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1 Smooth manifolds and vector bundles

1.1 Basic definitions

In the field of differential geometry one is concerned with geometric objects that look locally like
Rn for some n ∈ N. In the following we will clarify exactly what this should mean and explain
the reason for the term “differential” in differential geometry.

Remark 1.1. Recall the definition of a topological space. Let M,N be topological spaces.
A map f : M → N is called continuous if for all U ⊂ N open, f−1(U) ⊂ M is open. A
continuous map is called a homeomorphism if it has an inverse, that is if it is bijective as a
map between sets, and the inverse is continuous. A basis of the topology of a topological
space M is a collection of open sets B, so that for all U ⊂ M open there exist an index set I
and corresponding open sets Bi each contained in B, such that ∪i∈IBi = B. Note that I might
be uncountable.
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The study of topological spaces in full generality is not the topic of this course. We need to
introduce two additional properties that topological spaces might fulfil in order to define the
kind of objects we will study, that is smooth manifolds.

Definition 1.2. Let M be a topological space. M is called Hausdorff1 if for any two distinct
points p, q ∈M , p 6= q, we can find U, V ⊂M open, such that p ∈ U , q ∈ V , and U ∩ V . This
means that we can separate any distinct points in M with disjoint open sets. M is said to
fulfil the second countability axiom (or, simply, are second countable) if its topology has a
countable basis.

Figure 1: Open sets U and V in a Hausdorff space separating two points p and q.

If the reader is new to general topology and the above definitions seem confusing, consider
the following well known examples of Hausdorff topological spaces that are second countable.
These are also basically the only examples the reader has to keep in mind for this course.

Example 1.3. For any n ∈ N0, Rn equipped with its standard topology induced by the Euclidean
norm is Hausdorff and second countable. A choice for a countable basis of the topology is given
by

B := {Br(p) | r ∈ Q>0, p ∈ Qn} .

[Exercise: Prove that B is, in fact, a basis of the norm topology on Rn.]

Exercise 1.4. Prove that B in Example 1.3 is, in fact, a basis of the norm topology on Rn

Now that we have introduced all topological perquisites, we will give a precise meaning to
the term “locally looks like” that we have used before.

Definition 1.5. Let M be a Hausdorff topological space that is second countable. An n-
dimensional smooth atlas on M ,

A = {(ϕi, Ui) | i ∈ A} ,

is a collection of tuples (ϕi, Ui), each consisting of an open set Ui ⊂M and a homeomorphism

ϕi : Ui → ϕi(Ui) ⊂ Rn, (1.1)

such that
1Felix Hausdorff (1868 – 1942)
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(i)
⋃
i∈A

Ui = M , that is the Ui form a covering of M ,

(ii)
ϕi ◦ ϕ−1

j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj) (1.2)

is smooth for all i, j ∈ A with Ui ∩ Uj 6= ∅.

Maps of the form (1.1) together with their domains are called charts on M and the maps in
(1.2) are corresponding transition functions. Any two charts (ϕi, Ui), (ϕj , Uj), not necessarily
from the same atlas, are called compatible if the corresponding transition function ϕi ◦ ϕ−1

j

and its inverse are smooth.

Figure 2: Two charts (ϕi, Ui) and (ϕj , Uj) with Ui ∩ Uj 6= ∅.

In the following we will simply speak of atlases and drop the prefix “n-dimensional smooth”,
unless it is of specific value for a statement. Now consider the following questions. Firstly assume
that you are given two different atlases A and B on M . What is a good notion for compatibility
of these two atlases? A reasonable idea is to require that their charts are compatible in the
sense of (1.2). Secondly there should always be the question whether or not there is a canonical
choice for some sort of structure, in this setting that of an atlas. This leads us to the following
definition:

Definition 1.6. Two atlases A = {(ϕi, Ui) | i ∈ A} and B {(ϕi, Ui) | i ∈ B} on a second
countable Hausdorff topological space M are called equivalent if

A ∪B := {(ϕi, Ui) | i ∈ A ∪B}

is an atlas on M . This is equivalent to the requirement that the transition function ϕi ◦ ϕ−1
j

(1.2) for all i, j ∈ A ∪B are smooth. For A and B equivalent we write [A] = [B]. An atlas A on
M is called maximal if for all atlases A′ on M equivalent to A it holds that A′ ⊂ A.

Now we have all tools at hand to define the notion of a smooth manifold:
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Definition 1.7. A second countable Hausdorff topological space M together with a maximal
n-dimensional smooth atlas A is called smooth manifold of dimension n.

In the following we will always assume that smooth manifolds are of dimension n ≥ 1.

Remark 1.8. If one left out the requirement of second countability, the definition of a smooth
manifold would still be usable for effectively every local statement about smooth manifolds. This
approach is for example taken in [O]. However some global constructions might not work, in
particular those involving a countable partition of unity (cf. Exercise 2.12) which might not
exist. An example of an analogue of a smooth manifold that is not second countable is the
so-called “long line” [SS].

We will call the process of defining a maximal atlas on M , defining the structure of a smooth
manifold on M . A caveat of the above definition is that it is not in any way clear how to
completely specify or write down a maximal atlas, at least not if n > 0. The following Lemmas
1.9 and 1.11 provide a solution for this problem.

Lemma 1.9. Let A be an atlas on a second countable Hausdorff topological space M . Then A

is contained in a maximal atlas, i.e. there exists a maximal atlas A on M , such that A ⊂ A.

Proof. The set of atlases equivalent to A, Eq(A), is a partially ordered set with respect to the
inclusion. By Zorn’s2 lemma Eq(A) contains a maximal element A which by construction is an
atlas and fulfils all requirements of a maximal atlas.

Remark 1.10. The precise statement of Zorn’s lemma is that every partially ordered set (S,≤)
has a maximal element. This means that there exists smax ∈ S, such that either s ≤ smax, or
neither s ≤ smax nor s ≥ smax. Note that smax is in general not unique.

Remark 1.10 raises the question whether a maximal atlas containing any given atlas is
uniquely determined. The answer is yes, and the proof feels a bit like we were cheating.

Lemma 1.11. Each atlas is contained in a unique maximal atlas.

Proof. Let A = {(ϕi, Ui) | i ∈ A} be an n-dimensional smooth atlas on a second countable
Hausdorff topological space M . We define

A := {(ϕ,U) | ϕ : U → ϕ(U) is a chart on M , ϕ and ϕi are compatible ∀i ∈ A} .

We now write A =
{

(ϕi, Ui)
∣∣∣ i ∈ A} and claim that it is both a maximal atlas and unique

in the stated sense. Firstly note that A ⊂ A and, hence,
⋃
i∈A

Ui = M . Next we need to show

that for any i, j ∈ A, ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj) is smooth. Being smooth is a local

property, so we fix any point p ∈ ϕj(Ui ∩Uj) and choose a chart (ϕ,U) in A, such that p ∈ ϕ(U).
Then we choose V ⊂ ϕ(U) ∩ ϕj(Ui ∩ Uj), V ⊂ Rn open, such that p ∈ ϕ−1(V ), observe that

ϕi ◦ ϕ−1
j = (ϕi ◦ ϕ−1) ◦ (ϕ ◦ ϕ−1

j )

coincide on V . Since the right-hand-side of the above equation is a composition of by construction
of A smooth maps, it follows that ϕi ◦ ϕ−1

j is smooth as well. This shows that A is indeed an
n-dimensional smooth atlas on M and that A ⊂ A. Lastly suppose that A is not maximal. Then
there exists an atlas A′ on M that is equivalent to A and there exists a chart (ϕ,U) in A′ that
is not contained in A. By A ⊂ A this means that even though (ϕ,U) is compatible with every
chart in A it is not contained in A. This is a contradiction to the construction of A. This shows
that A is maximal and finishes the proof.

2Max August Zorn (1906 – 1993)
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Remark 1.12. We have seen in Lemma 1.9 that it is sufficient to specify an atlas A on a
second countable Hausdorff topological space M in order to define the structure of a smooth
manifold on M without the need of requiring maximality of A. Furthermore, we have proven in
Lemma 1.11 that there exists a unique maximal atlas on M that is equivalent to A, meaning
that there is no possibility to choose an other structure of a smooth manifold on M for which A

is an atlas. This justifies calling a second countable Hausdorff topological space equipped with
any atlas, be it maximal or not, a smooth manifold.

It is however not clear at this point whether for a given smooth manifold M with maximal
atlas A there might exist some other maximal atlas B on the underlying topological space M
that is not equivalent to A. This is in general a very difficult question. There are some examples
where this question has been answered, see the so-called exotic spheres [M] and for 4-dimensional
smooth manifolds cf. [Sc].

Figure 3: Which of the three partially ordered sets (higher means ≥) is a good representation for the equivalence
classes of atlases?

Next we should ask ourselves how “good” we might expect a choice of an atlas for a given
smooth manifold to look like, meaning an atlas contained in the by definition provided maximal
atlas. Can we always choose a countable atlas, that is an atlas containing only a countable
number of charts, that is equivalent to our given maximal atlas? Can we always choose a finite
atlas if our manifold is connected? The answer is yes to both, but the latter is much more
difficult to prove than the former, for the non-compact case see [So].

Exercise 1.13.

(i) Show that every smooth manifold M with maximal atlas A has a countable atlas that is
equivalent to A. [Hint: Use that M is second countable.]

(ii) Show that every connected compact smooth manifold with maximal atlas A has a finite
atlas that is equivalent to A.

An important analytical tool that we will need in this course is shrinking the chart neigh-
bourhoods of a given atlas.

Definition 1.14. Let A = {(ϕi, Ui) | i ∈ A} be an atlas on a smooth manifold M . Another
atlas on M , Ã =

{
(ϕ̃i, Ũi)

∣∣∣ i ∈ Ã}, is called a refinement of A if for all i ∈ Ã there exists
j ∈ A, such that Ũi ⊂ Uj and ϕ̃i = ϕj |Ũi .
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Figure 4: Refining a chart neighbourhood Ui into three proper subsets Ui1 , Ui2 , and Ui3 .

Exercise 1.15. Check that any atlas is equivalent to any possible refinement of itself.

We have now finished setting up the theoretical framework for the basic definitions of smooth
manifolds, so next we should study some examples.

Example 1.16. The probably easiest example of a smooth manifold is Rn equipped with the
atlas containing the sole chart (id,Rn), where id is the identity map

id = (u1, . . . , un), ui : (p1, . . . , pn) 7→ pi, (1.3)

with domain the whole Rn. It is also immediate that for any U ⊂ Rn open, U equipped with
(id, U) is a smooth manifold.

Definition 1.17. The maps ui, 1 ≤ i ≤ n, in (1.3) are called canonical coordinates on any
open subset U ⊂ Rn.

A similar notation is used for general smooth manifolds.

Definition 1.18. Let M be an n-dimensional smooth manifold and (ϕ,U) be a chart on M .
With the notation

ϕ = (u1 ◦ ϕ, . . . , un ◦ ϕ), ui ◦ ϕ : U → R, 1 ≤ i ≤ n,

the maps xi := ui ◦ ϕ, 1 ≤ i ≤ n, are called local coordinates on M , and ϕ is called local
coordinate system.

Now that we have setup our basic theoretical framework, it is time to look at some non-trivial
examples of smooth manifolds to get a better feeling for what one needs to validate to confirm
that a given space with an atlas is in fact a smooth manifold.

Example 1.19.

(i) Let Sn = {x = (x1, . . . , xn+1) ∈ Rn+1 | ‖x‖ = 1} denote the unit n-sphere, equipped with
the subspace topology. Let p± = (0, . . . , 0,±1) denote the north (+) and south (−) pole.
An atlas on Sn is given by the two charts

σ+ : Sn \ {p+} → Rn, x 7→ x

1− xn+1 ,

σ− : Sn \ {p−} → Rn, x 7→ x

1 + xn+1 .
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The first thing to check is that the two chart cover Sn, which follows from Sn\p+∪Sn\p− =
Sn. Next, we need to check that all transition functions are smooth maps. We find that

σ−1
± =

(
2x

1 + ‖x‖2 ,±
‖x‖2 − 1
1 + ‖x‖2

)
.

Further calculating yields

σ+ ◦ σ−1
− = σ− ◦ σ−1

+ : Rn \ {0} → Rn \ {0}, x 7→ x

‖x‖2
,

meaning that the transition functions coincide and are given by the inversion on the
unit (n− 1)-sphere which is self-inverse and smooth.

Figure 5: A sketch of the stereographic projection on S1.

(ii) The n-dimensional real projective space RPn is defined as the set of lines in Rn+1.
Formally, RPn is the set of equivalence classes

RPn =
{

[x1 : . . . : xn+1]
∣∣∣ x = (x1, . . . , xn+1) ∈ Rn+1 \ {0}

}
,

where [x] = [y] if x = cy for some c ∈ R \ {0}. This precisely means that the non-zero
vectors x and y span the same line. One can check that RPn equipped with the quotient
topology induced by the canonical projection π : Rn+1 \{0} → RPn, x 7→ [x], 3 is Hausdorff
(draw a sketch!) and second countable. An atlas on RPn is given by (ϕi, Ui), 1 ≤ i ≤ n,

ϕi : π
(
Rn+1 \ {xi = 0}

)
→ Rn,

[x1 : . . . : xi−1 : xi : xi+1 : . . . : xn+1] 7→
(
x1

xi
: . . . : x

i−1

xi
: x̂i : x

i+1

xi
: . . . : x

n+1

xi

)
,

where “ ̂ ” means that the element is supposed to be left out so that we end up
with an n-vector. In order to check that the charts cover RPn it suffices to check that

3The term “quotient topology” means that the open sets, in this case of RPn, are defined to be the images of
open sets in the domain of the projection, in this case Rn \ {0}. The notation of the elements in RPn with the “:”
is traditional.
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⋃
1≤i≤n

Rn+1 \ {xi 6= 0} = Rn+1 \ {0}. Next we need to check that all transition functions are

smooth. Observe that the range of each ϕi is Rn for all 1 ≤ i ≤ n, and that for all i 6= j

ϕj
(
π
(
Rn+1 \ {xi = 0}

)
∩ π

(
Rn+1 \ {xj = 0}

))
=
{

Rn \ {xi = 0}, i < j,
Rn \ {xi−1 = 0}, i > j.

Furthermore we have for all 1 ≤ j ≤ n

ϕ−1
j ((x1, . . . , xn)) = [x1 : . . . : xj−1 : 1 : xj : . . . : xn].

Hence we obtain for all i < j

ϕi ◦ ϕ−1
j : Rn \ {xi = 0} → Rn \ {xj−1 = 0},

(x1, . . . , xn+1) 7→
(
x1

xi
, . . . ,

x̂i

xi
, . . . ,

xj−1

xi
,

1
xi
,
xj

xi
, . . . ,

xn

xi

)
,

and for i > j we find a similar formula. We see that all transition functions are indeed
smooth and conclude that RPn with the provided atlas is indeed a smooth manifold. The
local coordinate systems ϕi are called inhomogeneous coordinates on RPn.

Figure 6: A subset U of RP 1 is a set of lines through the origin 0 ∈ R2.

(iii) Let U ⊂ Rn be open and let f : U → R be a smooth map. Then the graph of f ,
graph(f) := {(x, f(x)) | x ∈ U} ⊂ Rn+1 is an n-dimensional smooth manifold with an
atlas consisting of a single chart ϕ : graph(f)→ U , (x, f(x)) 7→ x.

(iv) For a given smooth manifold M with atlas A = {(ϕi, Ui) | i ∈ A}, any open subset U ⊂M
equipped with the restriction of the atlas A to U , A|U := {(ϕi, Ui∩U) | i ∈ A}, is a smooth
manifold.
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Figure 7: A sketch of the graph of a function f : U → R.

An other important class of smooth manifolds are so-called smooth submanifolds of a given
smooth manifold. We will define that concept in full generality later, see Definition 1.58, but
we already know from real analysis what a smooth submanifold of Rn is. Recall the following
theorem from real analysis.

Theorem 1.20 (Implicit Function Theorem (IFT)). Let f : Rn × Rm → Rm, (x, y) 7→ f(x, y),
be a smooth map and assume that f(p) = 0 for a point p = (x0, y0) ∈ Rn ×Rm and furthermore
that the Jacobi matrix of f with respect to y at p,

dyf |p =


df1
dy1 (p) . . . df1

dym (p)
... . . . ...

dfm
dy1 (p) . . . dfm

dym (p)

 ,
is invertible. Then there exists an open set U ⊂ Rn containing x0 and an open set V ⊂ Rm
containing y0, such that there exists a unique smooth map g : U → V fulfilling

f(x, y) = 0, x ∈ U, y ∈ V ⇔ y = g(x).

In particular we have g(x0) = y0.

Definition 1.21. An m < n-dimensional smooth submanifold of Rn is a subset M ⊂ Rn,
such that for all p ∈ M there exists an open set U ⊂ Rn containing p and a smooth map
f : U → Rn−m with Jacobi matrix of maximal rank n−m for all points in U fulfilling

M ∩ U = {x ∈ U | f(x) = 0}. (1.4)

With the help of the implicit function theorem 1.20 it follows that locally up to re-ordering
of coordinates on Rn, any smooth m < n-dimensional submanifold M of Rn can be written as
a graph of a smooth map g : V → Rn−m, V ⊂ Rm open. This in particular implies that, after
possibly reordering the coordinates on Rn, there exists locally near every point p in M a smooth
invertible map with smooth inverse

F : U → Rn, (1.5)
p ∈ U and U ⊂ Rn open, such that

F |U∩M : (x1, . . . , xn) 7→ (x1, . . . , xm, 0, . . . , 0). (1.6)

We call F a locally defining function of M , which is motivated by p ∈ U ∩M if and only if
um+1(F (p)) = . . . = un(F (p)) = 0 after possibly shrinking U .
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Exercise 1.22. Prove the above statements.

Now that we have recalled the definition of smooth submanifolds of Rn, we need to ask
ourselves if it is compatible with our general definition of smooth manifolds, Definition 1.7.

Exercise 1.23. Show that smooth submanifolds of Rn are smooth manifolds. [Hint: Use that
the inclusion map is smooth and construct new local coordinates on the ambient space Rn with
the help of (1.6).]

Note that there are subsets of Rn which are not smooth submanifolds but can still be
equipped with an atlas and, hence, are smooth manifolds.

Exercise 1.24. Show that the boundary of the unit cube [0, 1]n ⊂ Rn is not a smooth sub-
manifold of Rn but can be equipped with a smooth atlas. Find an explicit example of such an
atlas.

Figure 8: A cube.

Yet another way to produce examples of smooth manifolds are products of smooth manifolds.

Lemma 1.25. Let M with atlas A = {(ϕi, Ui) | i ∈ A} be an m-dimensional smooth manifold
and N with atlas B = {(ψi, Vi) | i ∈ B} be an n-dimensional smooth manifold. Then the
Cartesian product of M and N , M ×N , equipped with the product topology and the product
atlas A×B := {(ϕi × ψj , Ui × Vj) | i ∈ A, j ∈ B}, is an (m+ n)-dimensional smooth manifold.

Proof. This follows immediately from the definition of the product maps

ϕi × ψj : Ui × Vj → ϕi(Ui)× ψj(Vj) ⊂ Rm × Rm ∼= Rn+m, (p, q) 7→ (ϕi(p), ψj(q)).

Exercise 1.26. Show that under the additional assumption that A and B are maximal in
Lemma 1.25, the product atlas A×B is not necessarily maximal.

We now know what a smooth manifold is and we have seen some examples and counter-
examples. Next we will define smooth maps between manifolds. In the language of category
theory, these are the the homomorphism in the category of smooth manifolds.

Definition 1.27. Let M and N be smooth manifolds of dimension m = dim(M) and n =
dim(N). A continuous map f : M → N is called smooth if for all charts (ϕ,U) of M , (ψ, V ) of
N , the map

ψ ◦ f ◦ ϕ−1 : ϕ(U ∩ f−1(V ))→ ψ(V ), (1.7)
is a smooth map between open sets in Rn and Rm. By the term “f in local coordinates” we
mean exactly the above formula (1.7) for a choice of charts (ϕ,U) and (ψ, V ).
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Figure 9: A rough sketch of the cylinder S1 × (−1, 1).

