Proof Theory.

Theorem (Gentzen).
Let T" © PA such that 7" proves the existence and
wellfoundedness of (a code for) all ordinals o < ¢¢. Then

T = Cons(PA).

Questions:
® Whatis ¢;?

# How can a theory in the language of arithmetic prove
anything about ordinals?

.
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Operations on ordinals (1).

fIf L= (L,<)and M = (M, C) are linear orders, we can
define their sum and product:

L®M:=(LUM, <) where z < y if
® vrcLandye M, or

® z.ye Landx <y,or
® rv.yc MandzxCy.

L®M:=(Lx M,=)where (z,y) < (z*,y*) If
® yLC y*or
® y=y*and x < z*.

.
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Operations on ordinals (2).

r

Exercise. These operations are not commutative: there are
linear orders such that L & M is not isomorphic to M & L
and similarly for ®. (Exercise 37.)

act. N@ N is isomorphic to N ® 2.

Observation. If L and M are wellorders, thensoare L & M
and L @ M.

Based on ®, we can define exponentiation by transfinite
recursion for ordinals o« and 5:
a = 1
ozﬁﬂ = ozﬁ X o
o = U{aﬁ; B <A}

.
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Hauptzahlen
- -

An ordinal ¢ is called v-number (“Hauptzahl der Addition”) if
forall o, 3 < &, we have o ® 5 < €.

Example. w ® w Is a y-number.

An ordinal ¢ is called §-number (“Hauptzahl der
Multiplikation”) if for all o, 5 < &, we have o ® G < &.

Example. w“ Is a -number.

An ordinal ¢ Is called e-number (“Hauptzahl der
Exponentiation”) if for all o, 5 < &, we have of < €.

eo IS the least e-number.

.
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Arithmetic and orderings (1).
- o

Ordinals are not objects of arithmetic (neither first-order not
second-order). So what should it mean that an arithmetical

theory proves that “c( is well-ordered”?

Let o be a countable ordinal. By definition, there is some
bijection f : N — «. Define

n<gm: f(n) < f(m).
Clearly, f Is an isomorphism between (N, <) and a.

If g: Nx N — {0,1} Is an arbitrary function, we can interpret
It as a binary relation on N:

n<gm: g(n,m)=1

.
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Arithmetic and orderings (2).
fLet us work Iin second-order arithmetic
(N, NN, 28 0, 1, app)
g:NxN— {0,1} codes a wellfounded relation if and only if
—-3F € NNn e N(g(F(n+1), F(n)) = 1).

“Being a code for an ordinal < (" Is definable in the
language of second-order arithmetic (ordinal notation
systems).

T1(eg) Is defined to be the formalization of “every code g for
an ordinal < ¢y codes a wellfounded relation”.

.

Core Logic — 2004/05-1ab — p. 8/



More proof theory (1).

TI(ep): “every code g for an ordinal < g9 codes a wellfounded relation”

Generalization: If “being a code for an ordinal < «” can be
defined in second-order arithmetic, then let TI(a) mean
“every code ¢ for an ordinal < o codes a wellfounded
relation”.

The proof-theoretic ordinal of a theory T.

7| :=sup{a; T+ TI(«x)}
Rephrasing Gentzen. |PA| = ¢y.

.
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More proof theory (2).
- o

Results from Proof Theory.

# The proof-theoretic ordinal of primitive recursive
arithmetic is w>.

o (Jager-Simpson) The proof-theoretic ordinal of
arithmetic with arithmetical transfinite recursion is I'y
(the limit of the Veblen functions).

These ordinals are all smaller than w{¥, the least

noncomputable ordinal, I.e., the first ordinal o such that
there is no computable function g : N x N — {0, 1} such that
(N, <4) Is isomorphic to a.

.
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Our open gquestion In set theory...
f.o Inaccessible cardinal — a regular, strong limit cardinal.

#® measurable cardinal — a cardinal x such that there is a
nonprincipal k-complete ultrafilter on x (“«< Is a
generalized solution to the measure problem™).

Theorem (Tarski-Ulam, 1930). Every measurable cardinal
IS Inaccessible.

Question. Is every inaccessible cardinal measurable?
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Jerzy tos
1920-1998

Invented ultraproducts.

Introduced the notion of categoricity.

Conjectured Morley’s theorem: If a theory is k-categorical for an uncountable «, then it

is k-categorical for all uncountable x.

1955. Quelques remarques, théoremes et problémes sur les classes définissable

d’algebres.

Core Logic — 2004/05-1ab — p. 12/



Products (1).
- -

Let £ = {f,,R,,: n,m} be a first-order language and S be a
set.

