, 
whicil amounts to 

(1) for every C E P(x), PC = {x E X: for every y, xry implies y E C}. 

So we take (1) as the definition of P and add it to the boolean algebra P(X) 
(here and in the sequel, we do not indicate the usual boolean operations): what 
we obtain is a modal algebra, since obviously V(O1 I ) = V(-! I) = X and 
V(lJ(q & q)) = V(Otp & 09) for all formulae q, ly and every valuation V. For 
the same reasons, (TV, I*) too is a modal algebra, subalgebra of (P(X), r*). We 
can now generalize both situations by considering Kripke frames together with a 
field of possible values, which, as we have seen, must be a modal algebra. 



Topobgy and bakiiy in mo&l logic 257 

Defmitio~~. Aj?- is a triple F = (X, r, 2’) where (X, t) is a Kripke frame and T 
is a field of subsets of X closed under the operation r* defined by (1). 

T is called the field (of possible values) of P. To save words, we assume from 
now on that F denotes the frame (X, r, T) and C the frame (Y, s, v). The value 
of a formula in a frame F is obtained as before, except that only valuations in the 
field of F are considered. We also keep the same notation. So a Kripke frame 
(X, I) can be identified with the frame (X, r, P(X)). By what we have seen 
above, it is immediate that 

(2) for every frame F, (T, r*) is a modal algebra. 

We call it the dual of F and denote it by F*. 
F and F* are strongly tied together or, better, are two technical ways of 

looking at the same thing, namely valuations. In fact, we can easily see, or prove 
by induction, that 

(3) for every formula 43, every frame F and every valuation V on F, 
V(Q) = (;lc EX:X hf v) = (V’)“‘((V(PO)# V(Pl), l l 4) 

i.e., the value of Q, in the frame F coincides with the value of 43 in the modal 
algebra F* (recall that the same V can be seen both as a valuation on F and an 
assignment on F*)*, 

An immediate consequence of (3) is that for every frame F, F and F* validate 
the same formulae; in other words, putting LF = {p E P’LM: F k p} (the logic of 
F) and recalling that LF* = {QI E FLM: q~‘= 1 E Id(F*)}, 

(4) for every frame F, LF = LF*. 

The completeness of the semantics given by frames is now at hand: it is enough 
to construct a single frame % la Henkin. However, since such a construction will 
be used repeatedly in the sequel, we analyse it in some detail. We can isolate two 
preliminary steps: 

(i) Construction of the model ML = (XL, rt, V’) where: XL is the set of all 
maximal consistent sets of formulae containing L; for every S, T E X,, SrLT B 
for every formula QI, q lg, E S implies 43 E T; V’(pi) = {S E X,:p, E S}. 

M’ is called the canonical model and (XL, r=) the canonical Kripke fiarne for 
L. 

(ii) Proof, by induction, of: 

(5) for every formula q and every S E XL, S lt-v 43 implies q E S. 

Every step of the induction is straightforward except the inductive step for 0, 
where we need 

(6) q Q, E S iff for every T E XL, Sr=T implies q E T. 

To prove the non-trivial direction (from right to left), assume q g, $ S. Then 
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qp 0 W’S = {tp: 09 E S} and, since Cl-‘S is closed under duS l?onens, there is 
a maximal set T’ containing El-% but not q. This means SrJ’, but also 9 $ T, 

_ aswewanted. 
Fmm (5) we immediately derive 

since QD EL iff 91 ES for every S E&. (7) is sometimes called ‘the fundamental 
theorem (of modal logic)‘; it expresses completeness of the semantics given by 
modek. 

AJso completeness for frames is now easily derivable. Let us say that a frame F 
is 0 m fat L if PbL (that is, Fl=q, for every goeL) or, equivalently, if 
L G LF. Then we want to prove 

(8) (Completeness theorem) for every logic L, L I- dp iff F b 43 for every 
frameFfor L. 

& we did at the beginning of this section, we consider the frame I$_= 
(XL, rL, TL) generated by VL over (X”, Q,); in other words the field of possible 
values TL is the collection {V,(q):q d?LM} of all values actually taken by 
formulae on V,. FL is here called the zuGue& (general) @PM for L. Note that 
the canonical @ripke) frame is obtained from FL simply by dropping TL. 

In adogy with the case of modal algebras and following standard proofs of 
completeness for equational logic, we obtain (8) as a corollary of 

(9) for every logic L, L = L(FL) 

which is obtained from (7) almost exactly as (3) of Section 1 was obtained from 
(4). Here again closure of L(M’), which is equal to L by (7), under the 
substitution rule is essential. In fact, note that for any valuation V on TL, there is 
a sequence of formulae qI, q2, . . . such that V(pJ = Vt(Jli) for every i (a proof 
by induction is straightforward); so V(q(p,,p2, . . .)) = VL(q(lyl, v2,. . .)) for 
every formula q. But then QI E L iff (p(&, tj+, . . .) EL B for each sequellce of 
formulae VI, v2,. . . , Vt(tp(~l, q2,. . .)) = XL iff for every valuation V on TL, 

v(cg(Pl~p2~ l l l 
)=XLifEFLhp5 

As for the free algebra AL, the construction of FL gives some good suggestions. 
One of these is the following: since a maximally consistent set of formulae can not 
separate two formulae q, ty if Q, cL tj~, we can identify it with an ultraGlter of AL 
(which we do also as far as notation is concerned). Then, simply translating the 
construction of FL in algebraic language, we define SrLT (S, T ultrafilters) to hold 
iB for every a EA&, ru E S implies a E T and take TI1 to be the field of aU subsets 
of the form {SEX~:(LES}, when UEA L. What do we achieve? The circle, or 
rather the diagram, is closed, since we can easily prove: 

(10) the dual (TL, rt) of the frame (XL, rL, Tt) is isomorphic to AL. 

The proof of (10) will follow the lines of that for (9) above, and thus no wonder 
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that we can obtain completeness of frames (8) directly out of it: since L, = L(AL) 
and AL = Pi, L = L(Fz) and hence also L = Z(&) by (4). 

More important, however is another idea: why don’t we repeat the same 
construction starting from an arbitrary modal algebra, instead of AL? Actually, 
this is what we are going to do in the next section. 

4. From modal algebras to fhmes * 

As we said above, the aim of this section is to provide a construction which 
shows that any modal algebra A is (isomorphic to) the modal algebra dual of 
some frame. We will obtain this by constructing a frame A,, called the dual of A, 
such that A s (A*)*. Such a construction may appear more natural if we look at it 
backwards, that is postulate that we already know, &iven A, how to construct A, 
and examine how it could be. 

Recall that (A,)*, the dual of A,, is simply the field of possible values over A,, 
together with the operation corresponding to Cl. So the first step is to think of 
elements of A as possible vd~es, and z the additional operation. We then have to 
fill in with points (of A,) every element of A. But how can we ‘create’ points of 
A,? Here is the crucial point of the construction. 

Note that, in any frame F, with each point x we can associate, in analogy with 
the complete theory of formulae T, in Section 2, a complete theory of possible 
values, namely Ux = {C E T :x E C}. In mathematical words, Ux is an ultraf&er of 
the boolean algebra T. zio with each point (still to be ‘created’) of A, is associated 
an ultrafilter of the boolean algebra A. Now the idea is simply to reverse this, that 
is define points of A, to be the ultrafilters of A. So U(A) = {S :S is an ultrafilter 
of A} is the domain of the frame A,. It is then clear,&er the above heuristic 
discussion, that an ultrafilter S, point of A,, will belong to the possible value a 
(or better, to the possible value in (A,)* corresponding to a j if the theory S holds 
a true, i.e., if a E S. Therefore the isomorphism between A and (A*)* must be the 
function jT? : a - {S E U(A) : a E S}. Completing the construction and checking that 
/3 is in fact an isomorphism is now easier. When is a theory T accessible from 
another theory S? Since we want S to hold the value ra iff all T’s accessible from 
S hold the value a, again reversing things we choose the maximal relation 
-compatible with this, namely the relation z, defined by 

Sz,T iif for every a EA, za ES implies a E T. 

And finally, as we said, the field of values will be A itself, but in a disguised form 
now: the place of an element a is taken by the set pa = {S E U(A):a E S} of all 
complete theories holding a (alias ultraG.lters containing a). 

Summing up, the dual A, of A is the structure (U(A), t,, ISA), where 
IsA = {pa :a E A)? Proving th at A, is a frame is not trivial; actually, the fact that 
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A is closed under the operation (r,)* will be proved by showing that 

(1) (r,)+@z = /!!(rcr) for each u in A 

which is also the only new step required to reach our aim, namely 

(2) (Jdnsson-Tarsld representation theorem) every modal algebra A is 
isomorphic to its bidual (A*)*. 

Ia f&c& the reader who knows Stone’s representation theorem for boolean 
dgehas will have already noticed that, if A = (A, r) with A a boolean algebra, 
then (U(A), @A) is the Stone space dual of A, and j3A is a boolean algebra 
isomorphic to A, 8 being the isomorphism. As we already remarked, a proof of 
(1) is very similar to the proof of (6) of Section 3. 

An immediate consequence of (2) is that LA = L(A,)* and therefore, by (3.4), 

(3) for every modal algebra A, LA = LA,. 

So, for 

partiarlar 

modal algebra there isan equivalent and conversely. In 

(4) for every frame P, Wp = L(P), 

so that any frame is equivalent to its bidual. Note however that we have not 
derived (4) from an analogue of (2) for frames, simply because it is MJ~ true that 
any frame P is isomorphic to its bidual (P),. This is due to the fact that bidual 
frames have a rather structure, which will be described in Chapter II. The 
frames with such a structure, that is &omorphic to the bidual of some frame, have 
been called descriptive by Goldblatt. They are the only frames for which an 
analogue of (2) can be proved, namely 

(5) a frame P is isomorphic to its bidual (F*), iif P is descriptive 

that is, F itself is isomorphic to the bidual of some frame. This follows easily 
from P* =((PY)*)*, which is an instance of (2). 

So, from a mathematical point of view, if we want a duality, in the sense of the 
category theory, to hold between modal algebras and frames, we must restrict to 
descriptive frames. From the point of view of logic, such a restriction is harmless 
as long as we are interested only in questions of completeness, in view of (3) or 
(4) above. However, it is philosophically debatabki if such a restriction is 
just&d. Moreover, we will show (Section III.2) that as soon as we extend our 
interest from validity of formulae to semantical consequence, descriptive frames 
are no longer enough. Finally, when one is workiog concretely with frames, it is 
much simpler to use all of them without bothering if they are descriptive or not. 
This is why we have chosen to keep on considering the class of all frames, also 
when looking at them as a category. 
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CHAPTER II. Duality theemy 

xntroduction 

We are now ready to begin, following the ideas discus& so far, and thus 
saving comments, the technical development of duality theory. The main known 
result, explicitly stated in [15] for the first time, is that the category Mal, of modal 
algebras and homomorphisms, and the category DFra, of descriptive frames and 
contractions (alias p-morphism@, are dual to each other (precise definitions are 
given below). A similar duality theorem is well known for boolean algebras (sf. 
[21]). In this case, the dual category is that of boolean spaces and continuous 
functions, where a boolean space is a topological space which is compact, 
HausdorIf and with a base of open and closed sets. A frame A,= 
(U(A), t,, @A), dual of the modSil algebra A, is such a space when we forget z,, 
Bllcf /?A is the base for its topology. The idea here is to extend this to UU frames, 
that is, to take the field T of a frame F = (X, r, T) as the base of a topology on 
X. We thus will have a category Fra of all fkames and suitable morphisms (weak 
contractions), of which DFra is a full subcategory, and functors between Mal and 
*t&e whole Fra. We will show that such functors form an adjunction between Fra 
and @la1 whose restriction to DFra will give the desired duality. Following an idea 
of Hahuos, we think of modal algebras and frames as particular arrows in two 
‘bigger’ categories. We can thus prove a general result (basic adjunction) which 
includes all the above as particular cases. 