Definition 1.28. By C∞(M) we denote the R-vector space of smooth R-valued functions
on a smooth manifold M , that is all smooth maps f : M → R in the sense of Definition 1.27. If
U ⊂M is open, U is by restriction of the atlas of M a smooth manifold itself. By C∞(U) we
denote all smooth functions f : U → R

Exercise 1.29. Show that for U ⊂M open with U 6= M , the restriction map C∞(M)→ C∞(U),
f 7→ f |U , is in general not surjective (find a counterexample). Ask yourself what kind of difficulties
might arise if one wanted to prove that the restriction map for any such U , M , is never surjective.

Example 1.30. An example of smooth functions on open subsets of a smooth manifold M are
the local coordinates xi : U → R of a given chart (ϕ,U), cf. Definition 1.18. This is the reason
why the xi are also called local coordinate functions.

Definition 1.31.

(i) Let M , N be smooth manifolds. A smooth map f : M → N is called a diffeomorphism
if it is invertible and its inverse is smooth.

(ii) Two smooth manifolds M and N are called diffeomorphic if there exists a diffeomorphism
f : M → N .

Remark 1.32. There exist no two diffeomorphic smooth manifolds with different dimensions.
This follows from the fact that every diffeomorphism is automatically a homeomorphism of the
underlying topological spaces and, hence, locally a homeomorphism between open sets in Rm
and Rn. It follows from [Bro] that then m = n.

Exercise 1.33.

(i) Show that S1 and RP 1 are diffeomorphic.

(ii) Let M be a second countable Hausdorff topological space and let A and B be inequivalent
maximal atlases on M . Prove that M equipped with A is not diffeomorphic to M equipped
with B.

1.2 Tangent spaces and differentials

So far we have introduced the “geometric” part of differential geometry in the sense that we
have learned what the objects are that we will be studying, namely smooth manifolds. We have
however not made sense of the “differential” part yet, which is what we will do next.
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Remark 1.34. Recall the definition of tangent vectors in Rn that you know from real analysis.
A tangent vector at a point p ∈ Rn is defined to be an equivalence class of smooth curves through
p, γ : (−ε, ε)→ Rn, γ(0) = p, where

[γ] = [γ̃] :⇔ γ′(0) = γ̃′(0)

Figure 10: Two curves γ, γ̃ with γ(0) = γ̃(0) that are in the same class.

So-defined tangent vectors act on locally near p defined smooth functions f ∈ C∞(U), p ∈ U ,
U ⊂ Rn open, via

[γ]f := d(f ◦ γ)
dt

∣∣∣∣
t=0

(1.8)

which is precisely the directional derivative of f at p in the direction γ′(0). Note that the value of
[γ]f depends, aside from γ′(0), only on the values of f on an arbitrary small open neighbourhood
of p in Rn.

Furthermore recall that a tangent vector [γ] at p is called tangential to a smooth m < n-
dimensional submanifold M of Rn if for any locally defining function F : M ∩ U → Rn, cf.
equations (1.5) and (1.6), we have

dFp · γ′(0) ∈ Rm × {0}.

In the above equation, dFp denotes the Jacobi matrix of F at p and the the statement of the
equation just means that the last n −m entries of dFp · γ′(0) all vanish. Equivalently, [γ] is
tangential to M if it fulfils

dfp · γ′(0) = 0
for a smooth map f : U → Rn−m with Jacobi matrix of maximal rank with M ∩ U = {x ∈
U | f(x) = 0} for some open neighbourhood U ⊂ Rn of p.

The tangent space of Rn at p ∈ Rn is the collection of all tangent vectors at p and isomorphic
to {p} × Rn ∼= Rn. The tangent space of Rn is the disjoint union of the tangent spaces at all
points and is thereby given by R2n ∼= Rn × Rn. An element (p, v) in the tangent space has a
base point p and a direction v which is the tangent vector.

We want to define tangent vectors and the tangent space for general smooth manifolds. The
constructions should coincide (i.e. be isomorphic in some sense to be explained later, cf. Lemma
??) with the above definition when considered for Rn viewed as a smooth manifold. make

Lemma:
J(R,M) ∼=
TM

Definition 1.35. Let M be a smooth manifold. A tangent vector v at p ∈M is a linear map

v : C∞(M)→ R

that fulfils the Leibniz rule4

v(fg) = g(p)v(f) + f(p)v(g)
for all f, g ∈ C∞(M).

4Compare this to the Leibniz rule you know from real analysis!
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The set of tangent vectors at any fixed point p ∈M forms a real vector space:

Definition 1.36. The tangent space at p ∈M ,

TpM := {v : C∞(M)→ R | v tangent vector at p},

is the real vector space of all tangent vectors v at p ∈ M . This means that cv and v + w are
tangent vectors for all c ∈ R, v, w ∈ TpM , with

(cv)(f) = c · v(f), (v + w)(f) = v(f) + w(f),

for all f ∈ C∞(M).

A central property of tangent vectors at p ∈M is that for any f ∈ C∞, v(f) depends only on
the values of f on an arbitrary small open neighbourhood of p. In order to prove this statement
in Proposition 1.42 we will need some technical tools.

Definition 1.37. A smooth partition of unity of a smooth manifold M is a set of smooth
functions on M

{fi : M → [0, 1] | i ∈ I},

where I is an index set (e.g. N or R), such that for all x ∈M∑
i∈I

fi(x) = 1.

A smooth partition of unity is called locally finite if

{i ∈ I | fi(x) 6= 0}

is finite for all x ∈ M . If {Ui ⊂ M | i ∈ I} is an open cover of M and supp(fi) =
{x ∈M | fi(x) 6= 0} fulfils

supp(fi) ⊂ Ui
for all i ∈ I, then the smooth partition of unity is called subordinate to the open cover
{Ui ⊂M | i ∈ I}.

Proposition 1.38. Let M be a smooth manifold and {Ui, i ∈ I} an open cover of M . Then
there exists a locally finite countable partition of unity on M subordinate to the open cover
{Ui, i ∈ I}.

Proof. Exercise. [Hint: You might use your knowledge from real analysis and assume that
the statement of this proposition is true for M = Rn, n ≥ 1. Also recall the existence of a
countable atlas on any given manifold that is equivalent to the defining maximal atlas, see
Exercise 1.13.]

Definition 1.39. Let M be a smooth manifold and U ⊂M open. Let V be a subset of M with
non-empty interior that is compactly embedded in U . Then a bump function with respect to
the given data is a compactly supported smooth function b ∈ C∞(M), such that

b|V ≡ 1, supp(b) ⊂ U. (1.9)

Proposition 1.40. Let M , U , V be as in Definition 1.39 arbitrary but fixed. Then there exists
a bump function b fulfilling (1.9).
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Figure 11: A bump function b w.r.t. V and U .

Proof. We know from real analysis that this statement is true for M = Rn. By using Proposition
1.38 it follows for arbitrary smooth manifolds as well.

Exercise 1.41.

(i) Fill in the details of the proof of Proposition 1.40.

(ii) Let U ⊂M be any open subset of a smooth manifold M , V ⊂ U a compactly embedded
set with non-empty interior, and b ∈ C∞(M) a bump function with respect to this data.
Let F : U → Rn, n ≥ 1, be a smooth map. Show that

bF : M → Rn, (bF )(p) = b(p)F (p) ∀p ∈ U, (bF )(p) = 0 ∀p ∈M \ U

is smooth (the above globally on M defined map is called the trivial extension of
bF : U → Rn to M).

Now that we can use the existence of bump functions on smooth manifolds, we can continue
our study of tangent vectors.

Proposition 1.42. Let v ∈ TpM be any tangent vector.

(i) Let f, g ∈ C∞(M) and assume that for som open neighbourhood U ⊂ M of p ∈ M ,
f |U = g|U . Then v(f) = v(g).

(ii) Let f ∈ C∞(M) be a smooth function that is locally constant near p ∈M , meaning that
there exists an open neighbourhood U ⊂M of p, such that f |U ≡ c for some c ∈ R. Then
v(f) = 0.

Proof. By the linearity of tangent vectors we have v(f) = v(g) if and only if v(f − g) = 0. Thus,
in order to prove (i) it suffices to show that if v(f) = 0 for some f ∈ C∞(M) then f must
already vanish near p, meaning that f |U ≡ 0 for some open neighbourhood U ⊂ M of p. Let
V ⊂ U be open and compactly embedded in U with p ∈ V and fix a bump function b ∈ C∞(M),
such that

b|V ≡ 1, supp(b) ⊂ U.

Then bf ≡ 0 on M . By using the Leibniz rule for tangent vectors and v(0) = 0 by the linearity
of v we obtain

0 = v(0) = v(bf) = f(p)v(b) + b(p)v(f) = 0 + v(f).

Hence, v(f) = 0 as claimed.
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We can now use (i) and find that for any locally constant function f |U ≡ c for some open
neighbourhood U ⊂M of p, the value of v(f) is the same as v(c), where we view c ∈ R as the
constant function on M with value c. We calculate

v(f) = v(c) = cv(1) = cv(1 · 1) = c(1 · v(1) + 1 · v(1)) = 2cv(1) = 2v(f).

This shows that v(f) = 0.

Remark 1.43. Proposition 1.42 shows that the action of tangent vectors at a point only depends
on the local form of the functions near that point. This is sometimes phrased as “tangent vectors
are local objects” and allows us to define the action of tangent vectors on functions that are
only defined locally. Let v ∈ TpM , U ⊂ M an open neighbourhood of p, and let f ∈ C∞(U).
Since the the action of v on globally defined functions only depends on their behaviour near p, it
is reasonable to define

v : f 7→ v(bf),
for any bump function b with p contained in the interior of its support, so that supp(b) ⊂ U
and such that there exists V ⊂ U compactly embedded with nonempty interior fulfilling p ∈ V ,
V ⊂ supp(b), and b|V ≡ 1. Note that v(bf) does not depend on the choice of such a bump
function b. On the other hand, any open subset U ⊂M is a smooth manifold itself by restricting
any atlas on M . This means that for any p ∈ U , the tangent space TpU is well-defined. For any
ṽ ∈ TpU , we can define its action on C∞(M) by

ṽ(f) := ṽ(f |U ).

By Proposition 1.42 we know that ṽ(f) does in fact only depend on the behaviour of f on any
open neighbourhood of p in U , which is then automatically an open neighbourhood of p in M .
This means that we can canonically identify TpM and TpU for all U ⊂M open and all p ∈ U .
From now on we will simply write v(f) for v ∈ TpM and f ∈ C∞(U) any locally defined smooth
function with p ∈ U .

The above motivates a slightly different definition of tangent vectors in TpM as linear maps
on the germ of smooth functions at p ∈M

Fp := {f ∈ C∞(U) | p ∈ U, U ⊂M open}/∼

where f ∼ g if and only if there exists U ∈M open and contained in the domain of definition
of both f and g, such that f |U = g|U . The notion of a germ comes from sheaf theory. For an
introduction see [Bre]. One can show that Fp is an R-algebra and then define tangent vectors
v ∈ TpM as linear maps

v : Fp → R

fulfilling the Leibniz rule v([f ][g]) = g(p)v([f ]) + f(p)v([g]). This definition is equivalent to our
definition with the same reasoning as for why TpM and TpU for U ⊂M open can be identified.
This approach is used in [G].

While we have explained how a tangent vector should behave and have seen that it depends
only on the local behaviour of functions, we do not yet have a convenient way to write down
actual examples of tangent vectors. For that we introduce specific tangent vectors that generalize
partial derivatives we know from real analysis to smooth manifolds in any given local coordinate
system.

Definition 1.44. Let ϕ = (x1, . . . , xn) be a local coordinate system on a smooth manifold M .
The tangent vector ∂

∂xi

∣∣∣
p
∈ TpM is defined as

∂

∂xi

∣∣∣∣
p

(f) := ∂f

∂xi
(p) := ∂(f ◦ ϕ−1)

∂ui
(ϕ(p))
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for all f ∈ C∞(M).

Lemma 1.45. ∂
∂xi

∣∣∣
p

is a well-defined tangent vector.

Proof. Linearity follows from the fact that partial derivatives in Rn are linear with respect to
scalar multiplication. For the Leibniz rule we recall that partial differentiation in Rn fulfils the
Leibniz rule and calculate for any two f, g ∈ C∞(M)

∂(f · g)
∂xi

(p) = ∂((f · g) ◦ ϕ−1)
∂ui

(ϕ(p)) = ∂((f ◦ ϕ−1) · (g ◦ ϕ−1))
∂ui

(ϕ(p))

= g(p)∂(f ◦ ϕ−1)
∂ui

(ϕ(p)) + f(p)∂(g ◦ ϕ−1)
∂ui

(ϕ(p)) = g(p) ∂f
∂xi

(p) + f(p) ∂g
∂xi

(p).

Important examples of ∂
∂xi

∣∣∣
p

acting on smooth function are derivatives of coordinate functions.

Example 1.46. Let ϕ = (x1, . . . , xn) be a local coordinate system on a smooth manifold M
covering p ∈M . Then

∂xj

∂xi
(p) = δji

for all 1 ≤ i ≤ n, 1 ≤ j ≤ n. This follows from (xj ◦ ϕ−1)(u1, . . . , un) = uj .

Using Definition 1.44 we can write down any tangent vector v ∈ TpM in a fixed local
coordinate system (ϕ,U) with p ∈ U as a linear combinations of the ∂

∂xi

∣∣∣
p
’s.

Proposition 1.47. For all p ∈M and any local chart (ϕ = (x1, . . . , xn), U) with p ∈ U , the set
of tangent vectors

{
∂
∂xi

∣∣∣
p
, 1 ≤ i ≤ n

}
is basis of TpM .

Figure 12: The tangent space TpM at p ∈M is the linear span of the ∂
∂xi

∣∣
p
’s.

Proof. First we show that the set of the ∂
∂xi

∣∣∣
p
’s is a linearly independent set of tangent vectors

at p. Suppose that there exists (c1, . . . , cn) ∈ Rn 6= 0, such that

v0 :=
n∑
i=1

ci
∂

∂xi

∣∣∣∣
p
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vanishes identically as a linear map v0 : C∞(M)→ R. By assumption there exists at least one
1 ≤ j ≤ n, such that cj 6= 0. But then

v0(xj) = cj 6= 0

which is a contradiction to v0 = 0.
Next we need to show that every tangent vector TpM can be written as a linear combination

of the ∂
∂xi

∣∣∣
p
’s. Assume without loss of generality that ϕ(U) = Br(0) for some r > 0 with

ϕ(p) = 0, that is the Euclidean unit ball at the origin with radius r. This can always be achieved
by shrinking U and translating ϕ(U) if necessary. For any smooth function g on ϕ(U) it follows
from the fundamental theorem of calculus5 that with

gi(q) :=
1∫

0

∂g

∂ui
(tq) dt

for all q ∈ ϕ(U) we have

g = g(0) +
n∑
i=1

giu
i

on ϕ(U). In particular, we obtain for any f ∈ C∞(U) with g = f ◦ ϕ−1

f = g ◦ ϕ = f(p) +
n∑
i=1

fix
i

where fi = gi ◦ϕ. By acting with the tangent vector ∂
∂xi

∣∣∣
p
, 1 ≤ i ≤ n, on both sides of the above

equation we obtain6

fi(p) = ∂f

∂xi
(p).

Hence, we get using xi(p) = 0 for 1 ≤ i ≤ n for v ∈ TpM fixed

v(f) = 0 +
n∑
i=1

(
v(fi)xi(p) + fi(p)v(xi)

)
=

n∑
i=1

∂f

∂xi
(p)v(xi).

Since f was arbitrary this shows that the tangent vectors v and
n∑
i=1

v(xi) ∂
∂xi

∣∣∣
p

coincide. Hence, v
can be written as a linear combination of the proposed basis vectors. This finishes the proof.

Corollary 1.48. The dimensions of a smooth manifold M and its tangent space TpM coincide
for all p ∈M .

Example 1.49. As an example how the coordinate tangent vectors ∂
∂xi

∣∣∣
p

change for different
coordinates consider the following example. Let f ∈ C∞(M) be any smooth function and
(x1, . . . , xn) be local coordinates covering p ∈M . Then (y1, . . . , yn) := (2x1, x2, . . . , xn) are also
local coordinates covering p. The vectors ∂

∂xi

∣∣∣
p

and ∂
∂yi

∣∣∣
p

coincide for 2 ≤ i ≤ n, but for i = 1
we have

∂

∂x1

∣∣∣∣
p

= 2 ∂

∂y1

∣∣∣∣
p

.

See Figure 13 for a sketch of this example.

5If you do not see this, apply the fundamental theorem of calculus to t 7→ g(tq) for q ∈ ϕ(U) fixed.
6Verifying this is a good exercise.
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Figure 13: The lines in M , respectively the images of the charts, are supposed to be level sets of f .

We now know the properties of tangent vectors and how they can be written locally, meaning
that we can now properly calculate with them in fixed local coordinates. This allows us to define
an analogue of the Jacobi matrix for smooth manifolds.

Definition 1.50. Let M be a smooth manifold of dimension m and N be a smooth manifold of
dimension n.

(i) The differential at a point p ∈ M of a smooth function f ∈ C∞(M) is defined as
the linear map

dfp : TpM → R, v 7→ v(f).

In a given local coordinate system ϕ = (x1, . . . , xm) on M that covers p, dfp is of the form

dfp : ∂

∂xi

∣∣∣∣
p
7→ ∂f

∂xi
(p).

(ii) The differential at a point p ∈ M of a smooth map F : M → N in given local
coordinate systems ϕ = (x1, . . . , xm) on M and ψ = (y1, . . . , yn) on N covering p ∈M and
F (p) ∈ N , respectively, is defined as the linear map

dFp : TpM → TF (p)N,
∂

∂xi

∣∣∣∣
p
7→

n∑
j=1

∂F j

∂xi
(p) ∂

∂yj

∣∣∣∣
F (p)

,

where we have used the notation
F j := yj ◦ F.
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The rank of F at p is the rank of the linear map dFp : TpM → TF (p)N , which coincides
with the rank of the Jacobi matrix of F at p in the local coordinate systems ϕ, ψ,(

∂F j

∂xi
(p)
)
ji

∈ Mat(n×m,R).

In the above equation, j is the row and i is the column of the matrix.

Figure 14: Sketch of the differential at p ∈M of a smooth map F : M → N .

Example 1.51. Let ϕ = (x1, . . . , xn) be a local coordinate system on a smooth manifold M
covering p ∈M . Then dϕp : TpM → Tϕ(p)Rn ∼= Rn is of the form

dϕp = (dx1, . . . , dxn)p = (dx1
p, . . . , dx

n
p ), dxjp

(
∂

∂xi

∣∣∣∣
p

)
= δji ∀1 ≤ i, j ≤ n.

We will usually omit the base point and simply write dxi := dxip if it is clear from either the
context or the tangent vector’s base point that dxi acts on.

Remark 1.52. Note that Definition 1.50 (i) is a special case of (ii) (using the canonical
coordinate u1 on R).

Similar to real analysis, the differential of smooth maps between smooth manifolds fulfils the
following chain rule.

Lemma 1.53. Let M,N,P be smooth manifolds and F : M → N , G : N → P , smooth maps.
Then

d(G ◦ F )p = dGF (p) ◦ dFp
for all p ∈M .

Proof. For any v ∈ TpM and f ∈ C∞(P ) we have

d(G ◦ F )p(v)(f) = v(f ◦G ◦ F ) = dFp(v)(f ◦G) = dGF (p)(dFp(v))(f).

Definition 1.54.

(i) A smooth map between smooth manifolds F : M → N is called an immersion if
dFp : TpM → TF (p)N is injective for all p ∈M .

(ii) F : M → N is called a submersion if dFp : TpM → TF (p)N is surjective for all p ∈M .
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(iii) An immersion F : M → N is called an embedding if F is injective and an homeomorphism
onto its image F (M) ⊂ N equipped with the subspace topology.

(iv) A smooth map F : M → N between smooth manifolds of the same dimension is called a
local diffeomorphism if for all p ∈M there exists an open neighbourhood of p, U ⊂M ,
such that F |U : U → N is a diffeomorphism onto its image.

Figure 15: An immersion, an embedding, and a submersion. Which is which?

Suppose that we are given a smooth map F : M → N , dim(M) = dim(N), and want to
check if it is a local diffeomorphism. At first this sounds fairly complicated, but luckily we can
use the following result.

