

UNIVERSITEIT VAN AMSTERDAM Institute for Logic, Language and Computation

Core Logic 2006/2007; 1st Semester dr Benedikt Löwe

Homework Set # 7

Deadline: November 8th, 2006

Exercise 22 (7 points).

We are considering two new systems of dialogic logic: In the first one, called **strictly constructive**, we restrict the proponent in a way that he also can only react to the last move of the opponent and denote the corresponding semantic relation by \models_{sc} . In the second one, called **liberal**, \models_{lib} , we liberalize the opponent so that he also can react to all prior moves of the proponent.

- (1) Give formal definitions (in the style of the lecture, giving explicitly the rules for the two players) for \models_{sc} and \models_{lib} (½ points each).
- (2) Prove that $\models_{\text{lib}} \varphi$ holds for no formula φ (2 points).
- (3) Find two different formulas φ such that $\models_{sc} \varphi$ and give dialogue proofs for them (1 point each).
- (4) Find a formula φ such that ⊨_{dialog} φ but not ⊨_{sc} φ. Give proofs of both claims (1 point each).

Exercise 23 (4 points).

Give dialogue proofs of the following formulas in \models_{cl} (1 point each):

- $\neg \neg \neg p \rightarrow \neg p$,
- $((p \rightarrow q) \land \neg q) \rightarrow \neg p.$

For both formulas, decide whether they are valid in \models_{dialog} and give a dialogue argument for or against your claim (1 point each).

Exercise 24 (6 points).

In this exercise, we consider the systems of *positio* as described by Walter Burley and Roger Swyneshed. If a *positum* φ^* is given and φ_k (for $0 \le k \le n$) are proposed sentences of the **Opponent**, we let Φ_k^{Burley} be the set of "currently accepted truths" according to Burley's system on the basis of the sequence $\langle \varphi^*, \varphi_0, \dots, \varphi_n \rangle$.

Prove the following properties of the two systems:

- (1) If the *positum* φ^* is consistent, then for all $k \leq n$, the set Φ_k^{Burley} is a consistent set (3 points).
- (2) If the *positum* φ* is consistent and k < ℓ ≤ n with φ_k = φ_ℓ, then the **Respondent** in a Swyneshed-style *positio* will give the same answer in steps k and ℓ of the *obligatio* (3 points).