Two tables may help the reader: Table 1 informally summarizes the definitions 
of the categories to be introduced while Table 2 indicates the various categorical 
CXME&X~ TV be establish&. 

The exposition till be detailed enough to avoid references to other sources and 
repetitions in late-P chapters (but the reader with little interest in adjunctions can 
&ip Section 3 and most of SeCtion 4, and instead follow the instructions given in 
footnote 7). Of course also in this purely technical chapter the reader will often 
see the relevance to modal semantics of some mathematical results, even if we do 
not explicitly mention it. 

Table 1. Categories (in order of appearance). 

Bal = boolean algebras A + hemimorphisms r (zl = 1, t(u l 6) = TU l ~6) 
Mal= m&l algebras A (i.e., A 1, A in Bal) + homomqSsms h 
spa = spaces X + continuous relations @-*Us T) 
Fra=fmmesF(i.e.,X-r*Xin Spa)+ weakcontraction~~ (ctx=scx) 

PSPS = spams + point-closed continuous relations with composition #r 
Ba = boolean algebras + homomorphisms 

HSpa = zero-dimensional Hausdoti spaces + continuous functions 
BSpa = boolean (i.e., compact HausdorfF) spaces + continuous functions 

CHSpa = boolean spaces + point-closed continuous relations 
RFra = retied frames (i.e., X4 X with t point-closed, X Hausdorff) + weak contractions 
OFIi3 = descriptive frames (i.e., X4 X in CHSpa) + contractions c (crx = SCX) 



of the category 
bigger auxiliary 

Bal, of boolean algebras and hemimorphisms, where a hen&w@Csm 
fkomAtoBisafunctionrsatis&ing 

and 
ZlA = 1B 

for every a, b E A, r(a -A 6) = ta ‘B d. 

It is then clear that any modal algebra A is nothing but a pair (A, t) where A is 
an object of Bal and T a hemimorphism from A into itself. So A can be identifkd 
with a diagram of the form Af-A in Bal (a rigorous defmition of this 
identifkation is possible, but apparently useless, with the aid of the category of 
morphisma of Bal). Thus the notion of hemimorphism will allow us to treat at the 
same time operators t on boolean algebras aud homomorphisms between them. 

We now want to do the same for frames, that is consider a frame F = (X, r, T) 
as an arrow (X, T)+ (X, T) in a bigger category. Thus objects will simply be the 
pairs (X, T), whem X is a set and T is a subalgebra of P(X); we call them spaces. 

A morphism from (X, T) to (Y, u) will be any relation r GX x Y satisfying the 
condition imposed on accessibility relations, but on any pair of spaces. Namely, 
for every D s Y we put 

and say that t is a morphism from (X, T) to (Y, u) if 

(1) for every DE U, r*D E T. 

Just like that of hemimo~q&ism, this detition will permit to treat at the same 
time accessibility relations on frames and morphisms between them. 

Any space (X, T) is here meant to be endowed with the topology generated by 
as a base for open subsets. Since T sed under complements, T is 

then also a base for closed subsets and any set is both closed and open, alias 
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&pen. Note however that T need not contain all clopen subsets of X (a typid 
example is when T is the family of Unite and cofinite subsets of X, in which case 
all subsets of X are clopen), unless X is compact: 

(2) if (X, T) is compact, then T coincides with the family of all cIopen subsets 
of X 

Proof. Let D be clopen in X. Then, since D is open, D = U C for some family 
C s T, and therefore, since D is closed and hence compact, D = U C’ for some 
finite subfamily C’ s C. But then D E T, because T is closed under finite unions. 

So in general two different spaces may coincide if regarded as topological 
spaces and hence we can not forget the base; nevertheless, from now on we will 
write X for (X, T) and Y for (Y, U). 

One should keep in mind that a morphism r from X to Y is not necessarily a 
function from X to Y, instead, we can think of it either as a function from P(X) 
to P(Y) by putting 

(3) for every C G X, rC={yEY:xryforsomexEC} 

or as a function from X to P(Y), where the image of x E X under r is the set m, 
short for r{x} (and note that the case in which PZ is empty is not excluded). This 
allows us to rewrite the definition of r* in a simpler form: 

(4) for every D s Y, r*D={x~X:rx~D}. 

The relation r-l, defined by yr% iE xry, is usually called the inverse of r. 
However, some of the properties of inverse functions carry over to r* rather than 
r-l. For instance, since rC = UXEC rx, we immediately have: 

(5) foreveryCsXandDsY, rC~DiffC~r*D. 

In categorical terms, (5) says that r and r* are adjoint, when considered as 
functions between P(X) and P(Y). Taking D =rC and C=r*D, (5) gives 
respectively 

(6) (i) for every C s X, Cs r*rC, 
(ii) for every D s Y, rr*D s D. 

Actually, when r is a function, that is rx is a 4ngleton for every x E X, the 
definition of r* boils down to the usual definition of inverse. In fact ti this case 
m~DihxnD#fl, andhencexEr*DiffxEr-‘0. So 

(7) if r is a function, then r* = r-l. P 

In general, a similar argument only shows how r* and r-l are connected: 
xEr* -DiffmflD=9,iffx@D, thatis, 

(8) for every D c_ Y, r* - D = -r-‘D. 

Of course, from (8) we have --t-l -D = r*D and r”D = -r* -0 for every 
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D 4 Y, which shows that r-l bears the same relation to 0 as I* to Cl. Another 
consequence of (8) is that, since T and U are closed under complements, the 
condition (1) is equivalent to 

(9) @or every D E U, r-'D E T. 

sinceobviously 

(10) for every f&mily {Dp: i E I} of subsets of Y, rml(UreI DJ = Uder r"Di 

(9) becomes the usual definition of continuity as soon as t is a function. Thus a 
morphism may, and will, be called a contiiuu)tLp relation. Actually, extending to 
relations the f&ilk terminology tir functions, we also say that r is closed when 
rC is eked whenever C is cl&, and Gmilarly for r-l, open, clopen, etc. So a 
continuous always has an open inverse. Note, however, that unfocfllo- 
ately r-l may be open without r being continuous even if r is a function (consider 

(X, T) in which T does not coincide with the family C of all clopen 
, and the identity fkmction (X, T)+(X, C)). On the other hand, r may be 

continuous without I-’ beii clopen (we omit counterexamples, which however 
are not too diGcult). All what we can say, up to now, is that r-l is open (closed) 
i@ r* is closed (open), by (8), and hence that r-l is clopen i@ r* is clopen. 

The composition of continuous relations 0 is the usual set theoretic composition 
of relations, but note that we write s or for {(x, t) :xry and ysz, for some y} since 
we wunt the equality (sor)C = s(rC) to hold, for every C. It is immediate to 
check that the composition of two continuous relations is still continuous, and 
that {(x, x):x EX} is the identity morphism on X. Hence spaces and continuous 
relations form the category we were looking for, and we, call it Spa. However, 
though fairly natural, this definition has to be mod&d a little if we want to 
obtain an adjunction with Bal, as we will see in the next section. 

Any frame P =(X, r, T) will be identified with the pair ((X, T), I), where 
(X, T) is a space and r is a continuous relation from X to X. So objects of Fra are 
diagramsoftheformX4XinSpa. 

The deli&ion of morphisms in Fra is a bit less immediate and can be grasped 
rafter the introduction of functors between Spa and Bal. We can follow two 

nt lines of thought. The first is to adopt the general more traditional 
pattern of defining morphisms as jknctks which presewe the structure of 
objects. We then obtain the notion of contraction: given two frames F and 6, a 
function c from X to Y is called a contruction (followiug the terminology of 
Rautenberg [28]) if it satisfies both 

(11) for every 0 E U, c-'D E T 

and 

(12) for every x EX, clx = sex. 

Of course a function satisfying (11) is continuous, but remind that the converse is 
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in general not true. Condition (12) might puzzle some readers, but is simply a 
way of saying, using our conventions by which CIX denotes c@(x)), that the two 
relations sot and car are equal. Now c, r, s are morphisms in Spa and hence 
SW = car is exactly what categorists usually express by saying that the diagram is 
commutative. So a contraction c from F to G is just a continuous relation from X 

to Y which is a function and makes the above diagram commute. Note that this 
parallels the characterization of a homomorphism h from A to B, A, B modal 
algebras, as a hemimorphism from A to B which is a boolean homomorphism and 
makes the following diagram commutative: 

A closer look shows that (12) is only a new dress for a well known requirement. 
In fact, simply by writing out the meaning of crx = sex, we see that for every 
x E X, crx s sex is equivalent to 

(13) for every y fz X, xry implies (cx)s(cy) 

and that scx s CTX is equivalent to 

(14) for every 2 E Y, if (cx)sz then for some y E X, xry and cy = z. 

So (12) is equivalent to (13) and (14) together, which are traditionally used to 
define p-morphisms. Note that (12) is equivalent also to 

(15) for every 2 E Y, t-l~-l~ = c-*s-‘2 

because tV1ocB1 = (c~r)-~ and similarly for s. 
The second approach is to impose on a continuous relation c :X* Y the 

minimal conditions in order to obtain that its image c* under the fvnctor ( )*, 
degned in the negt section, is a homomorphism between modal algebras. We will 
see that c* is a boolean homomorphism iff c is a function and (11) holds, while c* 
preserves the additional operator iff 

(16) for every D E U, r*c*D =c*s*D. 

Since c* = c-l whenever c is a function, and because of (8), (16) is equivalent to 

(17) for every D E U, r%-‘D = C-‘s-‘D. 
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sowecall ClonbrqdioIt any function c satisfying (11) and (17). The name is 
duetothefactthat 

(18) every contraction is also a wer ; contraction 

istrue obviously (15) implies (17). Of course, the two notions 
coincide if on@ Kripke frames are considered (and, as we wili show in Section 4, s 

this holds also fdx descriptive frames). This probably explains why the notion of 
weak contraction has never appeated before (even if one could have reached it 
simpIy noting that (17) rather than (15) is used to prove the ‘p-morphism lemma’, 
i.e., to show that c preserves validity of modal formprlae, cf. Section III.1 below). 
On the other hand, we believe that the results to follow justi@ our choice of 
taking weak contractions, rather than contractions, as morphisms in the category 
Fra. 

The definition of functors is quite natural, and follows the ideas presented in 
Chapter I. In pa&&r, the functor ( )* from Spa to Bal gives no problems. For 
every space X, we let P be the field T of X, so X* is a boolean algebra by 
definition. The image under ( )* of a continuous relation r:X* Y is the function 
r* : P(Y)+ P(x) defined in the preceding section. By the definition of continuous 
relations, r* maps U into T, and it is mutine to check, using (1.4), that PY =X 
and r*(C n D) = r*C (I r*D for every C, D E U. So 

(1) for every t : X-+ Y, r* is a hemimorphism from Y* to X*. 

Finally,giventwomorphismsr:X+Yands:Y+Z, foreveryCGZ* andxEX, 
x~r*s*Ciff~~s+Ci& by (l-5), sm ~Ciffx E (sor)*C; that is, (sv)* =r*os*. 
We thus have 

(2) ( )* is a contravariant functor from Spa to Bal. 