Theorem 1.55. Let F : M → N be a smooth map between two smooth manifolds of the same
dimension n and let p ∈M be arbitrary. Then dFp : TpM → TF (p)N is a linear isomorphism if
and only if there exists an open neighbourhood U ⊂M of p, such that F |U is a diffeomorphism
onto its image.

Proof. Let (ϕ,U) and (ψ, V ) be local charts covering p ∈M and F (p) ∈ N , respectively. Observe
that, by definition, dFp is a linear isomorphism if any only if its Jacobi matrix in any given local
coordinates is invertible. On the other hand, there exists an open neighbourhood U ⊂M of p,
such that F |U is a diffeomorphism onto its image if and only if there exist open sets U ′, V ′ ⊂ Rn
with ϕ(p) ∈ U ′, ψ(F (p)) ∈ V ′, such that

ψ ◦ F ◦ ϕ−1 : U ′ → V ′

is a diffeomorphism. We can without loss of generality assume that ϕ(U) = U ′ and ψ(V ) = V ′.
Hence, the “⇒”-direction of the statement of this theorem follows from the inverse function
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theorem7. The “⇐”-direction follows from the fact that invertible smooth maps with smooth
inverse in the real analysis setting have pointwise invertible Jacobi matrix.

Corollary 1.56. F : M → N is a local diffeomorphism if and only if dFp is a linear isomorphism
for all p ∈M .

Exercise 1.57.

(i) Find explicit examples of an immersion that is not injective, and an injective immersion
that is not an embedding.

(ii) Show that for all n ∈ N, the map

π : Sn → RPn, (x1, . . . , xn+1) 7→ [x1 : . . . : xn+1],

is a local diffeomorphism but not a diffeomorphism. In the above equation we view Sn as
a subset of Rn+1.

1.3 Submanifolds

We already know what a smooth submanifold of Rn is. Using Definition 1.54 we can now define
what a smooth submanifold in our more general setting should be.

Definition 1.58. Let N be an n-dimensional and M be an m-dimensional smooth manifold.
Let further F : M → N be a smooth map.

(i) F (M) ⊂ N is called an embedded smooth submanifold if F is an embedding.

(ii) In the special case that F is the inclusion map ι : M ↪→ N , we will say that M ⊂ N is a
smooth submanifold if the inclusion is an embedding.

(iii) If M ⊂ N is a smooth submanifold, the number dim(N)− dim(M) is called the codimen-
sion of M in N . Smooth submanifolds of codimension 1 are called hypersurfaces.

We will mainly be concerned with smooth submanifolds that are given as subsets of the
ambient manifold. The first thing one should ask is how to obtain a the structure of a smooth
manifold on a submanifold and if it coincides with the initial manifold structure.

Proposition 1.59. Let M ⊂ N , dim(M) = m < n = dim(N), be a smooth submanifold and
let p ∈M be arbitrary. Then there exists a chart8 (ϕ = (x1, . . . , xn), U) on N , such that U ∩M
is an open neighbourhood of p in M and

xm+1(q) = . . . = xn(q) = 0

for all q ∈ U ∩M . The first m entries of ϕ are a local coordinate system on M near p.

Proof. Fix p ∈M ⊂ N and choose local coordinates (x1, . . . , xn) on N and (y1, . . . , ym) on M
covering p. Since M is a submanifold of N , the differential of the inclusion map ι : M → N at p,
dιp, is injective and its Jacobi matrix(

∂xi

∂yj
(p)
)
ij

∈ Mat(n×m,R)

7Which, in turn, follows from the implicit function theorem. Note, however, that one usually proves the implicit
function theorem using the inverse function theorem, see e.g. [R]

8This means that this chart is compatible with the given maximal atlas on N .
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has rank m. After possibly reordering the xi-coordinate functions, we can assume without
loss of generality that its first m rows are linearly independent. By the implicit function
theorem this means that the first m coordinate functions on N form, by restriction, a coordinate
system on an open set V ⊂ M containing p. Furthermore, after possibly shrinking V , we
obtain again by the implicit function theorem that (q1, . . . , qn) ∈ ι(V ) ⊂ N if and only if
xk(q) = fk(x1(q), . . . , xm(q)) for uniquely defined smooth functions fk : (x1, . . . , xm)(V )→ R
for all m+ 1 ≤ k ≤ n. Choose an open subset U ⊂ N , so that the local coordinates (x1, . . . , xn)
are defined on V , U ∩N = V , and define on U smooth functions

F k := xk − fk(x1, . . . , xm), m+ 1 ≤ k ≤ n.

In the last step we will define new coordinates on N fulfilling the statement of this proposition
as follows. Define

ϕ : U → Rn, ϕ = (x1, . . . , xm, Fm+1, . . . , Fn).

The Jacobi matrix of ϕ at p with respect to the coordinates (x1, . . . , xn) is of the form(
idRm 0
A idRn−m

)

for some real-valued matrix A ∈ Mat((n−m)×m,R). The above Jacobi matrix is in particular
invertible, showing that ϕ is a local diffeomorphism. Furthermore

ϕ|U∩M = ϕ|V = (x1|V , . . . , xm|V , 0, . . . , 0).

Hence, the first m entries of the restriction of ϕ to V form a local coordinate system on M near
p and thereby fulfil the claims of this proposition.

Definition 1.60. Local coordinates as in Proposition 1.59 for a submanifold M ⊂ N near a
given point p ∈M are called adapted coordinates.

An important consequence of Proposition 1.59 is that the smooth structure of a manifold
that can be realized as a smooth submanifold coincides with the smooth structure obtained by
adapted coordinates.

Corollary 1.61. Any smooth manifold M that can be realized as a submanifold of some ambient
manifold N is diffeomorphic to M , viewed as a topological subspace of N , equipped with any
atlas consisting only of adapted coordinates.

Note that adapted coordinates relate the definition of smooth submanifolds of Rn to the more
general Definition 1.58, cf. equation (1.6). Furthermore observe that Corollary 1.61 also means
that if we can cover a topological subspace9 of M by adapted coordinates it will automatically
be a submanifold of M . For a more detailed explanation of the latter see [L2, Thm. 5.8]. One
way to construct explicit examples of submanifolds is via pre-images of regular values of smooth
maps between smooth manifolds.

Definition 1.62. Let M and N be smooth manifolds and let F : M → N be a smooth map. A
point p ∈M is called regular point of F if dFp : TpM → TF (p)N is surjective. A point q ∈ N ,
such that F−1(q) ⊂M consists only of regular points, is called regular value of F . Points in
M that are not regular points of F are called critical points of F , and points in N such that
the pre-image under F in M contains at least one critical point of F are called critical values
of F .

9Careful, it needs to be second countable and Hausdorff.
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Note that for a smooth map F : M → N to have regular values it is a necessary condition
that dim(M) ≥ dim(N).

Proposition 1.63. Let M and N be smooth manifolds with dim(M) = m ≥ n = dim(N). Let
F : M → N be smooth and let q ∈ N be a regular value of F . Then the level set

F−1(q) ⊂M

is an (m− n)-dimensional smooth submanifold of M . The structure of a smooth manifold on
F−1(q) is uniquely determined by requiring that the inclusion is smooth.

For the proof of the above proposition we need the following definition and two theorems, cf.
[L2, Thm. 4.12, Thm. 5.12].

Definition 1.64. Let F : M → N be a smooth map between smooth manifolds and let
(ϕ,U) and (ψ, V ) be local charts of M and N , respectively, such that F (U) ⊂ V . Let further
dim(M) = m and dim(N) = n. The coordinate representation of F in the local coordinate
systems ϕ and ψ is defined to be the smooth map

F̂ : ϕ(U)→ ϕ(V ), F̂ (u1, . . . , um) := (ψ ◦ F ◦ ϕ−1)(u1, . . . , um).

Theorem 1.65. Let M be an m-dimensional and N be an n-dimensional smooth manifold. Let
F : M → N be a smooth map of constant rank r. Then for each p ∈M there exist local charts
(ϕ,U) of M with p ∈ U and (ψ, V ) of N with F (p) ∈ V , such that F (U) ⊂ V and that the
coordinate representation of F is of the form

F̂ (u1, . . . , ur, ur+1, . . . , um) = (u1, . . . , ur, 0, . . . , 0).

Proof. For a detailed proof see [L2, Thm. 4.12]. The case r = 0 is left as an exercise. Assume
that r ≥ 1. The proof works as follows. For p ∈M fixed we choose local coordinates M covering
p and of N covering F (p). Since the statement of this theorem is local, by switching to local
coordinates we find that in order to prove it it suffices to consider the special case M ⊂ Rm
open and N ⊂ Rn open. This shows that this theorem is equivalent to the rank theorem known
from real analysis, see (in a slightly different formulation) [R, Thm. 9.32].

Theorem 1.66. Let M and N be smooth manifolds and let F : M → N be a smooth map of
constant rank r. Each level set F−1(q) ⊂M , q ∈ N , is a smooth submanifold of codimension r
in M .

Proof. Let q ∈ N and p ∈ F−1(q) be fixed. Using Theorem 1.65 we chose charts (ϕ =
(x1, . . . , xm), U) of M with p ∈ U and (ψ, V ) of N with q ∈ V fulfilling ϕ(p) = 0 and ψ(q) = 0,
such that the coordinate representation F̂ of F is of the form

F̂ : ϕ(U)→ ϕ(V ), F̂ (u1, . . . , ur, ur+1, . . . , um) = (u1, . . . , ur, 0, . . . , 0).

Then (ψ ◦ F )(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0) and, hence,

F−1(q) ∩ U = {p ∈ U | x1(p) = . . . = xr(p) = 0}.

We see that such a coordinate choice, up to reordering of the coordinate functions, on M yields
adapted coordinates on F−1(q)∩U . Since the rank of F is constant we can cover F−1(q) with so
constructed adapted coordinates and obtain that it is, in fact, a smooth submanifold of M .

Lastly we will need the following fact.
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Proposition 1.67. Let M and N be smooth manifolds and let F : M → N be a smooth map.
Suppose that p ∈M is a regular point of F . Then there exists an open neighbourhood U ⊂M
of p, such that all points in U are regular points of F . In particular this means that the set of
regular points of F is open in M .

Proof. Exercise. [Hint: Use local coordinates to reduce the proof to the case M ⊂ Rm open and
N ⊂ Rn open.]

Proof of Proposition 1.63. Let F : M → N be smooth and q ∈ N a regular value of F . By
Proposition 1.67 the set

reg(F ) := {p ∈M | p regular point of F}

is open in M and thereby a smooth submanifold of M . We further have F−1(q) ⊂ reg(F ). The
restriction of F to reg(F ),

F |reg(F ) : reg(F )→ N,

is by Definitions 1.54 and 1.62 a submersion and thereby of constant rank equal to dim(N).
Using Theorem 1.66 it follows that F−1(q) ⊂ reg(F ) is a smooth submanifold. Since the
composition of the inclusions F−1(q) ⊂ reg(F ) and reg(F ) ⊂M is still the inclusion and thereby
in particular still a smooth embedding it follows that F−1(q) ⊂ M is a smooth submanifold.
Since reg(F ) ⊂M is open it follows with Theorem 1.66 that dim(F−1(q)) = m− n.

1.4 Vector bundles and sections

At this point, we understand what tangent vectors at a specific given point are. The next step is
to study vector fields, that is maps that assign to points in a smooth manifold tangent vectors
in the respective tangent spaces. In the general setting of smooth manifold these objects are
more involved than in the case we know from real analysis.

Remark 1.68. Recall that a smooth vector field on Rn is a smooth vector valued function

X : Rn → Rn, p 7→ Xp.

We think of points (p,Xp) ∈ Rn × Rn as tangent vectors Xp with basepoint p. An example of a
smooth vector field on Rn is the position vector field X : p 7→ p for all p ∈ Rn. Observe that
vector fields on Rn, similar to tangent vectors, act on functions via

X(f) : Rn → R, p 7→ [γ]f,

where γ : (−ε, ε)→ Rn is any smooth curve, such that

γ(0) = p, γ′(0) = X(p),

cf. equation (1.8). Note that for any smooth vector field X on Rn and any f ∈ C∞(Rn),
X(f) ∈ C∞(Rn). One might also write X(f) = df(X) : p 7→ dfp(Xp).

Definition 1.69. A vector bundle E → M of rank k ∈ N over a smooth manifold M is a
smooth manifold E together with a smooth projection map π : E →M , such that

(i) the fibre Ep := π−1(p) is an k-dimensional real vector space for all p ∈M ,
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(ii) for all p ∈ M there exists an open neighbourhood U ⊂ M of p and a diffeomorphism
ψ : π−1(U)→ U × Rk, such that ψ|Eq : Eq → q × Rk ∼= Rk is a linear isomorphism for all
q ∈ U and the diagram

π−1(U) U × Rk

U

π

ψ

prU

commutes. The map prU denotes the canonical projection onto the first factor.

E is called the total space, M is called the basis, and the map ψ is called a local trivialization
of the vector bundle E →M .

Figure 16: Locally, E|U ∼= U × Rk.

Vector bundles provide the setting for an analogue to vector valued functions on smooth
manifolds.

Definition 1.70. Let E → M be a vector bundle. A local section in E → M is a smooth
map

s : U → E

with U ⊂ M open, such that π ◦ s = idU . This precisely means that s(p) ∈ Ep for all p ∈ U .
If U = M , s is called a (global) section. The set of local sections in E → M on U ⊂ M is
denoted by Γ(E|U ) and the set of global sections by Γ(E), where E|U denotes the vector bundle
π−1(U) → U . The support of a section (or, analogously, local section) in a vector bundle
s ∈ Γ(E) is defined to be the set

supp(s) := {p ∈M | s(p) 6= 0}.
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Figure 17: A sketch of a section.

Exercise 1.71.
(i) Show that Γ(E) is a C∞(M)-module. Also show that Γ(E|U ) is a C∞(U)-module for all

U ⊂M open.

(ii) Show that for k > 0 the restriction map Γ(E)→ Γ(E|U ) for U ⊂M open and precompact,
such that the boundary of U , ∂U , is nonempty and a smooth hypersurface in M , is not
surjective.

Definition 1.72. Let ψ : π−1(U)→ U×Rk and φ : π−1(V )→ V ×Rk be two local trivializations
of a vector bundle E →M . Assume that U ∩ V 6= ∅. Then the smooth map

ψ ◦ φ−1 : (U ∩ V )× Rk → (U ∩ V )× Rk

is called transition function10. For p ∈M fixed, (ψ ◦φ−1)(p, ·) is called transition function
at p.

Figure 18: How a transition function w.r.t. (ψU , U) and (ψV , V ) from the overlap of V × Rk and U × Rk to
itself can be imagined.

Lemma 1.73. Transition functions ψ ◦ φ−1 as in Definition 1.72 are of the form

ψ ◦ φ−1 : (p, v) 7→ (p,A(p)v), A(p) ∈ GL(k),

for all p ∈ U ∩ V , v ∈ Rn. The map

A : U ∩ V → GL(k), p 7→ A(p),

is smooth.
10Note that a change of coordinates in a smooth manifold is also called a transition function. Always make sure

to clarify which kind of transition functions you are dealing with.
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Proof. The diagram

U ∩ V × Rk π−1(U ∩ V ) U ∩ V × Rk

U ∩ V

φ−1

prU∩V
π

ψ

prU∩V

commutes and, hence, it follows that ψ ◦φ−1 sends (p, v) to (p,A(p, v)) for some smooth function
A : U ∩ V × Rk → Rk. Smoothness follows from the diffeomorphism property of φ and ψ. We
need to show that for p fixed, A(p, ·) : Rk → Rk is an invertible linear map. This follows from
the fact that fibrewise φ and ψ are linear isomorphisms.

An important tool to construct vector bundles is from, heuristically speaking, a given set
transition functions.

Proposition 1.74 (“Vector bundle chart lemma”). Let M be a smooth manifold and assume
that for every p ∈M , Ep is a real vector space of fixed dimension k. Define a set

E :=
⊔
p∈M

Ep

together with a map π : E →M , π(v) = p for all v ∈ Ep and all p ∈M . Assume that {Ui, i ∈ I}
is an open cover of M and for each i ∈ I,

φi : π−1(Ui)→ Ui × Rk

is a bijection with the property that the restriction φi : Ep → {p} × Rk ∼= Rk is a linear
isomorphism for all p ∈ Ui. Further assume that for all i, j ∈ I with Ui ∩ Uj 6= ∅ there exists a
smooth map τij : Ui ∩ Uj → GL(k), such that φi ◦ φ−1

j : (Ui ∩ Uj)× Rk → (Ui ∩ Uj)× Rk is of
the form

φi ◦ φ−1
j (p, v) = (p, τij(p)v).

Then there exists a unique topology and maximal atlas on E, such that π : E →M is a vector
bundle of rank k and the φi, i ∈ I, are local trivializations.

Proof. The proof follows [L2, Lem. 10.6]. Without loss of generality assume that we can find an
atlas {(ϕi, Ui) | i ∈ I} on M . This can always be achieved by shrinking the Ui if necessary and,
on possible new overlaps Ui ∩Uj , set τij = idRk . Now we can explicitly construct an atlas on the
total space E. Define for i ∈ I

ψi : π−1(Ui)→ ϕi(Ui)× Rk, v 7→ (ϕi × idRk)(φi(v)).

In order for {(ψi, π−1(Ui)) | i ∈ I} to be a smooth atlas on E, we need to show that the transition
functions (as in transition functions of a smooth atlas, cf. Definition 1.5) are smooth. We check
that

ψi(π−1(Ui) ∩ π−1(Uj)) = ϕi(Ui ∩ Uj)× Rk

for all i, j ∈ I, and we find

ψi ◦ ψ−1
j = (ϕi × idRk) ◦ (φi ◦ φ−1

j ) ◦ (ϕ−1
j × idRk) : ϕj(Ui ∩ Uj)× Rk → ϕi(Ui ∩ Uj)× Rk.

Since, by assumption, τij(p) is invertible and depends smoothly on p ∈ Ui ∩ Uj , φi ◦ φ−1
j is a

diffeomorphism for all i, j ∈ I such that Ui ∩ Uj 6= ∅. Since the ϕi form a smooth atlas on M ,
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each ϕi × idRk is a diffeomorphism. Hence, ψi ◦ ψ−1
j : ϕj(Ui ∩ Uj)× Rk → ϕi(Ui ∩ Uj)× Rk is

also a diffeomorphism for all i, j ∈ I such that Ui ∩ Uj 6= ∅. By defining the open sets on E as
the preimages of open sets under ψi, i ∈ I, we obtain that the so-defined topology is second
countable and Hausdorff by the assumption that M is a smooth manifold (and Rk is, of course,
second countable and Hausdorff as well). It follows that B := {(ψi, π−1(Ui)) | i ∈ I} is a smooth
atlas on the total space E. Then all the maps φi, i ∈ I, are automatically smooth and, since
φi : Ep → {p}×Rk is a linear isomorphism by assumption, form a covering of local trivializations
which turns E → M into a vector bundle of rank k. The uniqueness of the smooth manifold
structure on E now follows from the assumption that all φi are diffeomorphisms onto their image
and, thus, every smooth atlas on E with that property must, by construction, be a refinement
of B and thus be contained in the same maximal smooth atlas as B.

Now we have all the tools at hand that we need to define the tangent bundle of a smooth
manifold.

Definition 1.75. Let M be an n-dimensional smooth manifold. The tangent bundle11

TM →M of M is a vector bundle of rank n with total space TM :=
⊔
p∈M

TpM and projection

π(v) = p for all v ∈ TpM .

At this point, however, we still need to explain the structure of a smooth manifold on the
total space of the tangent bundle TM and we need to show that it actually is a vector bundle.

Proposition 1.76. The tangent bundle TM of any given manifold is, in fact, a vector bundle
of rank n.