Suppose that for every : € S, we have an £-structure
M; = (M;, f*, R ; n,m).
Let Mg = [],cq M;. For X, ..., X}, € M, we let
£ (Xo, s Xp)(6) := fr(Xo(i), ..., Xj(i)) and

R (Xo, ..., Xy) = Vi € S(R (Xo(i), ..., Xi(2)).
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Products (2).
-

In general, classes of structures are not closed under
products:

Let Lr := {+, x,0,1} be the language of fields and ¢ be
the field axioms. Let S = {0,1} and My = M; = Q. Then
Mg =Q x Qisnotafield: (1,0) € Q x Q doesn’t have an
Inverse.

Theorem (Birkhoff, 1935). If a class of algebras is
equationally definable, then it is closed under products.

Garrett Birkhoff
(1884-1944)

Garrett Birkhoff, On the structure of abstract algebras, Proceedings of the Cambridge
Philosophical Society 31 (1935), p. 433-454
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Ultraproducts (1).
-

Suppose S is a set, M, Is an £-structure and U is an
ultrafilter on S.

Define =y on Mg by
X=pyY:—<{i; X0t)=Y(u)}eU,

and let My .= Mg/=.

The functions £~ and the relations R> are welldefined on
My (i.e., if X =y Y, then f5(X) =y f2(Y)), and so they
induce functions and relations fV and RY on M.

We call

My = Ult((M;; i € S),U) := (My, fV, RY ; n,m)

Lthe ultraproduct of the sequence (M;; ¢ € S) with U.
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Ultraproducts (2).
- -

Theorem (LosS.) Let (M;; i € S) be a family of £-structures
and U be an ultrafilter on S. Let ¢ be an £-formula. Then

the following are equivalent:
1. My ‘: gO([Xo]ZU, e [Xk]EU)1 and

2. {Z c.S; M, |: @(Xo(i), ,Xk(l))} cU.
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Ultraproducts (2).
-

Theorem (LosS.) Let (M;; i € S) be a family of £-structures
and U be an ultrafilter on S. Let o be an £-sentence. Then
the following are equivalent:

1. My = o, and
2. {ieS;M; o} el.

Applications.

® fforalli € S, M, is a field, then M is a field.

® LetS = N. Sets of the form {n; N < n} are called final segments. An ultrafilter U on
N is called nonprincipal if it contains all final segments. If (M, ; n € N) is a family of
L-structures, U a nonprincipal ultrafilter, and & an (infinite) set of sentences such that
each element is “eventually true”, then My = &.

® Nonstandard analysis (Robinson). Let £ be the language of fields with an additional
0-ary function symbol ¢. Let M; = Th(R) U {¢ # 0 A ¢ < +}. Then My is a model of
Th(R) plus “there is an infinitesimal”.
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Tarski (1).

Alfred Tarski
1902-1983

Teitelbaum (until c. 1923).
1918-1924. Studies in Warsaw. Student of Lesniewski.

1924. Banach-Tarski paradox.

1924-1939. Work in Poland.

1933. The concept of truth in formalized languages.

From 1942 at the University of California at Berkeley.

Students. 1946. Bjarni Jonsson (b. 1920). 1948. Julia Robinson (1919-1985).
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Tarski (2).
- o

# Undefinability of Truth.
If a language can correctly refer to its own sentences,

then the truth predicate is not definable.

Limitative Theorems.
Provability Truth Computability

1931 1933 1935
Godel Tarski Turing

More In the last lecture (Dec 15th).
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Tarski (2).
-

# Undefinability of Truth.

# Algebraic Logic.

s Leibniz called for an analysis of relations (“Plato is
taller than Socrates” ~ “Plato is tall in as much as
Socrates is short”).

» Relation Algebras: Steve Givant, Istvan Németi,
Hajnal Andréka, lan Hodkinson, Robin Hirsch,
Maarten Marx.

s Cylindric Algebras: Don Monk, Leon Henkin, lan
Hodkinson, Yde Venema, Nick Bezhanishvili.
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Tarski (2).
- o

# Undefinability of Truth.
# Algebraic Logic.

# Logic and Geometry.

o A theory T admits elimination of quantifiers if every
first-order formula is T-equivalent to a quantifier-free
formula (Skolem, 1919).

o 1955. Quantifier elimination for the theory of real
numbers (“real-closed fields”).

s Basic ideas of modern algebraic model theory.

» Connections to theoretical computer science:
running time of the quantifier elimination algorithms.
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Ultraproducts in Set Theory.

Recall: A cardinal « is called measurable if there is a k-complete nonprincipal ultrafilter on «.

ldea: Apply the theory of ultraproducts to the ultrafilter
witnessing measurability.