The functor ( )* from Bal to Spa is obtained as an elaboration on Stone’s 
representation theorem for boolean algebras. Let us recall that U(A) is the set of 
all ultrafihers of a boolean algebra A, and that BA:A-, P(U(A)), defined by 

foreverylaEA, &+z={SEU(A):~ES} 

is an isomorphism from A to the subalgebra @A = {&+I :u E A} of P(u(A)). The 
space (W-A), BA) is usually called the Stone space of A; it is compact and 
Hausdorff and hence, having by definition a base of clopen subsets, it is a boolean 
space. (This is all we need of Stone’s representation theory; the reader can easily 
reconstruct the proofs or consult any stan reference, like [8] or [21].) 

The image A, of a boolean algebra axder ( )* is thus its Stone space 
(U(A), PA), which clearly is a space. Th of a hemimorphism z from A to 
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B is the relation t, c_ B, x Ai defined by 

(4) for every S E U(B) and T E U(A), Sz,T iff for every a EA, zu ES 

implies a E T. 

Note that if, like many authors, we had used B as primitive, here de&d by 
CF = VZV, the definition of z, would have been 

(5) St,T iff for every a EA, a E T implies oa E S 

which instead is here an easy consequence of (4). 
Showing that t, is indeed a continuous relation is not immediate at all. 

Actually, it follows only from 

(6) for every t:A+ B and a EA, @*)*&a = &za 

which is essentially the key step to obtain both the Jonsson-Tar&i represent&m 

theorem 1.4.2 and the fundamental theorem (cf. 1.3.6). 

proof. First note that, putting r_lS = {b EA : tb E S}, we obtain &at Sz,T iff 
C’S G T. By the definition of ( )* and j9, S E (t*)*&~r iff r,S s pAa and S E @Z 
iffrad. Soonly 

(7) zad iff z,S&a 

is lefft to be proved. First assume za E S and let T E t*S; then C’S s T and hence 
a E T, that is T E &a. Conversely, assume ZCI $ S. We will show that there is an 
ultrafilter which belongs to z,S but not to @. It is easy to check that t-‘S is 
always a filter, because t is a hemimorphism. Under the assumption zu E S, we 
can also show that zmlS U {WI} has the finite intersection property. In fact, 
suppose that b1 l . . . l b,=va=Oforsomebl,...,b,Et-lS;fheIlbl=...=b,a 
a, and thus a E t-‘S, against the assumption. So, by the ultrafilter theorem, there 
is an ultrafilter T’ extending t”S U {w} which means, as we wanted, both 
t”S s T’, that is T’ E r,S, and a $ T’, that is T $ #%a. 

We now still have to prove that ( )* preserves composition, which also is not 
trivial. To prove it, we call topology on the stage. Recall that for any space X, the 
closure 0 of a subset D of X is the intersection of all clopen s&sets C E T 
mntahing D, because T is also a base for closed subsets; so D = n {C E T: D G 
C} (ml &is is all we need on the closure operator). This implies that, for any 
r:X+Y, i!f=n{Dd.k~~t*D} and hence xx is closed, that is tx=e, iff 
rx = {y E Y:for every D E U, x E r*D implies y E D}. In other words, 

(8) for every x E X, the following are equivalent: 
(i) rx is closed; 
(ii) xry iff for every D E U, x E PD implies y E D 

(and again, if one prefers t-l to t*, he will use 

xry iff for every D E U, y E D implies x E r’lD 

which is equivalent to (ii) because of (1.5)). 
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Let us say that I ispti&ed if RX is closed for every x E X. The point is that, 
fk any hemimorphism s:A --+ B, r+ satisfzs (ii) above. In fact, by definition, 
St,T 18[ for every u E A, m E S implies (I E T. Observe that, by (3), u E T iff 
T~84,~dhen~alsogu~SiffS~~~~S~(r,)*~, by(6).SoSt,Tifffor 

every E @!A, S E (t*)*@ implies T E @z, which is the claim since @A is a base 
for A,. Therefore, by (8), 

(9) for any hemimorphism r, ris, is a point-closed continuous relation. 

me reader aware of the correspondence between filters on A and closed subsets 
of A, can get a cheaper proof of (9): since r’?S is a filter, the set {T E 
U(A): s-‘s s T} = r*S is dosed.) 

We still need two lemmas on point-cbsed relations. For any r:X+ Y, let us 
defhre the JIM&V& &SW of r as the minimal point-closed relation 7 containing 
r; so Rx== for every xeX, that is #y iffy~E. For every DEU, pxc_D iff 
EEs 0, and hence PD = PD. So 

(10) foreveryr,s:X+Y, iff=s’thenr*=s* 

that is, t* does not determine r univody. However this is true if we require r to 
be point-closed, since by (8) we have: 

(11) ifr, s:X+Y are point-cbsed and r*D =s*D for every D E U, 
thenr=s. 

The second lemma is an extension to relations of a standard result on 
continuous functions on compact spaces (cf. [lo, p. 104, Theorem 91, but note 
that the structure of the proof has to be changed and that we do not need the 
assumption that the co-domain is Hausdorff). Our proof is quite different from 
that in [20, p. MS], and involves less notions and assumptions. 

(12) if r :X+ Y is continuous and point-closed and X is compact, 
then r is closed. 

proof. Suppose that D is a closed subset of X. We prove that rD is closed by 
showing that for every y $ rD there exists a clopen subset C of Y containing rD 
but not y. So, let y $ rD. For every x E D, y $ tz and hence, since xx is closed, 
there is a clopen subset C’ containing fx but not y. So x ERIC’, and D s 
U reD PC’. Since D is closed and every r*Cx is open because r is continuous, by 
the compactness of X there exists a finite subset D’s D such that D c 
U xeDe PC’. But then also 

the last inclusion being true by (1.6). Since UxEDn C’ is itself clopen and does not 
y, it is the clopen C we wanted and the proof is complete. 

of (12) is, for nt, merely to show that, given z :A + B and 
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z’ : B+ C, z, 0 z: is point-closed. In fact, z, and r: are point-closed by (9), and 
hence also closed by (12), because C, and B, are compact. So t.0~: too is 
closed, and a fortiori point-closed. We can then finally show that r*o t: = 
(~‘0 z),. Since both members are pointclosed, by (11) it is enough to show that 
for every u EA, ((t’ot),)*#kz = (z,ot:)*j%z. This follows by repeated use of (6) 
and the fact that ( )* preserves composition: 

((t’ot)*)*@a = fiz’za = (r:)*#lta = ((t:)*o(r,)*)/3a = (t*ot:)*fla. 

We thus have completed the proof of 

(13) ( )* is a contravariant functor from Bal to Spa. 

We have actually proved that we have a little more than two functors, namely 

(14) fl is a natural isomorphism from the identity functor Idsal into (( ),,J* 

which is just what (6) says, together with the fact that /IA :A --, j!?A = (A,)* is an 
isomorphism for each boolean algebra A. 

It should be clear that there, is no reasonable similar natural isomorphism in 
Spa, because (X*), is a boolean space, whatever space X is. However, for every 
space X we can define a function y,:X+ (X*)+ by putting as usual 

(15) foreveryxEX, ~,~={CET:~EC} 

andwecan show that y is ‘almost’ the inverse of /3. First note that, by 
bothBand y reverse the membership relation, in the sense that 

(16) (i) foreveryaEAandSEU(A), adGffS@a; 
(ii) foreveryxEXandCET,xECiffCEyx. 

So, denoting by lAJX,=.. the identity morphisms ofA,X,..., we can easily 

definition, 

(17) (Triangular identities) 
(i) for every -boolean algebra A, (PA)* 0 yA, = 1A.i 
(ii) for every space X, (yx)*o& = lx*. 

Proof. (i) For every a EA and S E U(A), using (16) we obtain a E S i@ S E /Ia 
B @u E yS iff a E p-l(yS), and it is clear that, since 6 is a homomorphism, 
/3* = /3-’ (cf. (4.2) below). So S = /3*yS. 

(ii) foreveryxEXandCET,xECiffCEyxiffyxE/Kiff yxc_/3C(remind 
that yx, the image of x under the relation y, is a set) iff x E y*/!?C. So C = y*/+?C. 

We will make essential use of triangular identities in the next sections. Here we 
derive from them some -properties of y. Since the base of (X*)* is {PC: C E T}, 
from C = y*/K we have in particular 

yx is continuous. 

Since y is a function and hence y* = y-l by (1.7), applying y to both sides of 
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(19) forevery CET, yC=@CnyX 

of course yC is just the image of the set C under y, namely 
properly every nonempty open 

unobserved by modal I;ogicians, will be quite useful). 
=y*@cny*yx=cnx=c, 

,foreveryC~T, yx~yCiffx~C. This 
for alI closed subsets In fact, for a; subset D of X and every 

D s C implies y*yD s y*yC = C and conversely y*yD c C implies D G 4: 
D s y*yD. So, for every C E T, D G i? iff y*yD s C, from which 

(21) for every closed subset D of X, y*yD = D. 

Some additional properties of y are tied to the structure of X Since all our 
spaces have a base of clopen subsets, X is Hausdorff iff the closure of a point is 
the point itself. ‘That is, X is Hausdorff iff 

(22) ifforeveryCeT,xdifFyEC, thenx=y 

holds for every x, y E X But then the definition of y says that (22) is equivalent 
to: if v = yy then x =y. Therefore 

(23) yxis one-one a Xis Hausdoti. 

Proving that 

(24) yxis onto iff Xis compact iff yx is closed 

isakoeasy.Recallthatasp~r. X is compact iff every ultratilter of neighbour- 
hoods converges (cf. [IO, p. N&j), that is iff 

(25) for every S E V(T), n S # 0. 

Assuming that yx is onto, (W) is immediate: for every S E U(T) there exists x E X 
such that S = yx, and hence x E 61 S. Now assume X is compact. Then yx is closed 
because it is a continuous function with compact domain (cf. [lo, p. 1061 or just 
apply (12) above). Finally, if yx is closed, then in particular yX is closed and 
hence yX= U(T) by (20). 

Finally, it is not difkult to see that y ‘behaves well with respect to relations: 

(26) for every r:X+ Y, xij i@ yx(r*),W. 

In fact, by the definition of (r*)*, yx(t*),yy iff for every D E U, r*D E yx implies 
alent to: for every D E x E r*D implies y E D. 
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3. Basic a@mtion 

The aim of this section is to prove the most general result we could find 
connecting boolean and modal algebras on one side with spaces and frames on 
the other. This takes the form of an adjunction between Bal and QSpa, a 
category of spaces defined below which is strictly related to Spa. From such an 
adjunction, all other similar result will follow either as particular cases or 
Corollaries. 