Proof. We need to explain the topology on TM , find an atlas, and show that we can locally
trivialize it as a vector bundle. Fix a countable atlas (cf. Exercise 1.13)

A = {(ϕi = (x1
i , . . . , x

n
i ), Ui) | i ∈ A}

on M . Since π is assumed to be smooth and hence continuous, the pre-images {π−1(Ui) | i ∈ A}
form an open cover of TM . Taking pre-images under π of a basis of the topology on M is not
sufficient to explain the topology on TM . For i ∈ A consider the maps

ψi : π−1(Ui)→ ϕi(Ui)× Rn,
ψi : v 7→ (ϕi(π(v)), v(x1

i ), . . . , v(xni )) = (ϕi(π(v)), dϕi(v)), (1.10)

and observe that each ψi is a bijection. We can think of the above maps as candidates for a
local trivialization that, via a chart on the manifold M itself, has its target space changed as in
in the following diagram

π−1(Ui)

Ui × Rn

ϕi(Ui)× Rn

ψi

ϕi×idRn

(1.11)

We define a basis of the topology on TM as

{ψ−1
i (V ) | i ∈ A, V ⊂ ϕi(Ui)× Rn open}

11Also simply called tangent space, without the “at p” part.
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which is precisely the coarsest topology on TM , such that all maps ψi, i ∈ A, are homeomorphisms.
Since A is a countable set and the topology in each Ui has a countable basis, it follows that
the so-defined topology on TM is countable. To see that it is also Hausdorff, consider for
p 6= q ∈ TM the points ψi(p) and ψj(q) for fitting i, j ∈ A. If Ui ∩Uj = ∅, we can separate p and
q by π−1(Ui) and π−1(Uj). For Ui ∩ Uj 6= ∅, observe that each space ϕi(Ui)× Rn is Hausdorff
and we can thus find open neighbourhoods of ψi(p) and ψj(q) in ϕi(Ui ∩ Uj)×Rn that separate
these points. The pre-images under ψi of these sets will then separate p and q. Next consider
the transition functions (thought of as change of coordinates) of the ψi’s. For Ui ∩ Uj 6= ∅ we
have (recall Example 1.51)

ψi ◦ ψ−1
j : ϕj(Ui ∩ Uj)× Rn → ϕi(Ui ∩ Uj)× Rn,

(u,w) 7→ ((ϕi ◦ ϕ−1
j )(u), d(ϕi ◦ ϕ−1

j )u(w)). (1.12)

Since the transition functions ϕi ◦ ϕ−1
j are smooth it follows that the countable set

{(ψi, π−1(Ui)) | i ∈ A}

{(ψi, π−1(Ui)) | i ∈ A} defines a countable atlas on TM . The vector bundle structure on TM is
explained by the local trivializations (ϕ−1

i × idRn) ◦ ψi, i ∈ A, cf. (1.11).

Remark 1.77. Compare the proofs of Proposition 1.74 and 1.76 for similarities and differences.
Note that by Proposition 1.74 the structure of a vector bundle in TM → M is uniquely
determined by requiring that the transition functions are given by (1.12). Also note that the
transition functions of the local trivializations (ϕ−1

i × idRn) ◦ ψi are given by

(ϕ−1
i × idRn) ◦ ψi ◦

(
(ϕ−1

j × idRn) ◦ ψj
)−1

= (idM , d(ϕi ◦ ϕ−1
j )),

that is the matrix parts are differentials of the transition functions of the charts on M .

Remark 1.78. Let M be a smooth manifold and ϕ = (x1, . . . , xn) a local coordinate system
covering p ∈M . Let v ∈ TpM ,

v =
n∑
i=1

vi
∂

∂xi

∣∣∣∣
p
.

Observe that with ψ as in (1.10)

ψ(v) = (x1(p), . . . , xn(p), v1, . . . , vn),

meaning that the vector part of ψ(v) consists of the prefactors of v in the basis
{

∂
∂xi

∣∣∣
p
, 1 ≤ i ≤ n

}
.

Exercise 1.79. Consider Sn with atlas containing the stereographic projections as in Example
1.19 (i). Explicitly calculate the corresponding transition functions (1.12) in the tangent bundle
TSn.

Given a smooth manifold, one might ask how “bad” the tangent bundle might look like. For
this question we first need to clarify when two vector bundles are considered isomorphic.

Definition 1.80. Let πE : E →M and πF : F →M be vector bundles over a smooth manifold
M . Then a smooth vector bundle homomorphism12 is a smooth map between the total
spaces

f : E → F,

12a.k.a. “smooth vector bundle map”
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such that the diagram
E F

M

πE

f

πF

commutes and f is fibrewise linear. The last condition means that for each p ∈M ,

f |Ep : Ep → Fp

is a linear map.

Definition 1.81. Two vector bundles π1 : E1 →M and π2 : E2 →M are isomorphic if there
exists a diffeomorphism F : E1 → E2 that is a smooth vector bundle map, so that

F |E1p : E1p → E2p

is a linear isomorphism for all p ∈M .

Definition 1.82. A vector bundle of rank k, E →M , is called trivializable if it is isomorphic
to M × Rk →M equipped with the canonical projection onto M .

Lemma 1.83. Assume that E → M is trivializable. Then there exists a nowhere vanishing
section s ∈ Γ(E).

Proof. Exercise.

The best case scenario we can expect for the tangent bundle of a smooth manifold is that it is
trivializable, which is in general not true. An example of a smooth manifold with non-trivializable
tangent bundle is S2. This follows from the “hairy ball theorem”13 [M]. There are however
non-obvious examples of manifolds with trivializable tangent bundle.

Exercise 1.84. Show that TS1 is trivializable and, hence, as a smooth manifold isomorphic to
the cylinder S1 × R. Draw a sketch of the isomorphism.

We now have all tools at hand to define vector fields on smooth manifolds.

Definition 1.85. Sections in the tangent bundle of a smooth manifold, Γ(TM), are called
vector fields. For X ∈ Γ(TM) we will denote the value of X at p ∈ M by Xp. For U ⊂ M
open, we will call elements of Γ(TM |U ) local vector fields, or simply vector fields if the setting
does not explicitly use the locality property. We will use the notations

X(M) := Γ(TM)

and
X(U) := Γ(TM |U )

for U ⊂M open.

Remark 1.86. For a smooth manifold M and U ⊂ M open, the two vector spaces TpU and
TpM are canonically isomorphic via restriction of charts for all p ∈ U . In the following we will
omit using TpU and instead write TpM , e.g. if we want to denote the action of a tangent vector
on a function f ∈ C∞(U), v(f), we will write v ∈ TpM and not v ∈ TpU .

13German: “Satz vom Igel”
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Figure 19: A vector field on the 2-torus.

Remark 1.87. Vector fields, similar to tangent vectors, act on C∞(M) by

X(f)(p) := Xp(f) = df(Xp).

Thus we may write X(f) = df(X) ∈ C∞(M). On the other hand, a map of the form X : M →
TM , p 7→ Xp ∈ TpM , is a vector field if and only if X(f) : p 7→ dfp(Xp) is smooth for all
f ∈ C∞(M).

Recall that in Proposition 1.47 we have shown that in local coordinates (x1, . . . , xn) the
tangent vectors ∂

∂xi

∣∣∣
p
, 1 ≤ i ≤ n, form a basis of TpM . We want to have a similar result for the

local form of vector fields in Γ(TM |U ) for U the chart neighbourhood of the local coordinates xi.

Definition 1.88. Let (ϕ = (x1, . . . , xn), U) be a chart on a smooth manifold M . The corre-
sponding coordinate vector fields are defined as

∂

∂xi
∈ X(U), ∂

∂xi
: p 7→ ∂

∂xi

∣∣∣∣
p
.

Proposition 1.89. Let (ϕ = (x1, . . . , xn), U) be a chart on a smooth manifold M and X ∈ X(U).
With Xi := X(xi) ∈ C∞(U) we have

X =
n∑
i=1

Xi ∂

∂xi
.

On the other hand for any choice of smooth functions f i ∈ C∞(U), 1 ≤ i ≤ n,
n∑
i=1

f i
∂

∂xi
∈ X(U).

Proof. The first claim follows from the fact that for any p ∈ U fixed, Xp =
n∑
i=1

Xp(xi) ∂
∂xi

∣∣∣
p
,

which follows from Proposition 1.47. The second claim follows from the fact that each ∂
∂xi

is a
vector field on U and Exercise 1.71 (i).

Exercise 1.90.

(i) Prove the statements in Remark 1.87.

(ii) Construct a vector field X ∈ X(S2) with precisely one bald spot, meaning that there exists
precisely one p ∈ S2, such that Xp = 0.
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There is an alternative, but equivalent, way of introducing vector fields on smooth manifolds,
see [O]. Recall that in Definition 1.35 we have initially defined tangent vectors to be linear maps
from C∞(M) to R satisfying a Leibniz rule. Vector fields can be introduced similarly using the
concept of derivations from differential algebra.

Definition 1.91. Let A be an algebra over a field K. A derivation of a A is a K-linear map
D : A→ A that fulfils the Leibniz rule

D(ab) = D(a)b+ aD(b)

for all a, b ∈ A. The set of all derivations of A is denoted by Der(A). If A is commutative,
Der(A) is an A module.

Recall that the smooth functions on a manifold, C∞(M), form an R-algebra.

Proposition 1.92. Let M be a smooth manifold. Then vector fields on M are precisely
the derivations of C∞(M), meaning that X(M) and Der(C∞(M)) are isomorphic as C∞(M)
modules.

Proof. The map
ι : X(M)→ Der(C∞(M)), X 7→ (f 7→ X(f)),

is a C∞(M) module map. Injectivity of ι follows from X = 0 if and only if X(f) = 0 for all
f ∈ C∞(M) (cf. proof of Proposition 1.47 if you have problems seeing that fact). For surjectivity
we define for a given derivation D a vector field XD via

D 7→ XD, XD
p (f) = D(f)(p),

for all p ∈M and all f ∈ C∞(M). By Remark 1.87 we know that XD is in fact a smooth vector
field. The map D 7→ XD is precisely the inverse of ι.

We now know the algebraic properties of vector fields as derivations and we know how to
write down and calculate with vector fields locally. The following lemma describes explicitly
how vector fields behave under a change of coordinates.

Lemma 1.93. Let M be a smooth manifold and let (ϕ = (x1, . . . , xn), U), (ψ = (y1, . . . , yn), V )
be charts on M such that U ∩ V 6= ∅. For X ∈ X(M) fixed, we have on U ∩ V the following
forms of X in local coordinates

X =
n∑
i=1

X(xi) ∂

∂xi

and
X =

n∑
i=1

X(yi) ∂

∂yi
.

If we understand d(ψ ◦ ϕ−1) : ϕ(U ∩ V )→ GL(n) as a matrix-valued function which associates
each point u ∈ ϕ(U ∩ V ) the Jacobi matrix of ψ ◦ ϕ−1 at u we obtain

d(ψ ◦ ϕ−1)u ·

X(x1)
...

X(xn)


∣∣∣∣∣∣∣
ϕ−1(u)

=

X(y1)
...

X(yn)


∣∣∣∣∣∣∣
ψ−1(u)

for all u ∈ U ∩ V .

Proof. Follows from the definition of the Jacobi matrix and the coordinate vector fields.

32



If the above formula looks difficult to you, calculate some examples for M = Rn, ϕ = idRn ,
and ψ : Rn → Rn any diffeomorphism. Having defined vector fields and coordinate vector fields,
we can now properly define differentials of smooth maps, compared to our pointwise Definition
1.50.

Definition 1.94. Let M,N be smooth manifolds and F : M → N be a smooth map. The
differential of F is defined as the smooth map

dF : TM → TN, dF |π−1(p) = dFp ∀p ∈M.

The above equation means that pointwise, dF is given by its differential as in Definition 1.50.
Thus, in local coordinates (x1, . . . , xm) of M and (y1, . . . , yn) of N with appropriate domain we
have

dF

(
∂

∂xi

)
=

n∑
j=1

∂F j

∂xi
∂

∂yj
, F j = yj ◦ F, ∀1 ≤ i ≤ m.

The (non-pointwise) Jacobi matrix in given local coordinates is defined similarly by allowing the
basepoint to vary. As a map from chart neighbourhoods in M to GL(n), the Jacobi matrix in
particular is a smooth map.

Exercise 1.95. Check using local coordinates on TM and TN that dF and the Jacobi matrix
as in Definition 1.94 are actually smooth as claimed.

On the vector fields on a smooth manifold we have the structure of a Lie14 algebra. Before
describing this concept in detail, consider for two derivations X,Y ∈ Der(A) of an algebra A
the commutator of X and Y

[X,Y ] := XY − Y X.

Exercise 1.96. Show that [X,Y ] ∈ Der(A).

By Proposition 1.92 there must be an analogue construction on the set of vector fields on a
smooth manifold.

Definition 1.97. Let V be a real vector space. A Lie bracket on V is a skew-symmetric
bilinear map

[·, ·] : V × V → V, (X,Y ) 7→ [X,Y ]

that fulfils the15 Jacobi identity

[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]]

for all X,Y, Z ∈ V . A vector space V together with a Lie bracket is called Lie algebra.

Exercise 1.98.

(i) Prove that [·, ·] on Der(A) is a Lie bracket.

(ii) Show that the Jacobi identity in Definition 1.97 is equivalent to∑
cyclic

[X, [Y, Z]] = 0,

for all X,Y, Z ∈ V , where
∑

cyclic
stands for the cyclic sum.

14Sophus Lie (1842 – 1899)
15Careful: There is more than one Jacobi identity, e.g. graded Jacobi identities.
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Proposition 1.99. The bilinear map on vector fields on a smooth manifold M

[·, ·] : X(M)× X(M)→ X(M), (X,Y ) 7→ [X,Y ],
[X,Y ](f) := X(Y (f))− Y (X(f)) ∀X,Y ∈ X(M) ∀f ∈ C∞(M),

is a Lie bracket on the real vector space X(M).

Proof. Follows from Exercise 1.98 (i).

Note that [X,Y ]p(f) = Xp(Y (f)) − Yp(X(f)) for all p ∈ M , f ∈ C∞(M), X,Y ∈ X(M).
From real analysis we know that partial derivatives commute. We can formulate a similar result
for smooth manifolds with the help of the Lie algebra structure on X(M).

Lemma 1.100. Let M be a smooth manifold and let (x1, . . . , xn) be local coordinates on M .
Then [

∂

∂xi
,
∂

∂xj

]
= 0

for all 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Proof. Exercise.

Exercise 1.101. Show that [X, fY ] = df(X)Y + f [X,Y ] for all X,Y ∈ X(M), f ∈ C∞(M).

Definition 1.102. Let φ : M → N be a smooth map and let X ∈ X(M). The smooth map

M 3 p 7→ (dφ(X))p = dφp(Xp) ∈ Tφ(p)N

is called a vector field along φ.

Note that dφ(X) sends smooth functions on N to smooth functions on M via

(dφ(X))(f) = X(f ◦ φ) ∈ C∞(M)

for all f ∈ C∞(N).

Definition 1.103. Let I ⊂ R be an interval (equipped with canonical coordinate t), M a smooth
manifold, and γ : I →M a smooth curve. The velocity vector field (or simply velocity) of
γ is the vector field along γ

γ′ := dγ

(
∂

∂t

)
, t 7→ γ′(t).

Note that the explicit form of γ′(t) depends on the local coordinates ϕ = (x1, . . . , xn) on M ,

γ′(t) =
n∑
i=1

∂γi

∂t
(t) ∂

∂xi

∣∣∣∣
γ(t)
∈ Tγ(t)M

for all t ∈ I, where γi = xi(γ) for all 1 ≤ i ≤ n.

Now that we have defined the velocity of smooth curves in smooth manifolds, we can relate
our initial definition of tangent vectors in Rn in Remark 1.34 to tangent vectors for general
smooth manifolds as follows.

Lemma 1.104. Let M be a smooth manifold, v ∈ TpM , and f ∈ C∞(M). Then

v(f) = ∂(f ◦ γ)
∂t

(0)

for every smooth curve γ : I →M , 0 ∈ I, with γ(0) = p and γ′(0) = v.
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Figure 20: The velocity vector field of a curve γ.

Proof. Follows from the chain rule for differentials of smooth maps.

Recall the definition of an integral curve of a vector field on an open set of Rn. There is, of
course, a similar concept for general smooth manifolds.

Definition 1.105. Let X ∈ X(M) be a smooth vector field on a smooth manifold M . An
integral curve of X at p ∈M is a smooth curve γ : I →M , where I ⊂ R is an interval, 0 ∈ I,
such that γ(0) = p and

γ′(t) = Xγ(t)

for all t ∈ I. An integral curve γ : I →M of X is called maximal if there is no interval Ĩ ⊃ I,
such that Ĩ \ I 6= ∅ and there exists an integral curve γ̃ : Ĩ →M of X with γ̃|I = γ. A vector
field X is called complete if every maximal integral curve γ : I →M is defined on I = R.

If we omit the term “at p” for integral curves, we also drop the requirement 0 ∈ I.

Example 1.106. Consider X ∈ X(R2) given in canonical coordinates (u1, u2) = (x, y) by

X = −y ∂
∂x

+ x
∂

∂y
.

Its integral curves at any point (x0, y0) ∈ R2 are of the form

γ : t 7→
(

cos(t) − sin(t)
sin(t) cos(t)

)(
x0
y0

)
.

Exercise 1.107.

(i) Write down the vector field X and its integral curves in Example 1.106 in polar coordinates.
Is X complete?

(ii) Construct a vector field on R2 \ {0} with precisely one periodic maximal integral curve
that is not a constant curve and no other periodic maximal integral curves.

Remark 1.108. While we have defined integral curves of vector fields, at this point we do not
know if they always exists and whether they are unique or not. With the help of the theory of
ordinary differential equations we obtain such results. Firstly note that locally, i.e. in any given
local coordinates, the equation

γ′ = Xγ
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is an ordinary, in general non-linear, differential equation. Thus, for any given vector field
X ∈ X(M) and any p ∈M there exists an integral curve γ : I →M of X at p. If γ : I →M and
γ̃ : Ĩ →M are two integral curves of X at p, they coincide on I ∩ Ĩ which, by definition, is never
empty. For each p ∈M , there exists a unique maximal integral curve of X at p. Furthermore,
the integral curves of X at p depend locally smoothly on p ∈ M . The proofs of these results
need some care in case that an integral curve leaves a given coordinate neighbourhood, but
they are otherwise identical to the case M ⊂ Rn open. For literature on the subject of ordinary
differential equations and dynamical systems see e.g. [A1, A2]

In general it is a very difficult question whether a given vector field in X(M) is complete, at
least if M is not compact. For compact smooth manifolds M we have the following result.

Proposition 1.109. Vector fields on compact smooth manifolds are complete.

Proof. [A1] Chapter 2.6 together with the fact that since M is compact, one can for any given
atlas A on M assume without loss of generality that A is finite, and we have that the closure of
the chart neighbourhoods of A are compact in M .

For M not compact we still have the following result on vector fields with compact support.

Proposition 1.110. Let X ∈ X(M) be a vector field with compact support, meaning that

supp(X) = {p ∈M | Xp 6= 0} ⊂M

is compact. Then X is complete.

Figure 21: A sketch of a vector field with compact support V ⊂ U .

Proof. Exercise. [Hint: Try proving this for M = Rn first.]

Definition 1.111. A local one parameter group of diffeomorphisms on a smooth manifold
M is a smooth map

ϕ : I × U →M, (t, p) 7→ ϕt(p),

such that I ⊂ R is an interval containing 0 ∈ R, U ⊂ M is open, ϕ0 = idU , ϕt : M → M is a
diffeomorphism for all t ∈ I, and

ϕs+t(p) = ϕs(ϕt(p))

for all p ∈ U and all s, t ∈ I with (s + t) ∈ I and ϕt(p) ∈ U . A one parameter group of
diffeomorphisms is a local one parameter group of diffeomorphisms with I = R and U = M .
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Local one parameter groups of diffeomorphisms on smooth manifolds are closely related to
vector fields and their integral curves. For any given vector field on a smooth manifold we can
attempt to consider all integral curves of X “at once”. This leads to the following concept.

Definition 1.112. A local flow of a vector field X ∈ X(M) is a smooth map

ϕ : I × U →M, (t, p) 7→ ϕt(p),

for some interval I ⊂ R containing 0 ∈ R and an open set U ⊂M , such that ϕ0 = idU and for
every p ∈ U fixed, the smooth curve

t 7→ ϕt(p)

is an integral curve of X. This just means that

∂

∂t
(ϕt(p)) = Xϕt(p).

We say that a local flow ϕ : I × U →M of X is near a point p ∈M if p ∈ U . A local flow of X
is called (global) flow of X if I = R and U = M .

Lemma 1.113. Every vector field on M admits a local flow near any given point p ∈M .