Let V be a model of set theory and V ="« Is measurable”.
Let U be the ultrafilter witnessing this. Define M, := V for
all « € k and My := Ult(V,U).

By £ oS, M;; is again a model of set theory with a
measurable cardinal.

Theorem (Scott / Tarski-Keisler, 1961). If x is measurable,
then there Is some a < k such that « Is inaccessible.

Corollary. The least measurable is not the least
Inaccessible.

.

Core Logic — 2004/05-1ab — p. 19/-



More on large cardinals.

-

Reflection. Some properties of a large cardinal ~ reflect
down to some (many, almost all) cardinals o < k.

® L[évy (1960); Montague (1961). Reflection Principle.
® Hanf (1964). Connecting large cardinal analysis to infinitary logic.

® Gaifman (1964); Silver (1966). Connecting large cardinals and inner
models of constructibility (“iterated ultrapowers”).

® GOdel’s Programme.
1947. “What is Cantor’s Continuum Problem?”

Use new axioms (in particular large cardinal axioms) in order to
resolve questions undecidable in ZF.

® Lévy-Solovay (1967). Large Cardinals don’t solve the continuum

\— problem.
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Modal logic (1).
- o

Modalities.

# “the standard modalities”. “necessarily”, “possibly”.

# temporal. “henceforth”, “eventually”, “hitherto”.
# deontic. “it is obligatory”, “it is allowed”.

#® epistemic. “p knows that”.

o

doxastic. “p believes that”.
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Modal logic (2).
- o

Modalities as operators.
McColl (late XIXth century); Lewis-Langford (1932). <> as

an operator on propositional expressions:
S~ “Possibly .
[1 for the dual operator:
(p ~~ “Necessarily ¢”.
lterated modalities:

1O ~ “It Is necessary that ¢ Is possible”.

.
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Modal logic (3).

fWhat modal formulas should be axioms? This depends on

the interpretation of <> and .
Example. Oy — ¢ (“axiom T").

#® Necessity interpretation. “If ¢ Is necessarily true, then it

IS true.”

# Epistemic interpretation. “If p knows that ¢, then ¢ Is
true.”

# Doxastic interpretation. “If p believes that ¢, then ¢ is
true.”
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Early modal semantics.

-

Topological Semantics (McKinsey / Tarski).
Let (X, 7) be a topological spaceand V' : N — ¢o(X) a
valuation for the propositional variables.

(X, 1,2, V) E Qe ifand only if x Is in the closure of
{z; (X,7.2,V) = o}

(X, 7) = @ ifforall z € X and all valuations V,

(X, 1,2, V) E .
Theorem (McKinsey-Tarski; 1944). (X, 1) = ¢ If and only if
S4 = .

(S4 = {T, 0y — Cp})

.
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Possible Worlds.

Leibniz: There are as many possible worlds as there are
things that can be conceived without contradiction. ¢ Is
necessarily true Iif its negation implies a contradiction.

~ IS necessarily true if it is true in all possible worlds.

.
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Kripke.
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# Saul Kripke, A completeness theorem in modal logic,
Journal of Symbolic Logic 24 (1959), p. 1-14.

# “Naming and Necessity”.

.
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Kripke semantics (1).

fLet M beasetand R C M x M a binary relation. We call
M = (M, R) a Kripke frame. Let V : N — (M) be a

valuation function. Then we call MY = (M, R, V) a Kripke

model.
MY,z = pp
MY,z = $op
MY x = L
M |
M = ¢

Iff
Iff
Iff
Iff
Iff

r e V(n)

Jy(zRy & MYy | )
Vy(zRy — MY,y = ¢)
Va(MY 2 = )

vV (MY = )
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Kripke semantics (2).

-

MY,z = Qp  iff Jy(zRy & MY,y = )
MY,z =0 iff Vy(zRy — MY,y = o)
MY o iff Ve(MV,z = @)
MEe iff YWIMY )

® Let (M, R) be areflexive frame, I.e., for all z € M, xRx.
Then M = T.
(T = Uy — ¢)

® Let (M, R) be a transitive frame, I.e., for all z,y,z € M, If
xRy and yRz, then zRz.
Then M = Oy — .
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Kripke semantics (3).
fTheorem (Kripke). -

1. T+ ¢ if and only if for all reflexive frames M, we have
M = .

2. S4 + ¢ If and only if for all reflexive and transitive frames
M, we have M = ¢.

3. S5 F ¢ if and only if for all frames M with an
equivalence relation R, we have M = ¢.

More about this next week.

.
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