We use a few lines to recall the categorical notions we need. Let C, D be any 
categories, and let A, B, . . . be objects of D, and X, Y, . . . be objects of C. We 
say that two contravariant functors ( ),:C+D and ( )*:D-,Cform an U@O& 
pair (on the right)* if: 

(1) for every A and X, there is a bijection 

qX,A : Homc(X, A,)+ How&% X*); 

(2) q is natural in the variables A, X, that is, for everyf:X+A,, h:Y+X 
and k: B+A, the following hold: 

qdfoh) = h*oqrf, dk*Of)= vf Ok* 
It is easily seen (it is just an exercise to reverse almost all arrows and 
compositions in the proof of Theorem 2.v in [2!5, p. 811) that 

(3) the functors ( )* and ( )* form an adjoint pair i8 there exist two natural 
transformations, y : Id=-* (( )*)* and p:IdD-*(( )*)*, satisfying the 
triangular identities: 

foreveryA, (@A)eoyA+=1A~9 

for every X, (yx)* o&f* = lx- 

Sketch of proof. Assume that (1) and (2) hold. Then for every A put 
PA = q(l&) and for every’ x put yX= qF1(lx.). Let k:B-,A. Then from 

k,Ol,. = lB,ok, using (2) we obtain ~~(lAJok=(kJ*o~)(ls,), i.e., /? is a 
natural transformation. Now from yx = l~xoI.oyx using (2) we obtain 

1 x* = q(Yx) = o(l(x*)*0 Yx) = (Yxl* O &1(x*).) = (Yx)* O Bx** 

Quite similarly, the other triangular identity and the fact that y is a natural 
transformation follow from the fact that, since q is bijective, also q-~-l is natural. 
Note that QI can be completely described using y: from f = lA,of we obtain 
q?f =f*o&& that iS cpf =f*O&. AsO, ~-l(g)=g,oyg 

Conversely, define q~ by tpf = f * ‘/?,+ To prove that QJ is bijective, we show 
that Og = g, 0 y (where g :A --j, X*) is its inverse. In fact, 

@?f =(f*“B)*oY by the definition of 9p and 0 

=B*“df*)*oY because ( )* is a contravariant functor 

=B*OYOf because y is 24 natural transformation 

= f by triangular identities. 
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Quite similarly, we can show cpOg =g= Finally, 

~CfO~)~(fo~)*o~=~*of*o~=h*ocpf and 

&k&q) =f*o(k*)*q? =pq3ok = (p(f)ok 

that 9p is natural* 

me must be very carefirl at this point: while it is true that /3 and y, as defined 
in the preoediag section, satisfy the triangular identities (see 2.17), it is JZO~ t-ue 
that y is a natural transformation from Id- to (( )*)*. In fact, it is easy to find a 

X and a relation r:X+X such that yorf(r*),oy. Let X be the natural 
IV, T = P(x) and t the usual order S. Then for every C s N, PC is the 

nt contained in C, and so T E (r*),yx whenever T is a 
r. On the other hand, by the definition of y, yrx contains 

unfortunate, because it compels us to consider another category of 
spaces. The idea is to identify all relations with the same image under ( )* or, 
which is equivalent by (2.11), to take only pointslosed continuous relations as 
morphisms. But then another problem arises, namely that the composition of 
point-closed relations is not, in general, point-closed (the reader can easily find 
counterexamples). Before giving up , however, we invent a new composition of 
morphisms f, simply by defining s * r to be the minimal point-closed relation 
containingsor. So _ 

(4) for every point-closed continuous relations I: X+ Y and s : Y-+ 2, we put 
sfr=sFk 

trouble now is to show that * is a good composition. Let us show it step by 

* is associative. 

proof. Assume F:X+ Y, s:Y+Z and t:Z+ W are point-closed continuous 
relations. I& C be any clopen in W*. Then 

r))T = (t 0 (s * r))T because of (2.10) and (4) 

= S (( P)* 0 t+)C becawe ( )* is a functor 

= ((sor)*ot*)C again by (2.10) 

= r*s*t*C. 

Quite &ilarly, we obtain also *s) * r)*C = r*s*t*C and hence we can apply 
(2.11) to obtain the claim t (s*r)=(t*s)*r since both members arc 

by definition. 

Since the identity mor@ism lx:X* X must be point-closed, it is quite natural 
to defhe it as {(x,y):y E(X)), alias lxx-(x). However, the proof that lx 
is e identity morphism of X is a bit tedious, and can be jumped with no 
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harm by the reader who sees no problems in always restrictin 
spaces. In fact, in this case lx is simply the identity function on 
point is closed. 

(6) for every space X, the relation lxx H(X) is the identity morphism on X 
with respect to composition *. 

Proof. For any point-closed s : Z-,X and every z E 2, (lx * s)z = E by 
definition of *, but since sz is closed, lxsz = sz ‘and hence G = sz. So 
1**s=s. 

Now assume r :X-+ Y is point-closed. First note that I can not distinguish 
points of X with equal closure, i.e. 

(7) if r :X+ Y is point-closed and (x) = (y)t then rx = ry. 

In fact, from (x) = m we have that for every D E U, x E r*D iE y E r*D, that is 
rxsD iBrycD. Since RX and ry are closed, this means rx=ry. From (7) we 
obtain r(x) = rx and hence 

thatisr*lx = r as we wanted. 

Summing up, we have shown that 

(8) taking spaces as objects and continuous point-closed relations as morph- 
isms, with composition * defined in (4), gives a category, called PSpa. 

Note that the functor ( )* of the preceding section is also a functor from PSpa 
to Bal (recall that r* = r’* for every relation r); similarly, ( )* is a functor from 
Bal to PSpa (because of (2.9) and because t: 0 r, = t: * z,, since r:o z, is 
point-closed). So we can finally start to .go downhill towards our aim, which is 
proving 

(9) (Basic adjunction) the functors ( )* : Bale PSpa and ( )* : PSpa-, Bal 
form an adjoint pair. 

After theorem (3), (2.14) and triangular identities (2.17), the only fact left to 
be proved is that y is a natural transformation. We deduce it from a more general 
lemma, which will be essential in the next section. 

(110) for every point-closed relations r, s, c, d, the diagram 



cmunutes in pSpa, that &, Z =dm for every x E X, iB the diagram 

commutes in Bal, that is, r*d*C = c*s*C for every C E W*. 

bwfi Bythedefinitionofclosure,scx=drxiffforeveryCEW*,SCXcC~ 
drx G C. But using (1.5) we see that sex EC iff x E c%*C, and similarly dnr s C 
iff x E r*d*C, from which the claim. 

We then also have 

(11) y is a natural tran&rmation from Id- into (( )*)*. 

proof. Fii note that y :X-+ (X*)* is a morphism in PSpa: it is point-closed 
simpIy because it is a function and every point in (X*)+ is closed, and it is a 
continuous relation by (2.18). Now to obtain the claim we have to show that 

(12) for every x E X and I :X+ Y, ylx = (r*),yx. 

By (lo), it is enough to show that r*y*flD = y*((r’),)*@D for every @D E .U 
This can easily be obtained using trianguIar identities and (2.6) applied to r*: 

r+y*/3D = PD = y*#Jr*D = y*((r+),)*@D. 

As we promised in Section 3, modal duality as weIl as some other similar 
dualities or adjuuctions, are easy corokuies of basic adjunction. 

We first see what happens if we restrict to the usual case, in which morph&is -- 
r:X+Y and z:A+B are functions and homomorphisms respectively. ksume 
that r:XjY is a function. Then by (1.7) r* =r-l and hence, by (1.8), 
r*-D= -r*D for every D E U. So 

(1) if r:X+Y is a function, then r*:Y*+X* is a boolean homomorphism. - 

On the other side, assume that t:A+B 1s a homomorphism. Since z is a 
hemimorphism, t-IS is a Gker for every S E U(B) (see the proof of (2.6)); but 
fromvza=rvaforeveryaEA, wehavealsoa$t-‘Siika$SiEvta=zvad 
itT va E PS, which means that t-‘S is an ultrafilter. Hence z*S, which is equal to 
{T E U(A) : z-% s T} by de&t&ion, is a singleton for every S E U(B), and hence 

(2) if r:A+B is a homomorphism, then t,:B,+A, is a function. 

a first little corolkry of basic adjunction, we can prove also the converse of 
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(1) and (2) (but also a direct proof is possible, cf. [2O, p. 571): 

(3) (i) t is a homomorphism iff r, is a function; 
(ii) under the assumption that Y is Hausdorff, r :X-+ Y is a function iff I* 

is a homomorphism. 

proof. (i) Assume Z, is a function. Then (t*)* is a homomorphism by (1); so 
(t+)*o@ =floz is a homomorphism and, @ being an isomorphism, r must be a 
homomorphism. 

(ii) Assume r* is a homomorphism. Then (I*)* is a function by (2), and hence 
also (r*),o y is a function, that is (r*)*yx is a singleton for every n E X. But since 
Y is Hausdorff, (r*),yx = (r*),yx and hence, by (3.12), ym is a singleton. 
Finally, tx is a singleton, because y is one-one by (2.20). 

Ignoring hemimorphisms which are not also homomorphisms, we obtain Ba, 
the usual category of boolean algebras and homomorphisms, as a subcategory of 
Bal. Similarly, we do ignore continuous relations which are not functions, but we 
do not obtain only continuous functions, because our definitions depend on bases 
(cf. the remarks following (1.10)). So, disregarding useless generalities, we also 
restrict to spaces (X, T) where T coincides with the family C(X) of all clopen 
subsets of X, which we call zero-dimensional (note that usually a topological 
space is called zero-dimensional just in case C(X) is a base and, in this sense, all 
our spaces are zero-dimensional; the difference is due, once more, to the fact that 
we consider the base T as part of the space). We then have: 

(4j (Boolean adjunction) the category Ba is adjoint to the category HSpa of 
zero-dimensional Hausdoti spaces and continuous functions 

Proof. The functors between Bal and PSpa continue to be functors here, by 
(3) and the fact that the composition of morphisms * in PSpa reduces to the 
usual composition of functions, because of the restriction to HausdorlI spaces. p 
and y continue to be natural transformations, because & is always a homo- 
morphism and yx is always a continuous function, and they obviously satisfy 
triangular identities. So we can apply (3.3). 

An immediate corollary is the better known boolean duality. Here two 
categories are said to be dual of each other if one is equivalent to the opposite of 
the other, or, more directly, if they are equivalent via two contravariant functors 
(cf. [27, p. 181). A duality is just a particular case of adjunction (in our sense), in 
which the units are natural isomorphisms. So boolean adjunction gives a duality 
simply by restricting to subcategories in which @ and y are isomorphisms. Since 
pA is an isomorphism for each boolean algebra A, Ba is left unchanged. By 
(2.20), yx is an isomorphism iff the space X is compact, beside being Hausdorff, 
that is X is a boolean space. Also note that, by (1.2), every boolean space is 
zero-dimensional. We thus have: 

(5) (Boolean duality) the categories Ba and BSpa, of boolean spaces and 
continuous functions, are dual to each other. 
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Actually,&e same argument can be applied to basic adjunction, and we 
Obtb 

(6) (Hahuos’ duality) the categories Bal and CHSpa, of boolean spaces and 
continuous point&xed relations, are dual to each other. 

Continuous point-closed relations between boolean spaces were called boolean 
relations by Hahnos [20]. Note that CHSpa, ~8s a subcategory of PSpa, inherits 
the fancy composition f, which however coincides with * on boolean relations by 

had to prove a similar lemma simply to show that CHSpa is 

arrived at modal duality. Recall that a frame P = (X, r, T) 
is here idesrUed with a morphism (X, T)-‘, (X, T) in Spa. We have seen 

adjunction exists between Bal and Spa, having @ and y as units. 
to consider, as we did for spaces, another category of frames, in 

which objects are morphisms X4X in PSpa. Moreover, in order that any weak 
contraction c:P-+C shall be point-closed and hence a morphism in PSpa, we 
also have to restrict to EIausdorE spaces. Frames (X, r, T) with r point-closed and 
(X, T) Hausdorff have aheady been considered in the literature, under the name 
of w frames (cf. Section III.2 below). The category of retied frames and 
weak contractions is here called RFra. 

Let us now gke a second look at weak contractions. As a corollary of (3.10), 
we have 

(7) afuuctionc:P+G,whereP, GarearbitraryframeQsaweak 
contraction iff c-*(u) s T aud CIX = Sex for every x E X. 

We will often use this characterization from now on, even without explicit 
mention. Restricting to RFra it has an even sharper form: a function c:P--, G, 
with F, G r&&e& is a weak contraction iff c is a morphism in PSpa which makes 
the diagram 

x--‘-,x 

commute in PSpa. Moreover, note that by (7) every closed weak contraction in 
RFra is always a contraction, since in this case from m=scX we also have 
CIX =SCX; this by the way gives support to our claim that weak contractions are 
more basic than contractions, the latter corresponding to closed continuous 
fkmctions in topology. 