Proof. Let X ∈ X(M) and p ∈M arbitrary but fixed. Choose a bump function b : M → R such
that on some open neighbourhood U ⊂M of p, b|U ≡ 1. The maximal integral curves at p of
bX are defined on R by Proposition 1.110 and depend smoothly on p ∈ M by Remark 1.108.
This already shows that vector fields with compact support admit a global flow ϕ. Fix ε > 0
and choose an open subset V ⊂ U , such that V is an open neighbourhood of p and for all q ∈ V
and all t ∈ (−ε, ε) ϕt(q) ∈ U . Geometrically this mean that the set V is not moved out of U by
the flow of bX for |t| < ε. Since X and bX coincide on U , their integral curves at all q ∈ V for
I = (−ε, ε) also coincide in V . Hence, the flow ϕ of bX restricted to (−ε, ε)× V is a local flow
of X.

Observe that Definitions 1.111 and 1.112 have a certain similarity. They are connected as
follows.

Proposition 1.114. Local flows of vector fields are local one parameter groups of diffeomor-
phisms.

Proof. It suffices to show that for a given vector field X with two integral curves γ : (a, b)→M
at p = γ(0) and γ̃ : (ã, b̃)→M with γ(s) = γ̃(0) for some s ∈ (a, b) we have

γ(s+ t) = γ̃(t)

for all t, such that (s+ t) ∈ (a, b) and t ∈ (ã, b̃). This means that γ̃ extends γ and follows from
the fact that t 7→ γ(s+ t) is an integral curve of X (for s small enough) and uniqueness of local
solutions,

(γ(s+ ·))′(t) chain rule= γ′(s+ t) = Xγ(s+t) = X(γ(s+·))(t).

Hence, for a local flow ϕ of X near p we obtain

ϕt(φs(p)) = ϕt(γ(s)) = γ̃(t) = γ(s+ t) = ϕs+t(p).

The following is an immediate consequence of Proposition 1.114.
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Corollary 1.115. Assume that X ∈ X(M) is complete. Then its flow is a one parameter group
of diffeomorphisms.

In fact, one can prove that for any vector field X ∈ X(M) the set⋃
p∈M

(Ip × {p}) ⊂ (R×M)

is open, where Ip is the uniquely determined interval for the maximal integral curve γ : Ip →M
of X starting at γ(0) = p ∈M . For X complete, Ip = R for all p ∈M and, hence, the maximal
domain of definition of any local flow of X is R×M , meaning X has a global flow. For a proof
see [G, S. 1.10.9].

Example 1.116. Translations in Rn are of the form Av : (p, v) 7→ p+ v where v = (v1, . . . , vn)
is the translation vector. Consider the constant vector field

n∑
i=1

vi
∂

∂ui

with global flow
ϕ : R× Rn → Rn, (t, p) 7→ p+ tv.

We see that ϕ1(p) = Av(p) for all p ∈ Rn.

Exercise 1.117. Let A ∈ SO(2) be fixed. Find X ∈ X(R2), such that its global flow ϕ fulfils
ϕ1(p) = Ap for all p ∈ R2. Can this always be achieved for any A ∈ O(2)?

We have seen that local flows of vector fields are local one parameter groups of diffeomorphisms.
The converse statement is also true.

Definition 1.118. Let ϕ : I ×U →M be a local one parameter group of diffeomorphisms. The
infinitesimal generator of ϕ is defined to be the map

U 3 p 7→ ∂

∂t

∣∣∣∣
t=0

(ϕt(p)) ∈ TpM.

[Note: We have secretly used the upcoming Exercise 1.143, make sure you understand how and
why.]

Lemma 1.119. Infinitesimal generators of local one parameter group of diffeomorphisms
ϕ : I × U →M are local vector fields in X(U). Infinitesimal generators of one parameter groups
of diffeomorphisms ϕ : R×M →M are complete.

Proof. Since any local one parameter group of diffeomorphisms is smooth, the map X : p 7→
Xp := ∂

∂t

∣∣∣
t=0

(ϕt(p)) is smooth, i.e. X ∈ X(U). Hence, for any one parameter group of
diffeomorphisms ϕ : R×M →M , X is a vector field in X(M). Its integral curves at p ∈M are
given by

t 7→ ϕt(p)

and are defined for all t ∈ R. This means that X is complete.

Recall the definition of the Lie bracket on X(M), cf. Proposition 1.99. We know the algebraic
motivation for it by considering vector fields as derivations of C∞(M). But what does [X,Y ] for
X,Y ∈ X(M) stand for geometrically? To answer this question we must define the pushforward
and pullback of vector fields under diffeomorphisms.
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Definition 1.120. Let F : M → N be a diffeomorphism and let X ∈ X(M), Y ∈ X(N). The
pushforward of X under F is the vector field F∗X ∈ X(N) given by

(F∗X)q := dFF−1(q)
(
XF−1(q)

)
∀q ∈ N.

The pullback of Y under F is the vector field F ∗Y ∈ X(M) given by

(F ∗Y )p := d(F−1)F (p)
(
YF (p)

)
∀p ∈M.

Note that d(F−1)F (p) = (dFp)−1 for all p ∈M .

Exercise 1.121. Verify that if F : M → N is a diffeomorphism and γ is an integral curve of
X ∈ X(M), then F ◦ γ is an integral curve of F∗X. Formulate a version of this statement for
local diffeomorphisms.

In order to explain the Lie bracket of vector fields geometrically, we need one more result
about the local form of vector fields. Assume that X ∈ X(M) does not vanish everywhere. Then
near any point where X does not vanish we can find local coordinates on M in which X has a
particularly simple form.

Proposition 1.122. Let X ∈ X(M) and p ∈ M , such that Xp 6= 0. Then there exist local
coordinates on an open neighbourhood U ⊂M of p, such that X is of the form

Xq = ∂

∂x1

∣∣∣∣
q

for all q ∈ U .

Figure 22: Locally rectifying a vector field.

Proof. Since X is as a section in TM it is in particular a continuous map and, hence, we
can find an open neighbourhood U of p ∈ M , such that Xq 6= 0 for all q ∈ U . Assume
without loss of generality that U is contained in a chart neighbourhood. Choose any local
coordinate system φ = (y1, . . . , yn) on U and let (u1, . . . , un) denote the canonical coordinates
on Rn. We can assume without loss of generality, after possibly shrinking U and re-ordering the
yi’s, that φ∗(X) ∈ X(φ(U)) is transversal along the inclusion map {u1 = 0} ∩ φ(U) ↪→ Rn to
N := {u1 = 0} ∩ φ(U), meaning that

(φ∗X)q 6∈ TqN ∼= Tq{u1 = 0} ⊂ TqRn

for all q ∈ N . Let, after again possibly shrinking U , Φ : I × φ(U)→ Rn denote a local flow of
φ∗X. Since

(φ∗X)q = ∂

∂t

∣∣∣∣
t=0

Φt(q) 6= 0
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by the transversality condition, we obtain with Theorem 1.55 after possibly shrinking I that

F := Φ|I×N : I ×N → Φ(I ×N)

is a diffeomorphism, where we understand I as the “time” part so that Φ(t, q) := Φt(q), and
Φ(I ×N) ⊂ Rn is open. Denoting the canonical coordinates in I by u1 and in N by (u2, . . . , un)
(which is compatible with the canonical inclusion I ×N ⊂ Rn), we in particular have

dF(u1,u2,...un)

(
∂

∂u1

∣∣∣∣
(u1,u2,...,un)

)
= (φ∗X)Φ(u1,u2,...,un)

for all (u1, . . . , un) ∈ I ×N . Now we can define coordinates on φ−1(φ(U) ∩ Φ(I ×N)) ⊂M by
setting

ψ = (x1, . . . , xn) := F−1 ◦ φ : φ−1(φ(U) ∩ Φ(I ×N))→ F−1(φ(U) ∩ (I ×N)) ⊂ Rn

and obtain for the local formula of X in the local coordinate system ψ and all q ∈ φ−1(φ(U) ∩
Φ(I ×N))

Xq = ∂

∂x1

∣∣∣∣
q
.

In local coordinates as the ones constructed in Proposition 1.122, local flows look particularly
simple.

Corollary 1.123. Any local flow of X near p as in Proposition 1.122 is, if Xp 6= 0, in the local
coordinate system ψ = (x1, . . . , xn) of the form

ψ(ϕt(q)) = ψ(q) + te1,

for all q ∈ U , where e1 denotes the first unit vector in Rn in canonical coordinates, for |t| small
enough. Furthermore

dϕt

(
∂

∂xi

∣∣∣∣
q

)
= ∂

∂xi

∣∣∣∣
ψ−1(ψ(q)+te1)

for all q ∈ U and t small enough, where we understand the differential of ϕt for t fixed.

Next we will describe how the Lie algebra structure on vector fields is connected to their
local flows. To do so we will need to introduce the following concept.

Definition 1.124. Let M and N be smooth manifolds φ : M → N be a smooth map. Two
vector fields X ∈ X(M) and X ∈ X(N) are called φ-related if dφ(X) = Xφ. One then writes
X ∼φ X. Equivalently, X ∼φ X if X(f ◦ φ) = Y (f) ◦ φ for all f ∈ C∞(N).

We see that for φ : M → N an embedding and any X ∈ X(M), dφ(X), viewed as vector field
along φ, can be locally extended to a smooth vector field X ∈ X(N), such that dφ(X) = Xφ.
This means that, locally, we can find a φ-related vector field to X. For the next lemma, the
motivation is the case where φ is a transition function describing a change of coordinates on a
smooth manifold.

Lemma 1.125. Let φ : M → N be a smooth map, X,Y ∈ X(M), and X,Y ∈ X(N), such that
X ∼φ X and Y ∼φ Y . Then [X,Y ] ∼φ [X,Y ].
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Proof. Let f ∈ C∞(N) be arbitrary. Then

[X,Y ](f ◦ φ) = X(Y (f ◦ φ))− Y (X(f ◦ φ))
= X(Y (f) ◦ φ)− Y (X(f) ◦ φ)
= (X(Y (f))− Y (X(f))) ◦ φ.

Lemma 1.125 means for φ a change of coordinates that the Lie algebra structure on vector
fields is compatible with changing coordinates in the sense that their Lie brackets are also related
by the same change of coordinates. Globally we obtain the following result.

Corollary 1.126. For any given diffeomorphism F : M → N ,

F∗[X,Y ] = [F∗X,F∗Y ]

for all X,Y ∈ X(M) and
F ∗[X,Y ] = [F ∗X,F ∗Y ]

for all X,Y ∈ X(N).

Proof. Follows from Definition 1.120 and Lemma 1.125.

Remark 1.127. In the case that φ is an embedding and dim(M) < dim(N), Lemma 1.125 also
implies that (locally and globally) [X,Y ] ◦ φ does not depend on the (local) extensions of X ◦ φ
and Y ◦ φ to vector fields on in N open neighbourhoods of points in φ(M).

Now we have cleared up all technical difficulties we can proof the following statement.

Proposition 1.128. Let X,Y ∈ X(M) and for p ∈ M arbitrary but fixed let ϕ : I × U → M
be a local flow of X near p. Then

[X,Y ]p = ∂

∂t

∣∣∣∣
t=0

(ϕ∗tY )p.

Figure 23: A sketch of Y along an integral curve γ through p of X.

Proof. First observe that the right hand side of the above formula is actually a well-defined
expression. This follows from (ϕ∗tY )p ∈ TpM for all t ∈ I and the fact that TpM is a real vector
space. In the following, dϕt is to be understood as the differential of ϕt for t ∈ I fixed. First
assume that Xp 6= 0. Without loss of generality we can, with the help of Proposition 1.122,
assume that we have chosen local coordinates (x1, . . . , xn) on U ⊂ M with p ∈ M , such that
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Xq = ∂
∂x1

∣∣∣
q

for all q ∈ U . Recall that, since ϕ is a local one parameter group of diffeomorphisms,

ϕ−t = ϕ−1
t whenever defined. Hence, for |t| small enough we have

(ϕ∗tY )p = d(ϕ−1
t )ϕt(p)

(
Yϕt(p)

)
= (dϕ−t)ϕt(p)

(
Yϕt(p)

)
.

Observe that

(dϕ−t)ϕt(p) : ∂

∂xi

∣∣∣∣
ϕt(p)

7→ ∂

∂xi

∣∣∣∣
ψ−1(ψ(ϕt(p))−te1)

= ∂

∂xi

∣∣∣∣
ψ−1(ψ(p)+te1−te1)

= ∂

∂xi

∣∣∣∣
p
.

In the local coordinates (x1, . . . , xn), Y is of the form

Yq =
n∑
i=1

Y i(q) ∂

∂xi

∣∣∣∣
q

for all q ∈ U . Thus

(ϕ∗tY )p =
n∑
i=1

Y i(ϕt(p))
∂

∂xi

∣∣∣∣
p

and, hence,
∂

∂t

∣∣∣∣
t=0

(ϕ∗tY )p =
n∑
i=1

dY i

(
∂

∂x1

∣∣∣∣
p

)
∂

∂xi

∣∣∣∣
p

which coincides with [X,Y ]p =
[
∂
∂x1 , Y

]
p

by Lemma 1.100 and Exercise 1.101.
Next assume that Xp = 0. If Xq = 0 for all q in an open neighbourhood U of p, the local

flow of X restricted to U will be the identity for all t ∈ I. Hence,

∂

∂t

∣∣∣∣
t=0

(ϕ∗tY )p = 0.

For any f ∈ C∞(M) observe that X(f) vanishes on U and thus

[X,Y ]p(f) = Xp(Y (f))− Yp(X(f)) = 0.

Lastly assume that Xp = 0 and X does not vanish identically on some open neighbourhood
of p. Let U ⊂ M be a compactly embedded open neighbourhood of p and choose a sequence
{pn}n∈N, lim

n→∞
pn = p, such that Xpn 6= 0 and pn 6= p for all n ∈ N. Then

[X,Y ]pn = ∂

∂t

∣∣∣∣
t=0

(ϕ∗tY )pn

for all n ∈ N. Using the continuity in the base point of both sides of the above expression we
take their respective limit as n→∞ and obtain that [X,Y ]p = ∂

∂t

∣∣∣
t=0

(ϕ∗tY )p as claimed

Proposition 1.128 gives an answer to the question what the lie bracket of two vector fields
should mean geometrically: [X,Y ] measures the infinitesimal change of Y along integral curves
of X or, by skew-symmetry, the negative infinitesimal change of X along integral curves of Y ,
both via the pullback. This motivates the following definition.

Definition 1.129. The Lie derivative of a vector field Y ∈ X(M) with respect to16 X ∈ X(M)
is defined as

LX(Y ) := [X,Y ] ∈ X(M).
16Or: “in direction of”.
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We will see in Section 2.2 that there is a different and very important alternative concept
how to measure infinitesimal changes of vector fields or, more general, sections of vector bundles.
Next we will study how to obtain, in a natural way, new vector bundles from given bundles. This
will allow us to define what tensor fields should be, which are central objects in every flavour of
differential geometry and in applications in physics.

Definition 1.130. Let πE : E →M be a vector bundle of rank k. The dual vector bundle
πE∗ : E∗ →M is pointwise given by

π−1
E∗(p)E

∗
p := HomR(Ep,R)

for all p ∈ M . The topology, smooth manifold structure, and bundle structure on E∗ are
obtained as follows. Let {(ψi, Vi) | i ∈ A} be a collection of local trivializations of the vector
bundle E of rank k, such that there exists an atlas A = {(ϕi, πE(Vi)) | i ∈ A} of M .17 Then
B := {((ϕi × idRk) ◦ ψi, Vi) | i ∈ A} is an atlas on E. Recall that for any finite dimensional real
vector space W , (W ∗)∗ and W are isomorphic via

W 3 v 7→ (ω 7→ ω(v)), ω ∈W ∗.

The topology on E∗ is given by pre-images of open images of the dual local trivializations
which are defined by

ψ̃i : π−1
E∗(πE(Vi))→ πE(Vi)× Rk, ωp 7→ (p, w),

where w ∈ Rk is the unique vector, such that ωp(vp) = 〈w,prRk(πE(vp))〉 for all vp ∈ π−1
E (p) and

〈·, ·〉 denotes the Euclidean scalar product on Rk induced by its canonical coordinates. The dual
atlas B∗ on E∗ is then defined by

B∗ := {((ϕi × idRk) ◦ ψ̃i, Vi) | i ∈ A}.

It follows that E∗ →M is a vector bundle of rank k.

Exercise 1.131. Show that the transition functions of E∗ →M fulfil

ψ̃i ◦ ψ̃j
−1

: (p, w) 7→
(
p, (A−1

p )Tw
)

for all p ∈ πE(Vi), where A : πE(Vi)→ GL(n) is given by the transition functions of E →M ,

ψi ◦ ψ−1
j : (p, v) 7→ (p,Apv).

Exercise 1.132. Show that (E∗)∗ → M is isomorphic to E → M as a vector bundle for any
vector bundle E →M .

The most important example of a dual bundle is the dual to the tangent bundle of a smooth
manifold (at least in this course).

Definition 1.133. The vector bundle T ∗M := (TM)∗ →M is called the cotangent bundle
of M . Pointwise we denote T ∗pM := (TM)∗p for all p ∈M . As for the tangent bundle we identify
for any U ⊂M open and p ∈ U the vector spaces T ∗pU ∼= T ∗pM via the inclusion map.

Similar to the tangent bundle, cf. Proposition 1.76, an atlas on M induces an atlas on the
total space T ∗M that is compatible with the bundle structure of T ∗M as the dual bundle of TM .
We will specify how a given local coordinate system ϕ = (x1, . . . , xn) on an open set U ⊂ M
induces a local coordinate system on the total space T ∗M . Let πT ∗M : T ∗M →M denote the

17Exercise: Show that such a choice is always possible.
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projection. In the tangent bundle case we used equation (1.10) to define the induced local charts.
This definition uses the action of tangent vectors v ∈ TpM , p ∈ U , on the coordinate functions
(x1, . . . , xn). In our present case of the cotangent bundle, elements in T ∗pM are linear maps

ω ∈ T ∗pM, ω : TpM → R, ω : v 7→ ω(v) ∈ R ∀v ∈ TpM.

Thus we cannot let them act in any sensible way on coordinate functions. However, recall
that the coordinate functions induce a basis of TpM for all p ∈ U , cf. Proposition 1.47. This
motivates defining a local coordinate system on T ∗M by

ψ̃ : π−1
T ∗M (U)→ ϕ(U)× Rn, ψ̃ : ω 7→

(
ϕ(πT ∗M (ω)), ω

(
∂

∂x1

∣∣∣∣
p

)
, . . . , ω

(
∂

∂xn

∣∣∣∣
p

))
. (1.13)

This local coordinate system is dual to the local coordinate system ψ on π−1
TM as in equation

(1.10) in the sense that for all ωp ∈ T ∗pM and all vp ∈ TpM

ωp(vp) = 〈prRn(ψ̃(ωp)), prRn(ψ(vp))〉, (1.14)

where prRn denotes the canonical projection to the vector part and 〈·, ·〉 denotes the Euclidean
scalar product induced by the canonical coordinates on Rn. The independence of the chosen
local coordinate system of the right hand side of (1.14) follows from Exercise 1.131.

We have defined vector fields as sections in the tangent bundle of a smooth manifold. Sections
in the cotangent bundle are of the same importance as vector fields when studying smooth
manifolds.

Definition 1.134. Sections in T ∗M → M are called 1-forms and are denoted by Ω1(M) :=
Γ(T ∗M). For U ⊂M open, sections in Γ(T ∗M |U ) are denoted by Ω1(U) and are called local
1-forms.

A straightforward way of obtaining explicit examples of 1-forms works as follows.

Example 1.135. Let f ∈ C∞(M). Then the differential18 of f , df ∈ Ω1(M), is given by

df : p 7→ dfp.

In local coordinates (x1, . . . , xn) we have df
(

∂
∂xi

)
= ∂f

∂xi
for all 1 ≤ i ≤ n. This implies that df

can locally be written as

df =
n∑
i=1

∂f

∂xi
dxi.

In particular it follows for f = xj , 1 ≤ j ≤ n, that the coordinate 1-forms dxj fulfil
dxj

(
∂
∂xi

)
≡ δji on the domain of definition of the local coordinates. This in in accordance with

the pointwise version of this statement in Example 1.51.

