

UNIVERSITEIT VAN AMSTERDAM Institute for Logic, Language and Computation

Core Logic 2005/2006; 1st Semester dr Benedikt Löwe

Homework Set # 11

Deadline: November 29th, 2005

Exercise 36 (total of nine points).

Let $2^{\mathbb{N}}$ be the set of all infinite 0-1 sequences. For $x \in 2^{\mathbb{N}}$, we define $\hat{x}(n) := 1 - x(n)$. We call $\mathcal{C} \subseteq 2^{\mathbb{N}}$ a symmetric class if for every $x \in \mathcal{C}$, we also have $\hat{x} \in \mathcal{C}$. A function $F : \mathbb{N} \to \mathcal{C}$ is called a \mathcal{C} -good parametrization if the sequence $\langle F(n)(n) ; n \in \mathbb{N} \rangle$ is an element of \mathcal{C} and F is a surjection.

- (1) Show that no symmetric class C can have a C-good parametrization (4 points).
- (2) Derive Cantor's Theorem ("there is no bijection between N and 2^N") as a corollary (2 points).
- (3) Give an example of a (non-symmetric) class $C \subseteq 2^{\mathbb{N}}$ that has a C-good parametrization (3 points).

Exercise 37 (total of seven points).

Find three academic (PhD) students of **Alonzo Church** (1903-1995) (not the ones mentioned in the lecture, *i.e.*, Turing, Kleene, Davis, Rabin, Scott or Smullyan) and give:

- the student's name (1/2 point each),
- the title of the PhD thesis (1/2 point each),
- one theorem that the student proved (just the statement, no proof; 1 point each).

One of our guest lecturers is an academic great-grandchild of Church (*i.e.*, the PhD student of a PhD student of Church's). Who is it and what is his lineage (1 point)?

Exercise 38 (total of six points).

The ordinal ω_1^{CK} is sometimes called "the least admissible ordinal" and has an equivalent description in terms of an axiom system called "Kripke-Platek Set Theory" KP. Give a precise definition of ω_1^{CK} (2 points) and of KP (2 points) and give a brief (two to four sentences) description of the connection between the ordinal and KP (2 points).