Now modal duality is only a matter of putting together what we already know. 
The functors ( )* and ( )* between Bal and PSpa immediately yield functors 

and RFra, which we denote by the same symbols. Of course, if 
T)*, r*), which clearly is a modal algebra; 

= (A,, tJ, which is a (compz&) refined frame 
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since A, is a boolean space and t, is point-closed by (2.9). We already know how 
the functors act on weak contractions and modal homomorphisms, since ahey are 
particular cases of continuous relations and hemimorphisms respectively. 
Moreover, (3.10) and (3) tell that 

(8) c:F+C is a weak contraction iff c*:C*-F* is a modal 
homomorphism. 

Using this and the fact that #3 is a natural isomorphism in Bal, we also have 

(9) h :A+B is a homomorphism iff h, :&+A, is a weak contraction. 

In particular, ( )* and ( )* are indeed functors between Mal and RFra, and we 
can finally prove: 

(10) (Modal adjunction) the functors ( )* and ( )* between Mal and RFra 
form an adjoint pair. 

In fact, assume that c :F+ G is a weak contraction. Then all the information we 
need is contained in the following commutative cube of PSpa: 

x\; ‘(TY$& 

c 

I 
C 

1 l 

‘0. 
w. 

Y A- (Y*)* 

\ s I )I \ 
Y--, * (Y ) * 

The assumption that c:F+ G is a weak contraction tells that the left face is 
commutative, and hence also its image under (( )*)*,.which is the right face. The 
remaining four faces are commutative because y is a natural transformation in 
PSpa; but then, by the remark following (7), the top (bottom) face shows that 
y:P+(F*), (y:G+(G*),) is a weak contraction, that is a morphism in RFra 
(ady, one of the aims of the introduction of weak contractions and of *, as 
well as much of the work up to now, was just to reach this apparently innocuous 
result). What do the front and back faces express? To see it, let us compress the 

cube by juxtaposing them. We obtain the commutative square 

AQ Y, (F*)* 

Cl b*,* 

G Y- (G*), 

which tells that y is a natural transformation from IdRFre into (( )*)+. 
Exactly similar (or actually, dual) is the proof of the fact that /3 is 

isomorphism from IdAll,,, into (( )*)*. So, since of course triangular 

a natural 
identities 



278 G. San&h, V. Voocrrro 

continue to hold for fl and y (relations and hemimorphisms do not afkct them), 
we can app@( 3.3) and hence (10) is proved. 

& for boolean and Halmos’ duality, modal duality is obtained from (10) by 
the subcategory of RFra in which y is an isomorphism. So let us fkst 
isomorphisms. An isomorphism c:P+G must be a bijective 

continuous inverse, that is a (topological) home 
a weak contraction c:F-,C is a homeomorphism, 
~X,wehaveinparticular~=~=QXorall 

= *, but still c-’ may fail to be a weak contraction 
(IV, r, P(N)), G = (Iv, r, T) where t is any relation, T 

of finite and cofinite subsets of N and c is the identity function); to 
isomorphisms we thus have to add the assumption that for every 

C E T, CC E U, or equivalently, that c* is onto. Since y* is always onto, by (2.20) 
we have: 

(11) y:P-+ (P), is an isomorphism in RFra iff F is compact. 

A refmed hme is here called des&@ive (and we will show in Section 
III.2 this definition is equivalent to that of Goldblatt, who introduced the 
name). Restricting to desc@tive frames, the distinction between weak contrac- 
tions and contractions vanishes: a weak contraction c:P+G, with P, G 

isahRaysalsoa~n~on,because~reveryx~XfrOmCIX=SCX 
we obtain b: =scx, since c, r, s are point-closed and hence closed by (2.12). We 
thus have 

(l2) (Mti duality) the categories Mal and DFra, of descriptive frames and 
contractions, are dual to each other. 

Unlike in the case of spaces, we can here also extend modal adjunction (10) to 
an adjuncuon between Mal and the whole of Fra, because, contrary to PSpa with 

to Spa, RFra is a-subcategory of Fra, and dy of a rather nice kind: 

(13) Rfra is a reflective subcategory of Fra. 

if& isa P R :Fra-+ RFra which is left adjoint to the inclusion 
fimctor (note that here we follow [W, p. 891 word by word, since functors are 
covariant). To prove it, it is enough to show that for every frame F there is a 
ret&d frame pR and a morphism pp:P+pR such that every morphism 
c:P+ 6, with G refkd, splits uniquely through p, that is c = Eop for a unique 
E:PR-G (cf. [W, p. 891). 

The most natural way to obtain a refined frame from any given frame P is to 
extend I into its pointwise closure ? and identify points which are not separated 

is accomplished by the image of (X, T) under the morphism 
={yx:x~X} and TR={yC:&T}. Now, 

) by putting p-yy ifE ~0, we obtaiu that the 
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triple (XR, rR, &) is exactly the substructure induced by (P), on yX, that is 

(14) for every x E x9 (r*)&x n yx’ rRp 

In fact, by (2.26), yx(r*),yy is equivalent to x@, which is the definition of 

YXIRW 

SO PR = (XR, IR, TR) will be a refined frame, as soon as we prove that it is 
indeed a frame. We only have to show that TR is closed under r$ (note that this is 
not true of every induced substructure), which immediately follows from 

(15) for every C E T, yr*C = r;yC. 

To pmve it, first note that . 

(16) for every x EX, rRv = yRE 

because yy E @E iff y E y*@, and y*@ =Z by (2.21). Then, using (16) and 
(2.21) again, (14) follows easily: p E r;yC iff #j#x = ws yC iff 2s y*s = C 
iffxEt*CiffyxEyPC. 

The next step is 

(17) for every frame & y:F+FR is a weak conhlsIcfion 

which by (7) is proved once we show that 3 = rR)?K, where r~, now denotes 
&sure in &, to be distinguished from Closure .- in (F*)*. But 5 = m f-l yX 
(cf. [lo, p. 651) and hence, since m = (t+),yx because y:P+ (P), is a weak 
contraction, m = (r+),yx n yX = rRv by (14), as we wanted. 

To complete the proof of (13), let c:F+G, with G retied, be any weak 
contraction. We want to show that there is only one weak contraction e :PR+ G 
such that Eo y = c. Of, course, since y is onto FR, the condition c’yx = cx uniquely 
defines E, and so it only remains to show that c’ is a weak contraction. First, for 
every DEUwe have that ync~E”D iEc’yx~D iffx~c-‘D iff yx~yc_~D. So 
c"'D = yc”D E TR. Finally, using the fact that cEE~crX (cf. [lo, p. 41]), one can 
easily derive that E= ctx. Hence from CIX =scX we have SW =scX = US = 
a = ZjZ? = m (the last equality by (16)), which is what we need by (7). 

Putting together (9) and (13), we obtain 

(18) (Modnl adjunction, extended) the categories Mal and Fra are adjoint 

(the scrupulous reader can check that the composition of the natural bijections 
Horn@, A,) = Hom(p,, A,) and Hom(pR, A,) = Hom(A, (FR)*) is the natural 
bijection needed, observing that for every F, F* E (FR)*).’ 

5. Frame constructions and.duaWy 

With the tools provided by modal duality, we bere analyse (continuing the 
work in [ll] and [15]) the usual frame constructions: subframes, images of 



an-~, &joint union of fiames. Actually, our notion of weak contraction 
the introduction of a new notion, namely that of weak subframe, which 

will prove to be quite useful in the next chapter. 
Giving all details here would mean boring the reader to death, and we thus 

assume mose fkmiikity with categories than in the preceding sections. As we 
often did previously, we begin with the algebraic side: 

(1) in the category Mal of modal algebras: 
(i) monomorphisms coincide with injective homomorphisms, 
(ii) subobjects coincide with subalgebras. 

Of course, (ii) fdlows from (i), which is true because free modal algebras exist. 
On the other hand, the problem whether epimorphisms in Mal coincide with 
surjective homomorphisms remains open. 

We can also describe quotients of modal algebras quite well. It is well known 
that the assignment 8 -& = {u E A : a 8 1) defines a biunivocai correspondence 
between congruences 8 and filters F on a boolean algebra A. We say that a filter 
F on a modal algebra A = (A, T) is closed under t, briefly a @kr, if II E F 
implies ra E F. We then have 

(2) the lattice of congruences of a modal algebra A is isomorphic to the lattice 
of r-filters of A. 

Pm05 It is enough to show that 8 preserves t ifE Fe is closed under z. So 
assume that a 86 implies tu 8 z6. Then from a E Fe, i.e. (I 8 1, we have ru 8 tl 
and hence TO E Fe since tl = 1. Conversely, assume Fe is closed under t and let 
006. Then at*b~F~ aud hence t(a-b)E&, from which also zu-tbEFe 
because r(cz-b)wzc+rb. So tu8t6. 

Turning to frames, matters are not as simple. We first see the connections 
between special morphisms in the two categories. What directly follows from 
modal adjunction (cf. [27, p. 941, but still modulo the exercise of reversing 
arrows) is that the image under our functors of an epimorphism is a monomorph- 
ism. In addition, we can easily prove that our functors are faithful, namely 

(3) (i) if c, d are weak contractions in RFra ad c* = d*, then c = d; 
(ii) ifh, g are homomorphisms and 6, =gs, then 6 =g. 

This holds simply because /.? and y (in RFra) are monomorphisms. In fact, let 
g, = h,. Then (g,)* = (h,)* and hence, since (g,)*/3 = /3g, pg =/3/z, from which 
g =h because /3 is a monomorphism. The proof of (i) is identical (also, we 
already proved it as (2.8)). So (cf. [27, p. 1151) the functors also ‘co-reflect’ 
monomorphisms, that is: 

(4) (i) in RFra, c is an epimorphism iff c* is a monomorphism; 
(ii) 6 is an epimorphism iff 6, is a monomorphism. 

proof. The two proofs are identical, and so let us prove (i). As n;entioned 



Topology and d&&y in mtuld logic 281 

above, one direction is just a consequence of modal adjunction, and to help the 
reader here is the argument. Assume c is epic and let c*g =c*h. Then 
~‘igoc = q-‘(c*g) = p-‘(c*h) = ~-‘hoc, from which p-‘g = 8_k since c is 
epic. So g = h since Q, is bijective. Conversely, assume c* is manic and let dc = ec. 
Then c*d* = c+e*, from which d* = es since c* is monk, and hence d = e because 
( )* is faithful by (3(i)). 

Siice j!I is a natural isomorphism, h is a monomorphism ifE (h,)* is a 
monomorphism, and hence, by (4(i)) applied to h,, also 

h is a monomorphism iff h, is an epimorphism. 

Note that this rests solely on the fact that /3 is a natural isomorphism. 
alsoyisa natural isomorphism, the dual statement holds, that is 

so, when 

(6) in DFra, c is a monomorphism iff c* is an epimorphism. 

Note that one direction of (6) holds more generally: 

(‘7) in RFra, if C* is an epimorphism, then c is a monomorphism. 

This is true because. y is a monomorphism in RFra: if c* is epic, then (c*), is 
manic by (4(ii)), and hence also (c*),y = yc is manic, from which the claim. 

All of this may be amusing, but of little use, at least until we can characterize 
epimorphisms and monomorphisms in Fra more directly. Surely epimorphisms 
are not always surjective. In fact, y :F-, (P), is epic for every F, by (4(i)) and 
the fact that y* is an isomorphism (by triangular identities, p is its inverse). 
However, we *know by (2.24) that 7 Es cnta only when F is compact. Still, y is 
always ‘almost’ onto, in the sense that yX is dense in (F*)*. We now see that the 
same is true for all epimorphisms: 

(8) if c :F-, G is an epimorphism in RFra, then CX is a dense subset of Y. 