Lemma 1.136. Let M be a smooth manifold and let ϕ = (x1, . . . , xn) be a local coordinate
system defined on an open set U ⊂M . Then

{dxip | 1 ≤ i ≤ n}

is a basis of T ∗pM for all p ∈M . It is precisely the dual basis to the basis
{

∂
∂xi

∣∣∣
p

∣∣∣∣ 1 ≤ i ≤ n
}

of TpM . Any local 1-form ω ∈ Ω1(U) can be written as

ω =
n∑
i=1

fi dx
i (1.15)

with uniquely determined smooth functions fi ∈ C∞(U) for 1 ≤ i ≤ n.
18Cf. Definition 1.94.
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Proof. The first two claims follow from Proposition 1.47 and Exercise 1.51. Next we observe
that for all fi ∈ C∞(U), 1 ≤ i ≤ n, the right hand side of equation (1.15) is a local section in
T ∗M →M19 by the construction of the smooth manifold structure on the total space T ∗M via
charts of the form (1.13), which in particular implies that each dxi, 1 ≤ i ≤ n, is a local 1-form.
On the other hand for a given local 1-form ω ∈ Ω1(U) define

ωi := ω

(
∂

∂xi

)
for all 1 ≤ i ≤ n. It now suffices to show that ωi ∈ C∞(U) and, after that, to define fi := ωi.
ωi being a local smooth function follows from observing that by equation (1.14), ωi ◦ ϕ−1 is
precisely the i-th entry in the vector part of ψ̃ ◦ ω ◦ ϕ−1 and thereby by definition a smooth
map. Uniqueness of the fi can be shown as follows. Suppose that locally

ω =
n∑
i=1

fidx
i =

n∑
i=1

f̃idx
i (1.16)

such that for at least one 1 ≤ j ≤ n, fj 6= f̃j . Choose p ∈ U , such that fj(p) 6= f̃j(p). Then(
n∑
i=1

fidx
i

)(
∂

∂xj

∣∣∣∣
p

)
= fj(p) 6= f̃j(p) =

(
n∑
i=1

f̃idx
i

)(
∂

∂xj

∣∣∣∣
p

)

which is a contradiction.

In order to check whether a fibrewise map ω : M → T ∗M is a 1-form it suffices to check how
it behaves when applied to vector fields. The converse statement also holds true.

Lemma 1.137. Let ω : M → T ∗M , ω : p 7→ T ∗pM , be a fibrewise map. Then ω ∈ Ω1(M) if and
only if for all X ∈ X(M) the function ω(X) : M → R, p 7→ ω(X)(p) for all p ∈M , is smooth.

Proof. Exercise. [Hint: Use Lemma 1.136 and bump functions.]

Example 1.135 and Lemma 1.136 motivate viewing the coordinate 1-forms as dual objects to
coordinate vector fields. Indeed we obtain the following more abstract statement reinforcing this
point of view.

Proposition 1.138. Ω1(M) is isomorphic as a C∞(M)-module to the C∞(M)-module dual to
X(M), i.e.

Ω1(M) ∼= HomC∞(M)(X(M), C∞(M)).

Proof. Let α ∈ Ω1(M). we have seen in the proof of Lemma 1.136 that for any choice of local
coordinates (x1, . . . , xn) on M , α

(
∂
∂xi

)
is a local smooth function. Recall Proposition 1.89 and

choose a locally finite countable partition of unity {bi : Ui → [0, 1] | i ∈ I} subordinate to a
countable atlas {(ϕi = (x1

i , . . . , x
n
i ), Ui) | i ∈ I} of M . Write X(p) =

∑
i∈I

bi(p)X(p) and observe

that this sum is finite for all fixed p ∈M and that biX ∈ X(Ui) for all i ∈ I. We can write biX
in local coordinates as

biX =
n∑
j=1

biX(xji )
∂

∂xji
=:

n∑
j=1

biX
j
i

∂

∂xji
.

19Recall that our definition of sections required them to be smooths maps.
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Since all bi, i ∈ I, are in particular bump functions, biXj
i ∈ C∞(Ui) can be trivially extended to

a smooth function on M for all i ∈ I and all 1 ≤ j ≤ n. Hence, biX ∈ X(Ui) can be trivially
extended to be a vector field on the whole manifold M for all i ∈ I. We define

Aα(X) := α(X) =
∑
i∈I

α(biX) =
∑
i∈I

n∑
j=1

biαjX
j
i . (1.17)

The sum on the right hand side of (1.17) is a locally finite sum of bump functions (defined on
the respective Ui which we trivially extent to M). This means that for all p ∈ M fixed there
exists an open neighbourhood U ⊂M of p, such that the set

{(i, j) ∈ I × {1, . . . , n} | biαjXj
i (q) 6= 0 for at least one q ∈ U}

is finite. Hence, the right hand side of (1.17) is indeed a smooth function defined on M since
it is, locally, the sum of finitely many smooth functions. This shows α defines a well-defined
C∞(M)-linear map

Aα : X(M)→ C∞(M), X 7→ α(X), A(X)(p) := αp(Xp) ∀p ∈M.

On the other hand let A : X(M) → C∞(M) be a C∞(M)-linear map. For a given A ∈
HomC∞(M)(X(M), C∞(M)) define a fibre-preserving map

αA : M → T ∗M, αA|p(v) := A(X)(p)

for X ∈ X(M) with Xp = v. We need to show that this definition does not depend on the choice
of X and that αA is in fact a smooth map. Since A(X + Y )(p) = A(X)(p) + A(Y )(p) for all
X,Y ∈ X(M) and all fixed p ∈M it suffices to show that A(X)(p) = 0 for all X ∈ X(M) with
Xp = 0. Let (x1, . . . , xn) be local coordinates on U ⊂M with p ∈ U so that X with Xp = 0 is
locally of the form

X =
n∑
i=1

Xi ∂

∂xi
,

Xi ∈ C∞(U) for all 1 ≤ i ≤ n. Then Xp = 0 precisely means that Xi(p) = 0 for all 1 ≤ i ≤ n.
Since A(fX)(p) = f(p)A(X)(p) for all f ∈ C∞(M), we can choose a bump function b ∈ C∞(M),
so that supp(b) ⊂ U is compactly embedded and such that there exists a compactly embedded
set V ⊂ U with non-empty interior containing p and b|V ≡ 1. Then for all 1 ≤ i ≤ n, bXi is also
a bump function on U ⊂M and can thus be smoothly extended to M (note that the Xi might
have “bad” behaviour when approaching ∂U , e.g. do not converge). Furthermore, b ∂

∂xi
can be

extended to a globally defined vector field on M for all 1 ≤ i ≤ n by setting

b
∂

∂xi

∣∣∣∣
q

= 0

for all q ∈M \U . We will for simplicity write bXi ∈ C∞(M) and b ∂
∂xi
∈ X(M) for all 1 ≤ i ≤ n.

We now calculate

A(X)(p) = b2(p)A(X)(p) = A(b2X)(p) = A

(
n∑
i=1

(bXi)
(
b
∂

∂xi

))
(p)

=
(

n∑
i=1

bXiA

(
b
∂

∂xi

))
(p) =

n∑
i=1

Xi(p)A
(
b
∂

∂xi

)
(p) = 0.

It remains to show that αA is smooth. This follows with the help of Lemma 1.137, the above
result, and a similar construction using a locally finite partition of unity as for the other
direction of the proof. One can further check that AαA = A and αAα = α, that is that the two
constructions are inverse to each other.
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Exercise 1.139. Work out the missing details of the “⊃” direction in the proof of Proposition
1.138.

As for vector fields, cf. Definition 1.120, we can define the pullback and pushforward of
1-forms under diffeomorphisms. Be wary of the differences!
Definition 1.140. Let F : M → N be a diffeomorphism and let α ∈ Ω1(M), β ∈ Ω1(N). The
pushforward of α under F is the 1-form F∗α ∈ Ω1(N) given by

(F∗α)q := αF−1(q) ◦ d(F−1)q ∀q ∈ N.

The pullback of β under F is the 1-form F ∗β ∈ Ω1(M) given by

(F ∗β)p := βF (p) ◦ dFp ∀p ∈M.

The above compositions denote compositions of linear maps.
Remark 1.141. The pullback of a 1-form β ∈ Ω1(N) is well-defined for any smooth map
F : M → N .

Next we will study some constructions on how to obtain new vector bundles from given
vector bundles.
Definition 1.142. Let πE : E → M be a vector bundle of rank k and πF : F → M a vector
bundle of rank ` over an n-dimensional smooth manifold M . The Whitney20 sum of E and
F is the the direct sum of the two vector bundles πE⊕F : E ⊕ F →M with fibres

(E ⊕ F )p = π−1
E⊕F (p) := Ep ⊕ Fp

for all p ∈M . The structure of a vector bundle on E ⊕ F =
⊔
p∈M

(Ep ⊕ Fp) is then explained by

Proposition 1.74 and the requirement that the following maps are local trivializations of E ⊕ F .
Let {(ψEi , V E

i ) | i ∈ I} and {(ψFi , V F
i ) | i ∈ I} be coverings of local trivializations of E and F ,

respectively, such that Ui := πE(V E
i ) = πF (V F

i ) for all i ∈ I and such that there exists an atlas
A = {(ϕi, Ui) | i ∈ I} of M . We require now require that with

φ−1
i := (ψEi ⊕ ψFi )−1 ◦ (∆M × Rk+`) : Ui × Rk+` ∼= Ui × (Rk × R`)→

⊔
p∈Ui

(Ep ⊕ Fp),

(p, v, w) 7→ (ψEi )−1(p, v)⊕ (ψFi )−1(p, w) ∀p ∈ Ui, v ∈ Rk, w ∈ R`, (1.18)

where ∆M : p 7→ (p, p) ∈M ×M denotes the diagonal embedding and

Rk × R` 3 (v, w) 7→
(
v
w

)
∈ Rk+`

the linear isomorphism, all φi, i ∈ I, are inverses of local trivializations covering E ⊕F . In order
to use Proposition 1.74 we need to check that the transition functions have the required form.
We obtain that for all i, j ∈ I, such that Ui ∩ Uj 6= ∅,

φi ◦ φ−1
j (p, v, w) = (p, τEij (p)v, τFij (p)w),

where τEij and τFij are the transition functions of the local trivializations of E and F , respectively.
Lastly, we simply need to define

τE⊕Fij (p) :=

 τEij (p) 0

0 τFij (p)

 ∈ GL(k + `)

so that we can write φi ◦ φ−1
j (p, ( vw )) =

(
p, τE⊕Fij (p) ( vw )

)
. Now all requirements in Proposition

1.74 are fulfilled and we conclude that E ⊕ F →M is, indeed, a vector bundle of rank k + `.
20Hassler Whitney (1907 – 1989)
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Exercise 1.143. Show that the vector bundles T (M ×N)→M ×N and

TM ⊕ TN →M ×N, (vp, wq) 7→ (p, q) ∀vp ∈ TpM ∀wq ∈ TqN,

are isomorphic as vector bundles for any two smooth manifolds M and N .

A construction similar to the Whitney sum is the tensor product of vector bundles. Recall
that the tensor product of two real vector spaces V1 of dimension n and V2 of dimension m is
a real vector space V1 ⊗ V2 together with a bilinear map ⊗ : V1 × V2 → V1 ⊗ V2, such that for
every real vector space W and every bilinear map F : V1 × V2 →W , there exist a unique linear
map F̃ : V1 ⊗ V2 →W making the diagram

V1 × V2

V1 ⊗ V2 W

F⊗

F̃

commute. The dimension of V1 ⊗ V2 is n ·m. If {v1
1, . . . , v

n
1 } and {v1

2, . . . , v
m
2 } are bases of V1

and V2, respectively, we can construct a choice of basis for V1 ⊗ V2 explicitly. A basis of V1 ⊗ V2
is given by {vi1 ⊗ v

j
2, 1 ≤ i ≤ n, 1 ≤ j ≤ m}, and F̃ for a bilinear map F as above is given by

F̃ : vi1 ⊗ v
j
2 7→ F (vi1, v

j
2)

on the basis vectors. By considering “⊗” itself as a bilinear map from V1 × V2 to W = V1 ⊗ V2,
we define21 v ⊗ w for v =

n∑
i=1

vivi1, w =
m∑
j=1

wjvi2, as

v ⊗ w :=
n∑
i=1

m∑
j=1

viwj · vi1 ⊗ v
j
2.

An element v ∈ V1 ⊗ V2 is called a pure tensor if it can be written as v = v1 ⊗ v2 for some
v1 ∈ V1 and v2 ∈ V2. In order to describe any linear map L : V1 ⊗ V2 → W is suffices to know
how it acts on pure tensors [Exercise: Prove the last statement.]

A very important example that you should keep in mind is the tensor product of a real
vector space V with its dual, that is V ⊗ V ∗.

Exercise 1.144.

(i) Show that the real vector space of endomorphisms End(V ) and V ⊗ V ∗ are isomorphic as
real vector spaces via

V ⊗ V ∗ 3 v ⊗ ω 7→ (u 7→ ω(u)v) ∈ End(V ).

(ii) Show that V ⊗ R ∼= V and V ⊗W ∼= W ⊗ V for all real vector spaces V and W .

For the evaluation map

ev : V × V ∗ → R, (v, ω) 7→ ω(v) ∀v ∈ V, ω ∈ V ∗,

the induced map ẽv : V ⊗ V ∗ → R is called contraction. By saying that we contract v ⊗ ω
we simply mean sending it to ω(v). Further recall that V1 ⊗ (V2 ⊗ V3) and (V1 ⊗ V2)⊗ V3 are

21Make sure to understand why this is consistent with the definition of the tensor product.
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isomorphic. In the following we will deal with objects that, pointwise, are elements of vector
spaces of the form

V ⊗ . . .⊗ V︸ ︷︷ ︸
r times

⊗V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
s times

.

A contraction of an element v1 ⊗ . . . ⊗ vr ⊗ ω1 ⊗ . . . ⊗ ωs ∈ V ⊗ . . . ⊗ V ⊗ V ∗ ⊗ . . . ⊗ V ∗ will
stand for a map of the form

v1⊗ . . .⊗ vr ⊗ω1⊗ . . .⊗ωs 7→ ωβ(vα) · v1⊗ . . . ⊗̂ vα ⊗ . . . vr ⊗ω1⊗ . . . ⊗̂ ωβ ⊗ . . . ωs (1.19)

for 1 ≤ α ≤ r and 1 ≤ β ≤ s fixed, where “̂” means that the element is supposed to be left
out. This is precisely the induced map for the evaluation map in the (α, β)-th entry. If α and β
are not further specified, any statement that contains such a contraction is supposed to hold for
all possibilities of α and β.

We will now generalize the definition of a tensor product of vector spaces to vector bundles.
Fibrewise, the two definitions coincide.

Definition 1.145. Let πE : E →M be a vector bundle of rank k and πF : F →M be a vector
bundle of rank ` and, as in Definition 1.142, let ψEi and ψFi , i ∈ I, be local trivializations of E
and F , respectively, and A a fitting atlas of M with charts (ϕi, Ui), i ∈ I. The tensor product
of vector bundles of E and F , πE⊗F : E ⊗ F →M , is the vector bundle given fibrewise by

(E ⊗ F )p = π−1
E⊗F (p) := Ep ⊗ Fp,

so that E ⊗ F :=
⊔
p∈M

Ep ⊗ Fp. As in the construction of the Whitney sum of vector bundles, it

suffices by Proposition 1.74 to construct local trivializations φi : π−1(Ui)→ Ui×Rk⊗R` ∼= Ui×Rk`
covering E ⊗ F with smooth vector parts of their transition functions in order to show that
E ⊗ F is in fact a vector bundle. Analogous to equation (1.18) we set

φ−1
i := (ψEi ⊗ ψFi )−1 ◦ (∆M × idRk`) : Ui × Rk` ∼= Ui × (Rk ⊗ R`)→

⊔
p∈Ui

(Ep ⊗ Fp),

(p, v ⊗ w) 7→ (ψEi )−1(p, v)⊗ (ψFi )−1(p, w) ∀p ∈ Ui, v ∈ Rk, w ∈ R`, (1.20)

where ∆M : p 7→ (p, p) ∈M ×M again denotes the diagonal embedding and φ−1
i on non-pure

tensors is defined by linear extension for any p ∈ Ui fixed. For the transition functions of the
vector part in the change of local trivializations of E ⊗ F →M we obtain for all i, j ∈ I, such
that Ui ∩ Uj 6= ∅,

φi ◦ φ−1
j (p, v ⊗ w) = (p, τEij (p)v ⊗ τFij (p)w),

where τEij and τFij are the transition functions of the local trivializations of E and F , respectively.
We check [Exercise!] that the linear extension of

Rk ⊗ R` 3 v ⊗ w 7→ τEij (p)v ⊗ τFij (p)w ∈ Rk ⊗ R`

actually is an invertible linear map and conclude with Proposition 1.74 that E ⊗ F → M is
indeed a vector bundle of rank k · `.

Exercise 1.146. The endomorphism bundle of a vector bundle E →M is defined as

End(E) := E ⊗ E∗ →M.

Describe the transition functions of End(E) → M induced by given transition functions on
E →M .
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Definition 1.147. Let M be a smooth manifold and let (r, s) ∈ N0×N0 so that r+ s > 0. The
vector bundle

T r,sM := TM ⊗ . . .⊗ TM︸ ︷︷ ︸
r times

⊗T ∗M ⊗ . . .⊗ T ∗M︸ ︷︷ ︸
s times

→M

is called the bundle of (r, s)-tensors of M . In this notation, T 1,0M = TM and T 0,1M = T ∗M .
The (local) sections in the bundle of (r, s)-tensors are called (local) (r, s)-tensor fields, or
simply tensor fields if (r, s) is clear from the context, and are denoted by

Tr,s(M) := Γ(T r,sM).

In local coordinates (x1, . . . , xn) on U ⊂M , tensor fields A ∈ Tr,s(M) are of the form

A =
∑

1≤i1,...,ir≤n
1≤j1,...,jr≤n

Ai1...ir j1...js
∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs , (1.21)

Ai1...ir j1...js ∈ C∞(U) ∀1 ≤ i1, . . . , ir, j1, . . . , js ≤ n.

The above local form of tensor fields is commonly called index notation of tensor fields.
This is justified by the fact that locally A is uniquely determined by the local smooth functions
Ai1...ir j1...js on chart neighbourhoods of an atlas of M . Note that the summation in (1.21) “pairs
up” coinciding upper and lower indices. In physics literature, the summation signs are usually
omitted. This type of notation is called the Einstein summation convention. We will not
be using that convention a.k.a. notation but instead leave out the ranges of the summations
from here on whenever they are clear from the context. For example, a vector field X ∈ X(M)
on an n-dimensional smooth manifold M will then locally be written as

X =
∑

Xi ∂

∂xi
.

If A ∈ Tr,s(M) with r > 0 and s > 0 we can contract A in the i, j-th index, 1 ≤ i ≤ r,
1 ≤ j ≤ s, which is pointwise in local coordinates defined as in (1.19), and obtain a tensor field
in Tr−1,s−1(M).22

Remark 1.148. Recall Proposition 1.138 and the construction of the tensor product via its
universal property. One can show that Tr,s(M) is as C∞(M) module isomorphic to the C∞(M)-
multilinear maps HomC∞(M)(Ω1(M)×r × X(M)×s, C∞(M)). The proof needs some knowledge
about tensor products of modules, but essentially works as the proof of Proposition 1.138.

Exercise 1.149.
(i) Work out the transformation laws for (r, s)-tensor fields when changing coordinates. As an

example consider linear (global) change of coordinates in Rn, i.e.u
1

...
un

 = B

w
1

...
wn


for (u1, . . . , un) the canonical coordinates and B ∈ GL(n). [Even though it is a bit tedious,
do not skip this exercise!]

(ii) Show that contraction of tensor fields is well-defined, i.e. show that for a tensor field in
local coordinates first contracting and then changing coordinates yields the same expression
as first changing coordinates and then contracting. This in particular means that the
contraction of an endomorphism field in T1,1(M) is a well-defined smooth function on
M .

22T0,0(M) := C∞(M), see Remark 1.150.
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(iii) Check that the contraction of an endomorphism field A is pointwise in local coordinates
precisely the trace of the endomorphism Ap : TpM → TpM .

We know what it means to transport vector fields and 1-forms via diffeomorphisms from one
smooth manifold to another. For 1-forms we have seen that we can pull them back with respect
to any smooth map, not just diffeomorphisms. These constructions work for general tensor fields
as well by applying them entry-wise. Observe the following:

Remark 1.150. For any a ∈ Tr,s(M), b ∈ TR,0(M), c ∈ T0,S(M),

b⊗ a ∈ Tr+R,s(M), a⊗ c ∈ Tr,s+S(M),

where the tensor product is understood over C∞(M).23 For the above reason we identify reference!
C∞(M) with T0,0(M) so that a (0, 0)-tensor field is simply a smooth function. For f ∈ C∞(M),
we set f ⊗ a := fa for all a ∈ Tr,s(M).

Definition 1.151. Let M , N be smooth manifolds and let F : M → N be a diffeomorphism.
The pushforward and pullback of tensor fields under F are the unique R-linear maps

F∗ : Tr,s(M)→ Tr,s(N),
F ∗ : Tr,s(N)→ Tr,s(M),

such that

(i) F∗ : T1,0(M)→ T1,0(N) is the pushforward of vector fields, F ∗ : T1,0(N)→ T1,0(M) is the
pullback of vector fields,

(ii) F∗ : T0,1(M) → T0,1(N) is the pushforward of 1-forms, F ∗ : T0,1(N) → T0,1(M) is the
pullback of 1-forms,

(iii) F∗(b⊗ a) = (F∗b)⊗ (F∗a) and F ∗(b⊗ a) = (F ∗b)⊗ (F ∗a) for all a ∈ Tr,s(M), b ∈ TR,0(M),

(iv) F∗(a⊗ c) = (F∗a)⊗ (F∗c) and F ∗(a⊗ c) = (F ∗a)⊗ (F ∗c) for all a ∈ Tr,s(M), c ∈ T0,S(M).

For f ∈ C∞(M), g ∈ C∞(N), we set

F∗(f) := f ◦ F−1, F ∗g := g ◦ F

so that F∗(fa) = F∗(f)F∗(a) and F ∗(gb) = F ∗(g)F ∗(b) for all f ∈ C∞(M), g ∈ C∞(N),
a ∈ Tr,s(M), b ∈ Tr,s(N).

The above definition might look worse than it actually is. If we are given some specific tensor
field, say, an endomorphism field A ∈ T1,1(M) which is in local coordinates on U ⊂M of the
form

A =
∑

Aij
∂

∂xi
⊗ dxj

and a diffeomorphism F : M → N , all we need to do to calculate the local form of F∗A is to
choose fitting local coordinates on (or on a subset of) F (U) ⊂ N , and after possibly shrinking U
calculate F∗

(
∂
∂xi

)
, F∗(dxj), for all 1 ≤ i, j ≤ n. Then we can use the R-linearity of the tensor

product to get a local form of F∗(A).

Remark 1.152. The pullback of (0, s)-tensors on N is well-defined even if F : M → N is not a
diffeomorphism.

23This means that (fb)⊗ a = b⊗ (fa) for all f ∈ C∞(M), the construction of the tensor product of modules is
analogous to the construction of tensor products of vector spaces. For a reference see e.g. [].
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Lemma 1.153. Contraction of tensor fields commute with the pushforward and with the
pullback defined above.

Proof. By the R-linearity and Definition 1.151, (i) and (ii), it suffices to show that

F∗(α(X)) = F∗(α)(F∗(X))

and
F ∗(β(Y )) = F ∗(β)(F ∗(Y ))

for all diffeomorphisms F : M → N and all α ∈ Ω1(M), β ∈ Ω1(N), X ∈ X(M), Y ∈ X(N).
This follows directly from Definitions 1.120 and 1.140.

Exercise 1.154.

(i) Show that the pushforward w.r.t. a diffeomorphism F : M → N is inverse to the pullback
w.r.t. the inverse of the diffeomorphism F−1 : N →M , independently of the type of tensor
fields.

(ii) Determine all vector fields on S1 that are invariant under the pushforward of all rotations
in the ambient space R2 restricted to S1. X ∈ X(S1) being invariant under F : S1 → S1

means that Xp = (F∗X)p for all p ∈ S1.

Recall the definition of the Lie derivative of vector fields. Geometrically, the Lie derivative is
one way of measuring the infinitesimal change of a vector field along the local flow of another
vector field. We can, analogously, define the Lie derivative of general tensor fields with respect
to a given vector field.

Definition 1.155. Let M be a smooth manifold, X ∈ X(M) a vector field, and A ∈ Tr,s(M) a
tensor field. Then the Lie derivative of A in direction of X, LXA ∈ Tr,s(M), is defined as

(LXA)p := ∂

∂t

∣∣∣∣
t=0

(ϕ∗tA)p ∀p ∈M,

where ϕ : I × U →M is any local flow of X near p ∈M .

Note that (ϕ∗tA)p is, for p fixed, for all t ∈ I contained in the same vector space TpM ⊗ . . .⊗
TpM ⊗ T ∗pM ⊗ . . .⊗ T ∗pM , thus LXA is well-defined.

Remark 1.156. The above definition is consistent with the identification T0,0(M) = C∞(M).

Proposition 1.157. The Lie derivative of tensor fields is a tensor derivation, i.e. it is
compatible with all possible contractions and fulfils the Leibniz rule

LX(A⊗B) = LXA⊗B +A⊗ LXB

for all vector fields X and all tensor fields A, B, such that A⊗B is defined.

Proof. To show compatibility with arbitrary contractions it suffices to show that this property
holds true for endomorphism fields A ∈ T1,1(M) for which there is precisely one possible
contraction. All other possible cases will follow by induction and the Leibniz rule. We will
prove first that the Leibniz rule is fulfilled. Let p ∈ M be fixed and A, B, two tensor fields,
such that A ⊗ B is defined. First assume that (A ⊗ B)p = Ap ⊗ Bp 6= 0. Let X ∈ X(M) be
arbitrary but fixed and denote by ϕ : I ×U →M its local flow near p with U ⊂M contained in
a chart neighbourhood for some local coordinates. We can find an interval (−ε, ε) ⊂ I for ε > 0
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small enough, such that in the local coordinates on U and the induced coordinates on the fitting
(r, s)-tensor bundles ψ and φ, the pullbacks of A and B w.r.t. the local flow of X are of the form

ψ((ϕ∗tA)p) = (p, a(t)v), φ((ϕ∗tB)p) = (p, b(t)w) ∀t ∈ (−ε, ε).

In the above equation, 0 6= v ∈ RN1 and 0 6= w ∈ RN2 are fixed nonzero vectors and N1, N2,
depend on the type of tensor field that A and B are. The expressions a(t) and b(t) stand for
smooth and uniquely defined maps

a : (−ε, ε)→ GL(N1), b : (−ε, ε)→ GL(N2),

with a(0) = idRN1 and b(0) = idRN2 . Thus, in order to prove the Leibniz property, it suffices to
show that for any finite dimensional real vector spaces V , dim(V ) = N1, and W , dim(W ) = N2,
and any smooth maps a and b as above,

∂

∂t

∣∣∣∣
t=0

((a(t)v)⊗ (b(t)w)) = (a′(0)v)⊗ w + v ⊗ (b′(0)) (1.22)

for all v ∈ V , w ∈W . This follows from the defining universal property of the tensor product
of vector spaces as follows. Let L : V ×W → R be any bilinear map and L̃ : V ⊗W → R the
corresponding linear map, so that L(a(t)v, b(t)w) = L̃((a(t)v)⊗ (b(t)w)) for all v ∈ V , w ∈W ,
t ∈ (−ε, ε). By taking the t-derivative at t = 0 on both sides we obtain

∂

∂t

∣∣∣∣
t=0

L̃((a(t)v)⊗ (b(t)w)) = L̃((a′(0)v)⊗ w + v ⊗ (b′(0)w)).

Since L and thus L̃ were arbitrary, the above statement hold in particular for all component
functions. This shows (1.22) and, hence, proves the Leibniz property. To obtain the compatibility
with contractions it is enough to consider W = V ∗ and L = ev the evaluation map. Then L̃ is
precisely the contraction.

Next assume that (A⊗B)p = 0 and that there exists a convergent sequence {pn}n∈N with
pn → p as n→∞, such that (A⊗B)pn 6= 0 for all n ∈ N . Then the statement of this proposition
follows with a continuity argument similar to the one used in Proposition 1.128.

Lastly assume that (A⊗B)p = 0 and A⊗B vanishes identically on an open neighbourhood
U ⊂ M of p. Then A or B must already vanish identically on U . Without loss of generality
we can assume that U is a chart neighbourhood and choose a fitting bump function b with
supp(b) ⊂ U compactly embedded, so that the locally defined prefactors in the local forms of
A and B, multiplied with said bump function, are globally defined smooth functions. Now we
use that bA and bB vanish identically and in some smaller open neighbourhood V ⊂ U coincide
with A and B, respectively. Thus on V if bA ≡ 0 we obtain LX(A) = LX(bA) = LX(0) = 0 and
a similar identity for B and A⊗B. This finishes the proof.

Corollary 1.158. (LXα)(Y ) = X(α(Y ))− α([X,Y ]) for all X,Y ∈ X(M) and all α ∈ Ω1(M).

Exercise 1.159. Show that LX(df) = d(LXf) for all f ∈ C∞(M), X ∈ X(M).

2 Pseudo-Riemannian metrics, connections, and geodesics

2.1 Pseudo-Riemannian metrics and isometries

We start this section with quickly recalling some facts from linear algebra on finite-dimensional
vector spaces equipped with a scalar product, that is a symmetric bilinear map with values in R.
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Remark 2.1. Let V be a finite-dimensional real vector space. A pseudo-Euclidean scalar
product on V is a nondegenerate symmetric bilinear map

〈·, ·〉 : V × V → R.

Nondegenerate means that there exists no proper linear subspaceW ⊂ V , such that 〈·, ·〉|W×V ≡ 0.
The index of 〈·, ·〉 is defined as the number of its negative eigenvalues when written as a
symmetric dim(V )×dim(V )-matrix. The index does not depend on the choice of basis of V , this
is Sylvester’s law of inertia. If the index of the pseudo-Euclidean scalar product is zero, it is
simply called Euclidean scalar product. A vector space equipped with a (pseudo)-Euclidean
scalar product is called (pseudo)-Euclidean vector space. Prominent examples are Rn
together with the Euclidean scalar product that is given by the dot-product, i.e.

〈v, w〉 =
n∑
i=1

viwi,

and Rn+1 together with the Minkowski scalar product

〈v, w〉 = −vn+1wn+1 +
n∑
i=1

viwi.

Note that in certain fields of theoretical physics one uses an overall sign in front of the Minkowski
scalar product. The length of a vector v ∈ V with respect to a pseudo-Euclidean scalar product
〈·, ·〉 is defined as

‖v‖ :=
√
|〈v, v〉|.

If 〈·, ·〉 is a pseudo-Euclidean scalar product with positive index smaller than the dimension of
the vector space, one says that a vector v is spacelike if 〈v, v〉 > 0, timelike if 〈v, v〉 < 0, and
null (or lightlike) if 〈v, v〉 = 0. If 〈·, ·〉 is Euclidean each nonzero vector has positive length.
Let A ∈ GL(V ) describe a change of basis in a pseudo-Euclidean vector space (V, 〈·, ·〉) in the
sense that A maps the new basis to the given one and assume that the representation matrix of
〈·, ·〉 is given by the symmetric matrix B. Then in the new basis, the representation matrix of
〈·, ·〉 is given by ATBA.24 Two pseudo-Euclidean vector spaces (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ) are
called isometric if there exist a linear isomorphism A : V →W , such that 〈·, ·〉V = 〈A·, A·〉W .
A is then called (linear) isometry. Two finite-dimensional pseudo-Euclidean vector spaces are
isometric if and only if their dimension and index of the scalar product coincide. Note that any
pseudo-Euclidean scalar product might be interpreted as an element in Sym2(V ∗) which denotes
the set of symmetric two-tensors in V ∗ ⊗ V ∗.

Exercise 2.2. Show that for any pseudo-Euclidean vector space (V, 〈·, ·〉), 〈·, ·〉 is completely
determined by its value on the diagonal in V × V , that is on vectors of the form (v, v) ∈ V × V .

One can use Sylvester’s law of inertia to prove the following fact from linear algebra.

Proposition 2.3. Let (V, 〈·, ·〉) be a pseudo-Euclidean vector space of dimension n and let ν
denote the index of 〈·, ·〉. Then (V, 〈·, ·〉) is isometric to (Rn, 〈·, ·〉ν), where

〈v, v〉ν :=
n−ν∑
i=1

(vi)2 −
n∑

i=n−ν+1
(vi)2

.

Recall the definition of orthogonality from linear algebra:
24Compare this formula to the pullback of 1-forms.
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Definition 2.4. Let (V, 〈·, ·〉) be a pseudo-Euclidean vector space and W ⊂ V a pseudo-
Euclidean linear subspace, meaning that 〈·, ·〉|W×W is a pseudo-Euclidean scalar product on W .
Then the orthogonal complement W⊥ ⊂ V of W in V with respect to 〈·, ·〉 is given by

W⊥ := {v ∈ V | 〈v, w〉 = 0 ∀w ∈W}.

W⊥ is a linear subspace of V of dimension dim(W⊥) = dim(V )− dim(W ) and

W ⊕W⊥ = V.

If W ⊂ V is any linear subspace of V , we will also use the notation W⊥ for its orthogonal
complement. Two arbitrary vectors v, w ∈ V are called orthogonal if 〈v, w〉 = 0, and two linear
subspaces V1, V2 of V are called orthogonal to each other if 〈v1, v2〉 = 0 for all v1 ∈ V1, v2 ∈ V2.
A basis {v1, . . . , vn} of V is called orthogonal basis with respect to 〈·, ·〉 if 〈vi, vj〉 = 0 for all
1 ≤ i, j ≤ n, i 6= j. An orthogonal basis is called orthonormal basis if additionally ‖vi‖ = 1
for all 1 ≤ i ≤ n.

The following exercise recaptures some additional facts from linear algebra.

Exercise 2.5.

(i) Prove that every pseudo-Euclidean vector space admits an orthonormal basis.

(ii) Show that the index ν of a pseudo-Euclidean scalar product coincides with the number of
elements in {i | 〈vi, vi〉 = −1} for any given orthonormal basis {v1, . . . , vn} of (V, 〈·, ·〉).

(iii) For any given pseudo-Euclidean vector space (V, 〈·, ·〉) and W ⊂ V any linear subspace,
prove:

(a) (W⊥)⊥ = W ,
(b) W is a pseudo-Euclidean linear subspace ⇔ W ∩W⊥ = {0} ⇔ V = W ⊕W⊥.

(iv) Linear isometries map orthonormal (orthogonal) bases to orthonormal (orthogonal) bases.

We want to translate the concept of pseudo-Euclidean vector spaces to smooth manifolds.
More precisely we want to understand what it means to specify for each point p in a given
manifold M a pseudo-Euclidean scalar product on TpM , such that this assignment varies
smoothly on M .

Definition 2.6. Let M be a smooth manifold. A pseudo-Riemannian metric with index
0 ≤ ν ≤ dim(M) on M is a symmetric (0, 2)-tensor field g ∈ T0,2(M), g : p 7→ gp ∈ Sym2(T ∗pM),
such that for all p ∈ M gp is a pseudo-Euclidean scalar product of index ν on TpM . This in
particular means that

g(X,Y ) = g(Y,X) ∈ C∞(M)

for all vector fields X,Y ∈ X(M). If ν = 0, g is called Riemannian metric. In local coordinates
(x1, . . . , xn) on U ⊂M , g is of the form

g =
n∑

i,j=1
gij dx

i ⊗ dxj , (2.1)

where
gij := g

(
∂

∂xi
,
∂

∂xj

)
∈ C∞(U) (2.2)

for all 1 ≤ i, j ≤ n. The symmetry condition for g is equivalent to requiring that in all local
coordinates gij = gji. This means that (gij), viewed as a n× n-matrix valued smooth map on
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the coordinate domain, is at each point a symmetric matrix. If we write in local coordinates
X =

n∑
i=1

Xi ∂
∂xi

, Y =
n∑
i=1

Y i ∂
∂xi

, we obtain the local formula for g(X,Y )

g(X,Y ) =
n∑

i,j=1
gijX

iY j ,

which heuristically corresponds to plugging in X in the left half and Y in the right half of the
tensor terms in g.

Definition 2.7. A smooth manifold M equipped with a (pseudo)-Riemannian metric g is called
(pseudo)-Riemannian manifold.

Remark 2.8. Of particular importance in mathematics and physics are pseudo-Riemannian
manifolds of index 0 and 1, that is Riemannian manifolds and Lorentz manifolds, respec-
tively. The latter are the manifolds that are studied in general relativity, for an introduction see
[O, Ch. 12]. Why would one want to study Riemannian manifolds in their full generality, aside
from an explanation how the standard Riemannian metric on Rn induced by the Euclidean scalar
product at each point transforms? The answer is manifold (this time, the latter is an adjective).
First and foremost because it allows our studied geometrical objects to have curvature. We will
study this topic extensively in Sections 3 and 4. Furthermore, Riemannian metrics give us a way
to study volumes of submanifolds. This is not completely trivial, as it involves the construction
a of so-called volume form from a given Riemannian metric, respectively its restriction to
submanifolds, cf. Section ??. For starters, it allows us to define the arc-length of a curve. fix this

Definition 2.9. Let (M, g) be a Riemannian manifold and γ : I →M a smooth curve. Then
the arc-length, or simply length, of γ is defined as

L(γ) =
∫
I

√
g(γ′, γ′)dt.

Note that L(γ) =∞ is allowed.

Next we will study some explicit examples of pseudo-Riemannian manifolds.

Example 2.10.
(i) Any pseudo-Riemannian vector space (V, 〈·, ·〉) is, viewed as a smooth manifold with

gp := 〈·, ·〉 for all p ∈ V 25, a pseudo-Riemannian manifold. If V = Rn equipped with its
canonical coordinates and Euclidean scalar product at each tangent space, the induced
Riemannian metric in canonical coordinates (u1, . . . , un) is given by

g =
n∑
i=1

dui ⊗ dui.

(ii) Any smooth submanifold M ⊂ Rn equipped with

g ∈ T0,2(M), gp = 〈·, ·〉|TpM×TpM

for all p ∈M , that is the restriction of the Euclidean scalar product on TpRn ∼= Rn to the
tangent space TpM of M at p, is a Riemannian manifold.

(iii) More generally, any smooth submanifold of a Riemannian manifold is by restriction of the
metric to the tangent bundle of the smooth submanifold a Riemannian manifold.

25Recall that TpV ∼= V for all p ∈ V .
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(iv) If (M, gM ) and (N, gN ) are pseudo-Riemannian manifolds with index νM , νN , respectively,
the product M ×N is a pseudo-Riemannian manifold of index νM +νN . The corresponding
product metric on M ×N is given by

gM×N := gM + gN , gM×N ((v, w), (v, w)) = gM (v, v) + gN (w,w),

for all (v, w) ∈ TM ⊕ TN ∼= T (M ×N).

Example 2.10 (iii) motivates the following definition.

Definition 2.11. Let (N, g) be a pseudo-Riemannian manifold and M ⊂ N a smooth submani-
fold. M is called pseudo-Riemannian submanifold of N if

g := g|TM×TM

is a pseudo-Riemannian metric on M . In the above equation, the restriction to TM × TM
means that we restrict the basepoint of g to M ⊂ N and the vectors we are allowed to plug in
to vectors in TM ⊂ TN .

Exercise 2.12.

(i) Show that any smooth manifold can be equipped with a Riemannian metric. [Hint: Use a
countable smooth partition of unity subordinate to a countable atlas on M .]

(ii) Show that not every manifold can be equipped with a pseudo-Riemannian, not Riemannian,
metric. This is to be understood to also exclude the index ν = dim(M). [“Hint”: This
exercise is very difficult.]

(iii) Show that every n ≥ 2-dimensional pseudo-Riemannian manifold N with metric g of index
1 ≤ ν ≤ n− 1 has smooth submanifolds that are not pseudo-Riemannian submanifolds.

The pseudo-Riemannian manifold-analogue to isometries of pseudo-Euclidean vector spaces
is as follows.