Proof. By (4(i)), which applies only to refined frames, c* is manic, and hence 
one-one by (1). So, for every D E U such that D #fl, we have c*D # 0 = c*f% 
But then cc*D ncX#$ and hence also D ncX#& because cc*D s D by (1.6). 

In particular, when F is compact and G is Hausdorff, c is point-closed and 
hence closed by (2.12). In this case CX = s= Y and c is indeed onto. Thus 

(9) in DFra, epimorphisms coincide with surjective contractions. 

The problem whether monomorphisms in DFra coincide with injective contrac- 
tions remains open; we can only give two partial results which together with (5) 
and (6), show that it is equivalent to the above mentioned problem about 
epimorphisms in Mal. 

(10) if c : F+ C is a weak contraction in RFra and c* is onto, 
then c is one-one. 
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If x, y E X are distinct, there exists C E T which separates them, that is 
C. Smce c* is onto, there exists D E U such that C = PD. So 

-ED, andy$c*D, thatiscy$D. Thismeansthatcxfrry. 

(11) in DFm, if c:P-,G is one-one, then c* is onto. 

SinceFandGare c is closed and hence cX is compact. So for 
~T,bothcCandc- closed, and hence clopen in the topology 

U on Cx. But then by (1.2) CC = D_n cX for some D E U, which gives 
smce c is one-one. 

constructions. Given a frame G and a subset X of Y, 
rer=snX%d T={DnX:DEU) isherecalledthe 

by G on X. Also, we say that X is an s-hereditary subset of 
GifsX~X,thatisy~Xwheneverx~Xandnsy,AfkameFistraditionallysaid 
to be a (generated) subframe of a fkame G if X s Y, F is the substructure induced 
by G on X and X is s-hereditary. All of this cau be expressed through 
contractions. In fact, I = s n X2 is equivalent to the requirement that im = six for 
everyx~X,wberei:X-,Yistheinclusionfunction,andT={DnX:D~~}iS 
equivalent to the requirement that i is continuous and i* is onto, because 
i*D=DnX for every DsY. So F is a sub- of G, written PEG, if 
i:P+G is a contraction and i*:G*-,P* is onto. It is now natural to widen this 
definitionas~~o~:PisawerrksubFmneofG,writtenFE,G,ifi:F-,Gisa 
weak contraction and i* is onto. More generally, we say that F is en&e&&d& in 
G, written F 4 G, if there exists a one-one weak contraction c : F --, G such that 

Trivially, every weak subfkame of G is embeddable in G. Conversely, 
are~~~,ifF~Gviac,tbenthesubstNlchlrecPinducedbyGon 

cX is a weak subframe of G which is isomorphic to F (a detailed veritkation is left 
to the reader; observe that the assumption c :F + G must be used to be able to 
say that cFr, G). In partiahr, since y* is always onto, we have 

(12) for every fkame F, FR s,,, (F*)* and, when F is retied, y is an 
embedding of F into (F*)* 

willbe tial in the next chapter. 
Uur detitions trivially imply that 

image of G*. 
sW 6, then FL is a homomorphic 

Conversely, if h :A-45 is onto, then !z, :B, ++A,. In fact, if h is onto then for 
h”(S) = h”(T) implies S = T, that is h, is one-one, and (h,)* 
(h,)*o@ =@oh. Since weak contractions between descriptive 

are always contractions, we have 

is isomorphic to a subframe of 

that the assi ent P-n{jkaEli}=CF defines an iso- 
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morphism between boolean filters of A and closed subsets of U(A). By using 
(2.6) and (l.S), one can easily show that a filter F is closed under t iff z,CF s CF, 
and hence 

(15) r-flters of a modal algebra A correspond biunivocally to t,-hereditary 
closed subsets of U(A). 

Note that a subframe F of a descriptive frame G is itself descriptive iB X is 
closed, because closed and compact subsets coincide in a compact space (cf. [lo, 
pp. 102-1031). Therefore, combining (15) with (2) we obtain . 

the lattice of congruences of a modal 
lattice of descriptive subframes of A, 

algebra AiS anti-isomorphic to the 

Similar results hold for weak contractions. By (1) and (4(i)), we immediately 

have 

(17) if c.:F+ C is an epimorphism, then G* is isomorphic to a 
subalgebra of F* 

and conversely, by (5) and (9), 

(18) if A is a subalgebra of B and i is the inclusion, then 
i*:B,+A, is a surjective contraction 

However, a result corresponding to (16) is not immediate, because a 
characterization of quotient objects of a frame F, in terms of F itself, is not 
readily available. We now find it out. First recall that, given a space (X, T) and 
an equivalence relation 0. on X, we can defme the quotient space (X/0, To) 
putting To = {D ~X/thc;~D E T}, where ce :x~[x]~ is the canonical mapping 
from X to X/6 (cf. [lO,pp. 83-841). It is known that, given an epimorphism 
c:F+G, and putting 0(c) = {(x, y) : cx = cy }, the quotient space 
(X/e(c), Tg& is homeomorphic to (Y, U) iff c is closed. And c is closed iff the 
relation e(c) is closed (cf. [lo, pp.83-EM]). So, let F be any frame and 0 a closed 
equivalence relation on X. We want to add a relation re to (Xl& T@) in such a 
way that P/8 = (X/e, re, To) is a frame and ce a weak contraction from F onto 
P/0. The condition cem = recex itself is met by a unique point-closed rep and it is 
a good definition iff 

(19) for all X, y E X, x ey implies em = ev. 

Thus a conmme on a frame F is a clobcd equivalence relation 8 satisfying (19). 
Now it is not difIicult to check that 

(20) if 8 is a congruence on F, then P/8 is a frame and ce : 
contraction 

and conversely 

(21) if c:F+ G is a closed onto contraction, then e(c) is a congruence on 
is isomorphic to 
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When P is descriptive, any epimorphism c:F-, C is closed and onto by (9), 
and thus quotient objects correspond biunivocally to congruences on 8’. go, since 

bY duality quotients objects of A, correspond biunivoccy to subobjects of 
A, we have 

(22) the lattice of subalgebras of A is isomorphic to the lattice of congruences 
on A*. 

The isomorphism can easily be described. If F is descriptive and U is a subalgebra 
of T, then the corresponding congruence 8 is defined by: x 8y ifE for every C E U, 
XECHYEC. 

the categorical definition of product of algebras, we obtain 
, that is disjoint union of frames. Therefore the disjohf 

of a family (Z& of pakwise disjoint frames, is the frame 

where Cd?ff CnX&g for every iel (cf. [IO,p. 721). By modal duality we 
thenhave 

(23) for each family (mid of frames, (&&)* is isomorphic to &,,Pf. 

On the other hand, given a family (A& of modal algebras, the frame &Ai* is 
not homeomorphic to (nidAi)*, because the former is never compact when I is 
inkite. Rather, using the fact that the fundor sending F to (P), is a reflector 

of modal adjunction), and reflectors preserve coproducts, one can 
obtain 

(24) for 
aL _ 

i)iel of modal algebras, ((&eeAi*)*)* is isomorphic to 

from which, for kite I, 

RIU. Chssesofhes 

The mathematical theory so far devek-& would be sterile if we could not 
apply it to problems usually encountered by modal logicians. To show the 
contrary, we have chosen a specifk area, namely the study of classes of frames, 

it with the aid of duality theory. 
the traction tain easy proofs of 
of usual frame co 011s and a proof of 
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the fact that every frame is equivalent to a refined frame also with respect to 
consequence. Moreover, the notion of weak subframe, together with dualit;, is 
used to give a new simple description of the class of frames for a given logic and a 
purely frame-theoretic characterization of modal axiomatic classes of frames. Iwo 
wellknown theorems on classes of Kripke frames are obtained as corollaries. 

We rely by now on the reader’s confidence with the subject and thus will often 
justify a step in the proofs simply ‘by modal duality’, without explicit reference to 
specific results in Sections II.4 and II.5 

1. The togic of thme co~ctions 

It is well known that frame and algebraic constructions preserve the validity of 
modal formulae. For algebras this is true since identities are preserved by 
homomorphic images, subalgebras and direct products. It is less known that the 
corresponding frame constructions preserve also semantical consequence. The 
notion of weak contraction is used here to give a complete and uniform proof of 
this fact. 

Let 9~ be a formula and ra set of formulae. We say that q is a consequebwe of 
S over the frame F, written rp q, if for every valuation V and every x E X, 
x Il-Vr (that is, x II-” q for every J/J E r) implies x :CV q. In other words, putting 
V(r)=n<v(JI):?PEO, 

(1) rP 9p iff for every valuation V, V(r) E V(qQ. 

Of & the consequence relations considered in the literature (at least four), this is 
the strongest. To save words, we denote by CF the set {(r, q) : I’p tp} and call it 
the conseqzume of F (in analogy with LF, the logic of F). We will say that two 
frames F and G are stiongly equivaht if they have the same consequence, that is 
ifCF=CG. 

A te&n.ical lemma is the common part of all preservation results to follow. Let 
c :F+ G be a weak contraction; for every valuation V on G we detie a valuation 
c”V on F by putting: (C’V)(p) = c”V (p) for every propositional variable p. 
We then have: . 

(2) if c:F+ G is a weak contraction, then for every valuation V on G and 
every formula q, (c-W)(p) = c”V(cp). 

Proof. The proof is by induction on the complexity of 93. The only interesting 
step is that for the modal operator, and here 0 is easier to handle than 0. We 
have 

c’lV(Oq) = c-3”V(P) by the definition of ~Qrp) 

= r%“‘V(ql) because c is a weak contraction 

= r-yc-‘V)(~) 

= (c-‘v)(o~) 

by induction hypothesis 

again by definition of (c-‘V)(Op). 
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This result can easily be extended to the case of a set of fixmulae because c-l 
preserves intersections. Then we are ready to ptove the next theorems. 

(3) if c:P+ G is a sujective weak contraction, then CF s CG. 

kfi AssllmerPgoendletyEV(~.Then,~~cisonto,thereisxEX 
that y =a and hence x EC”V(I’) = (c”V)(n. But then, by (l), since 

rP’tp, x E (c-‘V(p) = c-‘V(q), that is y E V(q). So, by (I), nG qa 
(4) ifFisaweaksubfiameofG,thenCGrCF. 
RM$ By &&&ion of weak sub-e, the inclusion map i:F-,G is a weak 

contraction. Then, for every V on G, i”V is a valuation on P. By (2) and the 
Mm&ion of i”, it follows that @-‘V)(q) = V(p) nX, On the other hand, since 
T = {C n X_ : c’ E @jj, cojr eveq v&ab&G ‘,” 32 F t!terp! is V 09 G such that 
V’(p) = V(q) n X So, let us assume that fix every V on G, V(r) s V(q). T’hen 
V(IJ~XSV(~)M, that is (i-‘V)(r)&-‘V)(&. So, by (1), r+. 

obviously, (3) and (4) hold a fortioii for surjective contractions and subfkames 
respectively. Moreover, simply by considering the case in which r is empty, we 
obtain the usual preservation results of validity of formulae.” It is worthwhile to 
note explicitly that, by (4), (3) and (II.5.12): 

(5) fk every frame F, C(F*)* s CP. 

Even if LF = L(P), holds fkx every frame, the inclusion in (5) is sometimes 
proper,aswewillseeinthenextsection. 

Using (3) and (4) it is now immediate to prove that 

(6) if (I& is a family of frames and P = &e,&, then CF = &I C’. 

In fact, since each pi is a subframe of F, by (4), C(P) in C(P,); conversely, 
since (%I is a family of pairwise d&joint frames, for every V on F, 
V(q) = tJg& K(p) ad V(Q = LJiel &(I’), where K(q) = V(q) n Xi. Assume 
that, for every i E 4 vi(l”) S F(!P)- Then V(r) = U&I K(o C_ U&J V,(q) = V(p), 
= by (1)s ni, C(4) E c(p)- 

We will later use also the following corollary of (3): 

(7) ifc:F+Gis a weakcontractiononto and c*:G*~Ip* isonto, 
then C’F = CG. 

proof. Since c* is onto, that is c-‘(v) = T, every valuation on P is of the form 
c”V for some valuation V on G. Therefore, by (l), it is enough to prove that, for 
every V on G, V(I’)c V(q) ilf (c”V)(I’) E (c-‘V)(q). But this follows 
immediately from (2) and the assumption that c is onto. 

Several conditions 
aim of restricting to 

on a frame have been 
aclassofframeswi- 

considered in the literature, with the 
enough structure to make their ‘use 
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simpler, but in the meantime wide enough to obtain completeness. We have 
already met descriptive frames and know that any frame F is equivalent to a 
descriptive frame, that is its bidual (F*)*. So one could restrict to the class of 
descriptive frames with no harm for completeness, and on the other hand with all 
the structure of the equational class of modal algebras offered on the tray by 
modal duality. However, this choice has not gamed much consent, probably 
because infinite Kripke frames are not descriptive, and thus the original intuition 
is partly lost. Also, from a more technical point of view, it is not true that any 
frame is equivalent to a descriptive frame also with respect to consequence. 

The aim of this section is to show, instead, that the choice of refined frames is 
the best compromise. Following SK. Thomason, who introduced the notion in 
1331, a frame F = (X, r, T) is usually said to be refined when 

(1) xqy iB (VCE T)(x E r*C-+y E C) 

(2) (VCET)(XEC-y~C)+x=y 

hold. Using topology we can save words and mental energy, and, by (II.2.g) and 
@.2.23), say that F is refined if r is point-closed and F is Hausdorff (that is, the 
space (X, T) is Hausdorfl’). It is obvious that Kripke frames are refined and, 
conversely, all finite retied frames are Kripke frames. At this point it is also 
worthwhile to note that adding 

(3) for each ultrafilter S on T, n S = {x} for some x E X 

to (1) and (2), we obtain the original definition by Goldblatt [is] of descriptive 
frames. Now (3) is equivalent to compactness (see 11.2.24) and hence a frame F 
satisfies (l)-(3) iff F is compact refined, that is, iB lr is descriptive in our sense 
(cf. Section II.4). 

In order to prove that thd choice of refined frames is the best compromise, we 
begin with: 

0 any frame is strongly equivalent to a refined frame. 

Actually, since we know how to construct the refinement FR of a frame F (cf. 
Section 11.4), (4) becomes 

(5) for every frame F, CF = C(FR) 

which is quite easily proved using (1.7). In fact, by (11.4.17)) y is a weak 
contraction from F onto FR, and obviously y* : Fg-* F* is onto. 

We now want to show, with an example, that (4) can not be improved, in the 
sense that there are refined frames which are not strongly equivalent to a - _ 
descriptive frame. An example is provided by the Kripke frame F = (IV, >), 
where N is the set of natural numbers and > the usual greater than order. Since 
V(Xl’Q) = {m : m > n} for each V on F, putting r = {+Tl : a E N} we obtain 
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v(P) = for each V and hence rP L. On the other hand, suppose rkG .l. holds 
for a descr@We frame G. Since V(~U‘Q) does not depend on V, from V(n =fl 
we obtain, by ampactness, that there exist a~, . . . , ak such that, for eve9 V, 

V(,l & l -&-cm)=0. 

But then L is a consequence of o) =+I’?L & l . l & dJ%. on G, while, for 
eve9VonG, V(~)={~:m>~(~,...,~k)}. SoFandGarenotstrongly 
e@valent. 

Now that our choice is made, we want to support it with something more. As it 
is known, for any lo&c L, the class MA(L) of L-modal algebras, which is an 
equational class, can be described as the class of homomorphic images of some 
free L-modal algebra FL(a)*. By duality this is immediately transferred to the 
class of descriptive frames for t, and any descriptive frame becomes (isomorphic 
to) a subframe of a universal frame FL(~), for some ar. Of course, the same is not 
true for all frames, but weak subframes enable us to improve the situation by 
showing that all retied frames can somehow be embedded in a universal frame. 
IRtUSgiveaprecise~~tothisby~~~g~~atafiameFiS~e~leinGifF 
is isomorphic to a weak subframe of G. Then by (II.5.12) we have: 

(6) any refined frame F ii embeddable in (F*)*. 

Now let F be any refined frame for L; for some ordinal ar, F* is a 
homomorphic image of P,(a)* and hence (F’). is (isomorphic to) 3 subframe sf 
&(4- So, by @I, since the composition of embeddings is an embedding, 

(7) (Structure theorem) any re&d frame for L is embeddable in the 
universal f?ame FL(a), for some cy. 

In other words, the class of all ret&d frames for L can with no damage be 
described as formed by all weak subframes of all universal frames. This explains 
our choice of the name universal. 

3. 

The aim of this sectkn is to characterize modal axiomatic classes of frames in 
terms of closure under specific frame constructions. The usual approach, which 
we also follow, is based on the idea of transferring, through modal duality, 
Birkhoff’s theorem from modal algebras to frames. So, WC certainly need closure 
under subframes, contractions and disjoint unious (dual of subalgebras, homo- 
morphic ir?ages and direct products respectively). In addition, for example, the 
vve!! kzovvn theorems by Goidbiatt-Thomason 1161 and van Benthem [3] about 
classes of Kripke frames, require closure under new constructions, namely that of 
s of affairs (SA-based) frames ad that of ultrafitter extensions, respectively. 
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Since we here 6~ our attention on classes of refined frames, for which what we 
introduced so far (including our notion of weak subframe) is sufficient, we now 
put these results aside and later prove them as corollaries. This is possible since 
the above rather ad hoc constructions can easily be described in terms of our 
definitions and modal duality. 

We begin by recalling some defmition and notations. A class of frames K is 
called modid oxiomafk if K = {F :F b r) for some set of modal formulae. We will 
use RFr(g to denote the chss of refined frames in which l% valid. In the other 
direction, for any class of frames K, we put L(K) = n {LF:F E K}. The 
operators RFr(-) and L(o) behave like their correspondent in classical niodel 
theory; for instance, any class K of relined frames is contained in RFr(L(K)), 
which actually is the minimal modal axiomatic class containing K. So 

(1) for any class K of refined frames, K is modal axiomatic iff 
K = RF@,(K)). 

More typical here is the link between classes of frames and classes of modal 
algebras. For any class of frames K, we put KS = {A :A SF* for some F E K}; 
note that KS is by definition closed under isomorphisms. Of course, L(K) = 
L(K*) because LF = LB'* for every frame F. Recall that for any set of formulae 
r, MA(r) is the equational class of modal algebras in which-r is valid, that is 
A E MA(T) iff r~ LA. So, if K is any class of frames, F* E RF@(K))* @ 
L(K) s LF ifE F* E MA(L(K)), and hence 

(2) for every class K of frames, IWr(L(K))* = NIA(L(K)) 

since both classes are closed under isomorphisms. In particular, since K = 
RF'r(L(K)) ifE K is modal axiomatic, 

(3) if K is a modal axiomatic class, then KS is an equational class. 

Under which conditions cn K can we prove the converse? If KS is equational, 
then K* = MA(L(K)) because of Birkhoff’s theorem [17, p. 1711 and L(K) = 
L(K*). Of course, if F E K, then F k L(K). Conversely, assume F is any refined 
frame such that F b L(K); then F* E KS and hence, by the definition of K*, there 
isGEKsuchthatG * = F*. At this point, to be able to conclude that F E K, as 
we wish, it is enough that K is closed under biduals, isomorphisms and weak 
subframes. In fact, under such assumptions, G E K implies (G*), E K, hence 
(F*)* E K because (G*), = (F*)*, and finally F E K by (2.6) because F is refined. 
Let us give a number to this partial result: 

(4) let K be a class of refined frames closed under biduals, isomorphisms and 
weak subframes and assume KS is equational; then K is modal axiomatic. 

Note that the notion of weak subframe, or embedding, is exactly what we need 
to express the fact that 

(5) for every frame F, (F*), E K implies F E K 
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is the cruciaI step to obtain (4). (5) could previously be obtained only by 
quuing the complement of K to be closed under biduals, that is: P $ K implies 
(P)* 0 K. Though not very natural, such condition, together with closure under 

frames which are not refined. With some caution, also the results below can be 
extendedtoaIlfkamesinasimihuway. 

We now want to get rid of the assumption in (4) that KS is equational and 
substitute it with more direct assumptions on K. The idea once again is to use 
modal duality and transkr to fhmes known results of universal algebra. It is well 
known that K* is equationti ifF H(P) s K*, S(F) s KS and P(P) c,K*, 
where H, S and P are the mual operators forming all homomorphic images, 
subalgebras and direct pro&~% respectively (this fact is actually taken as the 
definition itself in [17, p. 1521). We then have: 

(6) let K be a class of refined frames closed under isomorphisms and biduals; 
then 
(i) If K is closed under subfkames, then H(F) G K*; 
(ii) if K is closed under ~ntractions, then S(P) E K*; . 
(iii) if K is dosed under disjoint unions, then P(K*) c_ K*. 

RUO$ Aftetm~duality,allthep~~arebasedon~e~~thatAEK*iff 
A, E K, which holds since K is closed under isomorphisms and biduais. Thus we 
give only the proof of (iii). Let (Ai)id be a family of modal algebras in K*. ‘Iben 

and, since K is closed uudtx disjoiat unions, &Ais E K. 
, (&A# c’ KS and hence EErAi E KS by (II.5.24). 

By (6) above, K+ is equational whenever K is closed under subframes, 
contractions and disjoint unions, beside biduais. Therefore, to obtain that K is 

axiomatic it is enough to substitute in (4) the assumption that K* is 
equational with closure of K under contractions. On the other hand, by the 
resuits of the preceding section, every class which is modal axiomatic is, of 
course, ciosed under all such constructions. We thus have proved: 

(7) aclassKofrefinedframes & modal axiomatic iE K is closed under 
biduaIs, weak subframes, contractions and disjoint unions. 

Results analogous to (4) and (7) for classes of descriptive frames are now an 
easy corollary (cf. [15, Section l2]). 

The above characterization aMows us to recognize a modai axiomatic class once 
we have it already, but does not give a method to construct it. We conclude this 
section with two such methods. *The first has a given logic L as starting point, and 
is immediate: putting (2.7) and (1) together, we have 

(8) a class K of refined frames is modal axiomatic i# K consists of ail universal 
frames Q&Y) together with ail (isomorphic copies of) their weak 
subframes. . 
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In other words, (8) says that, up to isomorphisms, RFr(L) is exactly the class of 
all universal frames for L and their weak subframes. 

The second method shows how RPr(L(K)), the minimal modal axiomatic class 
containing K, can be obtained from K by suitably applying some frame 
constructions. It is obtained by dualizing the description of the minimal 
equational class of modal algebras containing KS as HSP(K*). To save many 
words in the sequel, let us ;ntroduce some operators acting on classes of frames. 
And to save many problems, from now on we confine ourselves to refined frames. 
So, for any class of frames K, W(K) is the class of subframes of some G E K, 
C(K) is the class of images of contractions from some G E K, and U(K) is the 
class of all disjoint unions of frames in K. In addition, we need also the operators 
B and Ws, where B(K) = [(F*), ;F E K} and W,(K) = {F :F s,,, G for some 
GE K}. It is easy to see that, for all operators 0 introduced, O(K) is closed 
under isomorphisms if K is. We thus often omit to mention isomorphisms. We 
then have: 

(9) for any class K of relined frames, Rl?r(L(K)) = W,CBU(K); that is, the 
minimal modal axiomatic class containing K is formed by weak subframes 
of the image under a contraction of the bidual of a disjoint union of 
frames in K. 

&uoJ If F E WsCBU(K), theh LKs LF because all the operators indicated 
preserve validity, and therefore F E RPr(L(K)). Conversely, let F E RPr(L(K)). 
Since F is isomorphic to a weak subframe of (F*)+, it is enough to show that 
(F*)* E WCBU(K). Now, from F E RPr(L(K)) we have F k L(K) and hence, by 
(2) and the equality HSP(K) = MA(L(K)), F* E HSP(K*). A picture is 

~c$~B++F* 
id 

where Gi E K for every i E I. After duality, this becomes 

that is, S~IMX (&GF), s ((Ci,, Gi)*)* by (11.5.23), (F*), E WCBU(K) as we 
wanted. 

We can now give a dual form also to the fact that the single free algebra on o 
generators is enough to generate the whole equation class [ 17, p. 1721. Just recall 
that L(FLo(o)) = L(K) and apply (9) to {&(&w)} to obtain: 

(10) for any class K of refined frames, K is modal axiomatic iE 
K= W,CBU(FL<K,(O))- 

4. Some cwoIlari~ on Kripke frames 

Throughout this section K will denote a class of Kripke frames. As previously 
remarked, every Kripke frame is indeed relined, but, in spite of this, we can not 
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the results of the preceding section without modi6cations (an example of 
this is (3.3)). So, we still have to character& modal axiomatic classes of Rripke 
&ames. However, after the results of Section 3, we can have a new approach to 
the problem. In fact, we can do without diagma and equational classes of 
algebras and operate only with refined frames and frame constructions. Let 
KFr(L(K)) &note the minimal modai axiomatic class of Kripke frames contain- 
ingK.sO, 

(1) for any class K of Kripke ties, K is modal axiomatic iff 
K = K&@(K)). 

Sirrce P tzKFr(L(K)) ifE F is a Kripke frame and FE RF@,(K)), we 
immediately obtain from (3.8) and (3.9) reqectively 

(2) for any class K of Kripke frames, K is modal axiomatic iff K ccmists of all 
(isomorphic copies of) Kripke subframes of ail universal frames FL(K)@) 

and 

(3) for any class K of Kripke frames, KFr(L(K)) is, up to isomorphisms, 
exactly the class formed by Kripke frames in WsCBU(K). 

In other words, (2) and (3) say that KF$L(K)) is obtained by considering, at 
fust, K as any chss of refmed ties, and then by getting rid of every refhred 
framewhichisnotaIsoaKripkeframe. 

When K is closed under disjoint unions, (3) is easily turned into 

(4) for auy class K of Kripke frames, K is modal axiomatic iff K is closed 
under isomorphisms, disjoint unions and for every Kripke frame F, 
F E W,CB(K) implies P E K 

and the theorems of Goldblatt and Thomason and of van Benthem are then 
obtained as corollaries. For every f?ame P, we define Fd to be the discrezktion 
of 8” that is the Kripke, or discrete, frame (X, r, P(X)) underlying P. The 
defmition of ‘state of aEairs’ Me P based on a given Kripke frame G, briefly 
SA-based cn G, introduced and somehow heuristically justified in [Ml, can then 
be expressed in our terms. We say that a retied frame P is SA-based on a Kripke 
frame G, if there is a (generalj frame m such that Hd = G and P is embeddable in 
(a*)*. Note that with every retied frame also all its isomorphic copies are taken 
into account. The following result explains why SA-based frames could be used to 
characterixe modal axiomatic classes: 

(5) for every refined frame P and every Kripke frame G, P is SA-based on G 
iff P is (isomorphic to) a frame in W,CB(G). 

proof. Emote that, since G is discrete, the condition wd = G is equivalent to 
E S(G*). But it is easy to check that E* E S(G*) is equivalent, modulo some 

*)+ E CB(G). Replacing this in the definition of SA-bmd 
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Using duality, it is then very simple to prove also that F is SA-based on C iff 
F+ E H,(C*), which was the key step in [16]. We can now immediately obtain: 

(6) (Goldblatt-Thomason theorem) a class K of Kripke frames is modal 
axiomatic iff K is closed under isomorphisms, disjoint unions and 
SA-based constructions. . 

proof. We know that any modal axiomatic class is closed under isomorphisms 
and disjoint unions. Since B, C, Ws preserve the validity of modal formulae, by 
(5) it is also closed under SA-based constructions. The converse immediately 
follows from (5) and (4) above. 

In [3], van Benthem characterizes the class of Kripke frames modally definable 
by a canonical set of modal formulae using the notion of ultrafilter extension. The 
z&mjZter e;xtension ue(F) of a Kripke frame F is, in our notation, simply the 
frame ((F*)a)d. Before going down to the proof of van Benthem’s theorem it is 
useful to note that: 

(7) for any frame F and G, 
(i) if F E C(G), then Fd E C(Gd); 
(ii) if F E W,(G), then Fd E Ws(Gd). 

In particular, if F is a Kripke frame, Fd= F and hence, by (7(ii)), F is 
embeddable in ue(F). Therefore, by (1.4): 

(8) if F is a Kripke frame, then C(ue(F)) s CF. 

Recall that a set r of modal formulae is said to be canonical if, for every 
descriptive frame F, F i= r implies Fd k r. We then have: 

(9) (van Benthem theorem) a class of Kripke frames K is of the form 
{F: F b r) for a canonical set r of modal formulae, iff K is closed under 
subframes, contractions and disjoint unions, while both K and its 
complement are closed under ultrafilter extensions. 

ProoJ Assume K= KFr(T) with r canonical. Obviously, K is then closed 
under usual frame constructions. Moreover, if ue(F) b r, then by (8) also F W 
and so the complement of K is closed under ultrafilter extensions. Finally, if 
F k r, then obviously (F*), brand hence also ue(F) b r because r is canonical. 

Conversely, let F E W,CB(K), F a Kripke frame. Then there is a frame G E K 
such that, up to isomorphisms, (F*), E WC((G*),), and so, by (7), ue(F) E 
WC(ue(G)). Then the closure conditions guarantee that ue(F) E K, from which 
also F E K since the complement of K is closed under ultrafilter extensions. Thus 
we can apply (4) and obtain that K is modal axiomatic. So K = J@@(K)) and 
the proof is complete once we show that L(K) is canonical. Let F be a descriptive 
frame such that F t= L(K). Then by (3.9) F E WCB(K), that is F E WC((G*),), 
for some G E K. But then, by (7), we have Fd E WC(ue(G)), . which implies 
Fd E K, that is Fd b L(K). 
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another application of duality, namely a proof of 
notion of canonkity above (calkd d-persistence in [IS]) 

[l3]. ‘II& soives a problem raised in [3] (and 
say that a logic is Fme-canoniical (canonical in 

canonical me for L, -that is if pt((~)~k L for every 1~. 
mstrkt to kBgics, rather than !!!ets of fkmulae, because obviously r 
L = L(Fr(I’)) is canonical. We then have: 

(10) f4mevery~L, Liscanoni~*Lisme-c8nonical. 

&(a) EL we obtain PL(@d k L, and hence 
, assume L is Fme-canonical and let P k L for 
is a homomorphic image of FL@)* for some 

Fr (F*), is (isomorphic to) a subframe of pt(cu). But 
have F’cF~(~~)~, and hence F% L follows fkom the 

of ‘Wion theorem for proofs in natural deduction. In fact, any 
inaproofoff@omL. 

3We have sane duubts about the t,xmq%h of Kripke frames as universe of @ble worlds, 
sudBili@ymaepbysicalassumpciollsitisnotdcarwhethertheinterpretationcanheip 
mudal~asitsh&d,or-. Still we believe that Kripke frames are 

actuaQ help w if c&ch of them is conceived as a sintie world 
etc.) pqndated with think@ subjects (MividuaIs, persons, etc.); in this 

~x~y~thattbtspbjedxhasaccesstotheopiaions(beliefS,dogpras, 
~)afy.‘Ibenx~ino~i~opinioasxaurlaKlwaboutg,saythate,is 

trpe.~tbatintbepreJentsssumptiorrs,anindividpalbasaaopiniononeverything. 

‘Actual@, we oosdd at this point look at things the other way round and &rive Kripke’s definition 
of valid@ from the f6Ilowii: for each vahmtion V of variabIes in T, the Muation of formulae is 
~tobe~~bomomorphismfromAlttoP*extendingthefunctionV’:[p,l,oV@,). 

%ompa&g the proof& of (9) and (1.3), the unprejudiced reader will note their similarity in 
struct~, due to the re@ement of close under substitutions. This shows that the widespread 

“a@braic semantics is syntax in dis@sed foxm” is, to say the least, superficial. Actually, 
tc~ &u&y the wssiibility of a mod&d form of Henkin construction, where logics (i.e., 

in&ding dosure under su&t&ms), rather than maximaQ consistent sets of formulae, are used. 
6 

the picture sketched in footnote 3, the OonstrucGon of A, might be described as follows. 
If A is taken as the field of possible values, then U(A) is the ideal&d world with exactly one 
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individuai x for each complete theory I& (and note that aiso ind.ividuaIs with no priaciples are 
tolerated, ahas non-principal ultrafilters), x has access to the opinions of y ZY agrees on the truth of 
what is necessaq for x, and 8naUy a value is identified with the ciass of individuais h~ldiag it_ 

‘One couid at this point directiy obtain modal duaiity (4.12) (but not modai adjunction (4.10)), 
without passing through basic adjunction of Section 3. In fact, in the category DFra, of descriptive 
frames and contractions, y is a naturai isomorphism by (23), (24) and (26). We leave this as an 
exercise; the reward is that one can skip Section 3 and Section 4, except (l), (2), the definition of 
functors pwzeding (8), and (12). 

“Ihe definition we adopted can be found in [14; p. 81j. In fact, eonfmry to McLane, we believe 
that dismifiaian conbrm18ci8llf functors in favour of opposite categories would here prevent us front the 
fun (I?) of interchaqiq points with sets when passing &om a category to the other, Iike shown in 
Section 2. 

‘From our treatment of modal duahty one can easiiy derive some related rest&s. For insumce 
duality between Kripke frames and complete atomic modal algebras, as proved in [35], is obtain;da 
modifying the definition of ( )* by ahvays restricting to principal uItra8Iters. Moreover, with little 
adjustments it has been extended to tense logic by Paola UnterhoIxner [36]. Also, it is possible to 
adapt it to (propositionai) dynamic logic (cf. [22], where however only objects are considered). 

loThe reader wiU see that we never use the fuli strength of the preservation resuhs just proved. 
However, we have a suggestion at least, namely to use them to character& cIasses of frames in which 
a given consequence, rather than a logic, is valid. 

‘*Amodalfo~~aQissaidtobe~ifforenyrtfincdframcP,F~(pimplicsFd~~(Cf.[33] 
and [13]). llms every naturaI formuia is canonicai. After reading a preprint of this paper, J. van 
Benthem has obtained an extension of his theorem (9) above to sets of natural formuIae (cf. [fl). 
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