Definition 2.13. Let (M, g) and (N,h) be pseudo-Riemannian manifolds and F : M → N a
diffeomorphism. Then F is called an isometry if F ∗h = g or, equivalently, F∗g = h. One checks
that the first condition is equivalent to

gp(Xp, Yp) = hF (p)(dFp(Xp), dFp(Yp))

for all X,Y ∈ X(M) and all p ∈M , meaning that fibrewise dFp is a linear isometry. The two
pseudo-Riemannian manifolds (M, g) and (N,h) are then called isometric. The isometries
F : M →M with respect to g form a group, the isometry group of (M, g), which is denoted
by Isom(M, g).

Example 2.14.

(i) Every orthogonal transformation A ∈ O(n + 1) is, by definition, an isometry of Rn+1

equipped with the standard Riemannian metric given pointwise by the Euclidean scalar
product 〈·, ·〉.

(ii) Since each A ∈ O(n + 1) restricts to a diffeomorphism of the unit sphere Sn ⊂ Rn+1, it
is an isometry of (Sn, 〈·, ·〉|TSn×TSn). The Riemannian metric 〈·, ·〉|TSn×TSn is sometimes
called the round metric.
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(iii) Consider the upper half plane H := {(x, y) ∈ R2 | y > 0} equipped with the Riemannian
Poincaré metric

g = 1
y2 (dx2 + dy2).

(H, g) is called the Poincaré half-plane model. When viewed as a subset of C via
H 3 (x, y) 7→ x+ iy ∈ C, one obtains an isometric action26 of

PSL(2,R) = SL(2,R)/∼, A ∼ B :⇔ A = ±B,

on H ⊂ C defined by

µ : PSL(2,R)×H → H,

(
a b
c d

)
· z := az + b

cz + d
.

Exercise 2.15. Prove the statement in Example 2.14 (iii) and show that the group action
µ : PSL(2,R)×H → H is transitive.

A change of coordinates on M induces a fibrewise change of bases in T r,sM for all r + s > 0.
We obtain the following result for local forms of pseudo-Riemannian metrics under a change of
coordinates.

Lemma 2.16. Let (M, g) be a pseudo-Riemannian manifold and let ϕ = (x1, . . . , xn) and
ψ = (y1, . . . , yn), be local coordinate systems on U ⊂ M and V ⊂ M , respectively, such that
U ∩ V 6= ∅. Denote on U ∩ V

g =
∑
i,j

gij dx
i ⊗ dxj =

∑
i,j

g̃ij dy
i ⊗ dyj . (2.3)

The local coordinate systems ϕ and ψ are related by (x1, . . . , xn) = F (y1, . . . , yn) on U ∩ V ,
where F : ψ(U ∩ V ) → ϕ(U ∩ V ). Then the matrix valued maps (gij) and (g̃ij) in (2.3) are
related by

(g̃ij)|p = dF Tψ(p) · (gij)|ϕ−1(F (ψ(p))) · dFψ(p).

Proof. Follows by considering coordinate representations of (gij) and (g̃ij), writing down the
pullback of (gij) with respect to F , and comparing the prefactors.

At first glance the above lemma might look more complicated than it actually is. Pointwise,
the statement is precisely the transformation law for pseudo-Euclidean scalar products under a
change of basis.

Recall the following construction from linear algebra.

Definition 2.17. Let V be a real finite-dimensional vector space and A ∈ End(V ) ∼= V ⊗ V ∗,
so that for a basis {v1, . . . , vn} of V

A =
n∑

i,j=1
aij vi ⊗ v∗j .

The trace of A is defined as
tr(A) :=

n∑
i=1

aii.

26This means: A group action µ : PSL(2,R)×H → H, where for every group element A ∈ PSL(2,R) fixed, the
induced map µ(A, ·) : H → H is an isometry.
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Exercise 2.18. Check that the definition of the trace in Definition 2.17 is well-defined, meaning
that it gives the same value for all choices of a basis of V .

Example 2.19.

(i) tr(idV ) = dim(V ),

(ii) tr(A+B) = tr(A) + tr(B) for all A,B ∈ End(V ),

(iii) tr(AB) = tr(BA) for all A,B ∈ End(V ),

(iv) tr(v ⊗ ω) = ω(v) for all v ∈ V , ω ∈ V ∗.

One can furthermore show the following:

Lemma 2.20. Let (V, 〈·, ·〉) be a finite-dimensional pseudo-Euclidean vector space and A ∈
End(V ). Let {e1, . . . , en} be an orthonormal basis of V with respect to 〈·, ·〉. Then

tr(A) =
n∑
i=1

εi〈ei, Aei〉,

where εi := 〈ei, ei〉 ∈ {−1, 1} for all 1 ≤ i ≤ n.

Proof. Exercise.

One can for pseudo-Euclidean vector spaces further define natural (possibly indefinite) scalar
products on V ⊗r ⊗ (V ∗)⊗s for all r + s > 0.

Definition 2.21. Let (V, 〈·, ·〉) be a pseudo-Euclidean vector space and {e1, . . . , en} a basis of
V . Let further A ∈ V ⊗r ⊗ (V ∗)⊗s and write

〈·, ·〉 =
n∑

i,j=1
gij e

∗
i ⊗ e∗j ,

A =
∑

1≤i1,...,ir≤n
1≤j1,...,jr≤n

Ai1...ir j1...js ei1 ⊗ . . .⊗ eir ⊗ e∗j1 ⊗ . . .⊗ e
∗
js .

Then

〈A,A〉 :=
∑

1≤i1,...,ir≤n
1≤j1,...,jr≤n
1≤I1,...,Ir≤n
1≤J1,...,Jr≤n

Ai1...ir j1...js ·AI1...Ir
J1...Js · gi1I1 · . . . · girIr · gj1J1 · . . . · gjsJs (2.4)

defines a, possibly indefinite, symmetric bilinear form on V ⊗r ⊗ (V ∗)⊗s. In the above formula
the g-terms fulfil, when viewed as symmetric matrix-valued smooth maps,

(gij) := (gij)−1.

Remark 2.22. Formula (2.4) should make you ask one thing and realize another. Firstly you
should ask why one would write down something like that. The formula (2.4) is, when generalized
to smooth manifolds and tensor powers of the tangent bundle, used to define certain geometric
invariants, e.g. the so-called Kretschmann scalar, see Remark 3.28. Secondly, the summation
ranges in (2.4) should convince you that sometimes it might be a good idea to be a little bit
imprecise to increase readability when the ranges are clear from the setting. In the following we
will do just that.
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As hinted in the above remark, Definitions 2.17 and 2.21 readily generalize to smooth
manifolds and tensor bundles.

Definition 2.23. Let (M, g) be a pseudo-Riemannian manifold, A ∈ T1,1(M) an endomorphism
field, h ∈ T0,2(M) a symmetric (0, 2)-tensor field, and B ∈ Tr,s(M) for r + s > 0 an arbitrary
tensor field. Then the trace of A is in local coordinates (x1, . . . , xn), so that A =

∑
Aij

∂
∂xi
⊗dxj ,

given by
tr(A) :=

∑
i

Aii.

The above term is invariant under coordinate change, which follows from fibrewise invariance
of the choice of basis in TpM and the fact that the coordinate cotangent vector at each point
are precisely the dual to the coordinate tangent vectors at that point. This means that
tr(A) ∈ C∞(M). The trace of h, given locally by h =

∑
i,j
hijdx

i⊗dxj , with respect to g is defined

in local coordinates as
trg(h) :=

∑
i,j

hij g
ij .

As for the endomorphism field, trg(h) is invariant under coordinate change which implies
trg(h) ∈ C∞(M), but not invariant of the pseudo-Riemannian metric g. Furthermore, we define
the induced pairing of B with itself with respect to g in the given local coordinates as

g(B,B) :=
∑

Bi1...ir
j1...js ·BI1...Ir

J1...Js · gi1I1 · . . . · girIr · gj1J1 · . . . · gjsJs ,

where
B =

∑
Bi1...ir

j1...js
∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs

and (gij) = (gij)−1 at each point when viewed as symmetric matrix valued maps. As for
the trace, value of g(B,B) does not depend on the choice of local coordinates which implies
g(B,B) ∈ C∞(M). Note that one can similarly define a symmetric pairing g in the bundle
T r,sM →M , which is an example of a possibly indefinite bundle metric.

Example 2.24. For any pseudo-Riemannian manifold (M, g) of dimension n we have

trg(g) = g(g, g) ≡ n.

Pseudo-Riemannian metrics allow us to take any (r, s)-tensor field and change it into an
(r′, s′)-tensor field if r+ s = r′ + s′. This process is reversible, and on the level of bundles known
as musical isomorphisms.

Proposition 2.25. Let (M, g) be a pseudo-Riemannian manifold. Then T r,sM → M and
T r
′,s′M →M are isomorphic as vector bundles if r + s = r′ + s′.

Proof. We first proof that T ∗M →M and TM →M are isomorphic. Let

F : TM → T ∗M, v 7→ g(v, ·).

It is clear that g(v, ·) ∈ T ∗pM for all v ∈ TpM . Furthermore, the map F is smooth, fibre-
preserving, and at each point a linear isomorphism. Its inverse is given by

F−1 : T ∗M → TM, ω 7→ g−1(ω, ·),

where we use the pointwise identification (T ∗pM)∗ = TpM and g−1 is given in local coordinates
by

g−1 =
∑

gij
∂

∂xi
⊗ ∂

∂xj
.
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In order to show that T r,sM →M and T r′,s′M →M are isomorphic for arbitrary r, s, r′, s′ with
r + s = r′ + s′ one inductively uses entrywise isomorphisms. Note that there are usually choices
involved which vector or covector parts to change into covector and vector parts, respectively.
These choices correspond to which index is lowered or raised. Exceptions are e.g. going from
T 1,1M to T 0,2M where there is only one possible choice of lowering an index. Care is also
required when composing such isomorphisms as it might lead to “swapping” in the tensor powers
of the vectors and covectors, where we recall that e.g. in TM ⊗ TM →M swapping the fibres
is an isomorphism of vector bundles.

The above Proposition 2.25 describes what is commonly, in particular in physics, known
as lowering/raising indices. This is due to when one composes these isomorphisms with tensor
fields, locally the prefactors’ index locations change from up to down or the other way round.
Check for example what happens to the used pseudo-Riemannian metric if one raises an index!

Remark 2.26. The isomorphisms of vector bundles T r,sM → T r+1,s−1M are denoted by ]
(read: “sharp”), and the isomorphisms T r,sM → T r−1,s+1M are denoted by [ (read: “flat”).
Hence the name “musical isomorphisms”. One needs to make sure to be aware of which index
is moved up or down if there is a choice! Note that, using the musical isomorphisms, we could
have defined the trace of endomorphism fields A ∈ T1,1(M) on a pseudo-Riemannian manifold
(M, g) as

trg(A) =
∑
ij

(]A)ijgij .

It is crucial to observe that, as for our definition of tr(A) in Definition 2.23, the above term
trg(A) is invariant27 of the pseudo-Riemannian metric g. Also note that usually one suppresses
writing down ] and [ and simply writes e.g. Aij instead of (]A)ij since the location of the indices
(i.e. “up” or “down”) determine which one of them has been raised or lowered. It is however
of prime importance to always be aware of which metric has been used to lower or raise
indices!

Recall the gradient of smooth functions on Rn. The gradient of a smooth function f : Rn → R
is a vector field given by

grad(f) :=
n∑
i=1

∂f

∂ui
∂

∂ui
∈ X(Rn).

There is an invariant generalization for that concept to pseudo-Riemannian manifolds using our
above defined musical isomorphisms for which the above formula is precisely the to-be-defined
gradient of f on Rn with respect to the Riemannian metric given by the standard Euclidean
scalar product (in each tangent space TpRn).

Definition 2.27. Let (M, g) be a pseudo-Riemannian manifold and f ∈ C∞(M) a smooth
function. The gradient vector field of f with respect to g, gradg(f) ∈ X(M), is defined as

gradg(f) := g−1(df) ∈ X(M).

In local coordinates (x1, . . . , xn), gradg(f) is of the form

n∑
i,j=1

∂f

∂xi
gij

∂

∂xj
.

Gradient vector fields are of critical importance in the study of pseudo-Riemannian submani-
folds as we find the following description of tangent bundle of pseudo-Riemannian submanifolds.

27Ask yourself why this is true!
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Lemma 2.28. Let (M, g) be a pseudo-Riemannian manifold, M ⊂ M a pseudo-Riemannian
submanifold of codimension k, and identify TqM = ι∗(TqM) ⊂ TqM for all q ∈ M , where ι is
the inclusion. For p ∈ M fixed let28 f = (f1, . . . , fk) : U → Rk, U ⊂ M open, p ∈ U , be any
smooth map of maximal rank such that

M ∩ U = {f = 0} ⊂M.

Then
TqM = ker(df1

q ) ∩ . . . ∩ ker(dfkq ) ⊂ TqM (2.5)

and
(TqM)⊥ = spanR{gradg(f1)q, . . . , gradg(fk)q} ⊂ TqM (2.6)

for all q ∈M ∩ U . In particular, TqM ⊕ (TqM)⊥ = TqM for all q ∈M ∩ U .

Proof. Fix q ∈M ∩ U and v ∈ TqM . For any smooth curve γ : I →M ⊂M , γ′(t) is tangential
to M for all t ∈ I, which follows by using adapted coordinates. Choose a smooth curve
γ : (−ε, ε)→M ⊂M fulfilling γ′(0) = v. Then for all 1 ≤ i ≤ k,

df i(v) = ∂

∂t

∣∣∣∣
t=0

(f ◦ γ) = ∂

∂t

∣∣∣∣
t=0

(0) = 0.

This shows TqM ⊂ ker(df1
q )∩ . . .∩ker(dfkq ). On the other hand, f being of maximal rank implies

that df1
q , . . . , df

k
q are linearly independent. Hence, the intersection of their kernels fulfils

dim(ker(df1
q ) ∩ . . . ∩ ker(dfkq )) = dim(TqM)− k = dim(TqM).

Hence, (2.5) holds as claimed. For (2.6) one uses that g is pointwise nondegenerate, hence each
nonzero vector in spanR{gradg(f1)q, . . . , gradg(fk)q} is not contained in TqM = ker(df1

q ) ∩ . . . ∩
ker(dfkq ). By TqM ⊕ (TqM)⊥ = TqM and by comparing dimensions, (2.6) follows.

The above lemma tells us how to pointwise understand the tangent space of an ambient
manifold of a submanifold as a combination of tangent and normal parts. How can we
formulate this in a coordinate free, global statement? To do so we need to define bundles along
submanifolds.

Lemma 2.29. Let πE : E →M be a vector bundle of rank k and let M be a submanifold of
M . Then

πE|M : E|M →M, (E|M )p := π−1
E|M (p) := π−1

E (p) ∀p ∈M, E|M :=
⊔
p∈M

(E|M )p,

is a vector bundle of rank k over M . It is called vector bundle along M .

Proof. In order to proof this statement it suffices to work in local coordinates. Without loss
of generality assume that locally, M is given by an open set in R`, ` ≤ dim(M), and that the
inclusion M ⊂M is of the form

ι : (x1, . . . , x`) 7→ (x1, . . . , x`, 0, . . . , 0) ∈ Rdim(M).

The rest of the proof consists of applying the vector bundle chart lemma to the restriction of, after
possibly shrinking U , the transition functions of E →M in local coordinates to U ⊂ Rdim(M)

and observing that the vector parts are, still, smooth.
28If you are not convinced of the existence of such a function f near any point: Prove its existence!
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The above lemma might seem more complicated than it actually is. It means that locally,
we can make the base space smaller in dimension but keep all possible vectors attached to
that smaller set. The most important example for us is restricting the tangent and cotangent
bundle of an ambient manifold to a submanifold. In this setting, we see that vector fields along
the inclusion map are just sections of the tangent bundle of the ambient manifold along the
submanifold. Lemmas 2.28 and 2.29 motivate the following definition.

Definition 2.30. Let (M, g) be a pseudo-Riemannian manifold and M ⊂ M a pseudo-
Riemannian submanifold of codimension k. Then the normal bundle of M , TM⊥ → M , is
defined as

TM⊥ :=
⊔
p∈M

(TpM)⊥,

with projection induced by the tangent bundle of M along M , TM |M →M . In particular we
have

TM |M = TM ⊕ TM⊥,

and the above direct sum is orthogonal with respect to g.

In Definition 2.30 above we have split up TM |M into TM ⊕ TM⊥, so in particular we have
at each point p ∈M

TpM |M = TpM = TpM ⊕ TpM⊥.

Fibrewise, TpM and TpM⊥ are subvector spaces of TpM . Is this a special case of a more general
concept for bundles? As you might have guessed already, the answer is yes.

Definition 2.31. Let πE : E → M be a vector bundle. Another vector bundle πF : F → M
is called subbundle of E → M if for all p ∈ M , Fp is a linear subspace of Ep, the canonical
injection

F ↪→ E,

given fibrewise by the inclusion Fp ⊂ Ep, is an embedding, πF = πE |F , and for all local
trivializations φ of E the restrictions φ|F are local trivializations of F . This means that the
bundle structure of F →M and the smooth manifold structure of the total space F are induced
by the bundle structure of E → M and the smooth manifold structure of the total space E,
respectively.

In the sense of Definition 2.31, the vector bundles TM →M and TM⊥ →M of a pseudo-
Riemannian submanifold M ⊂M are both subbundles of TM |M .

Exercise 2.32. Give a rigorous proof of the above statement. [Hint: You will probably learn
exactly the same and at the same time gain more geometrical insight if you prove this statement
for surfaces in R3, while at the same time not having to fight with too many indices.]

The most prominent examples of gradient vector fields and their relation to the normal
bundle that are usually used for introductory purposes are level sets of quadratic polynomials
which fulfil a certain nondegeneracy condition.

Example 2.33.

(i) Let f : Rn+1 → R, f(u1, . . . , un) =
∑
i

(ui)2 and consider the ambient space Rn+1 equipped

with its standard Riemannian metric, denoted simply by 〈·, ·〉. Then

Sn = {f = 1} ⊂ Rn+1
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is a Riemannian submanifold of (Rn+1, 〈·, ·〉) with induced Riemannian metric

g := 〈·, ·〉|TSn×TSn .

The normal bundle of Sn realized as a submanifold of (Rn+1, 〈·, ·〉), TSn⊥, is spanned by
the position vector field ξ ∈ X(Rn+1) along Sn,

ξ : p 7→ p ∀p ∈ Rn+1,

where we have as usual identified TpRn+1 with Rn+1 for all p ∈ Rn+1. The tangent bundle
of TSn, viewed as a subbundle of TRn+1|Sn , is thus fibrewise given by

TpS
n = ker(〈ξp, ·〉) ⊂ TpRn+1.

This means that a vector field X along Sn is tangential to Sn if and only if 〈ξ,X〉 ≡ 0.
Note that the function f used to define Sn fulfils f = 〈ξ, ξ〉.

(ii) Next consider Rn+1 but now equipped with a pseudo-Riemannian metric given in canonical
coordinates by

〈·, ·〉ν :=
n−ν∑
i=1

dui ⊗ dui −
n∑

i=n−ν+1
dui ⊗ dui

for 1 ≤ ν ≤ n fixed. Let ξ ∈ X(Rn+1) denote the position vector field and define
f : Rn+1 → R, f := 〈ξ, ξ〉. Then the level sets {f = −1}29 are called hyperboloids,

Hn
ν :=

〈ξ, ξ〉 =
n−ν+1∑
i=1

(ui)2 −
n+1∑

i=n−ν+2
(ui)2 = −1

 ⊂ Rn+1.

Hyperboloids in (Rn+1, 〈·, ·〉ν) are n-dimensional pseudo-Riemannian manifolds with induced
pseudo-Riemannian metric of index ν − 1. As for Sn,

TpH
n
ν = ker(〈ξp, ·〉ν) ⊂ TpRn+1

and
TpH

n
ν
⊥ = Rξp,

where Rξp is another commonly used notation for the linear span of one vector, that is
spanR{ξp}. In the case n = 3, ν = 1, H3

1 is known as two-sheeted hyperboloid, and for
n = 3, ν = 2, H3

2 is the one-sheeted hyperboloid.

Exercise 2.34. Prove the claims in Example 2.33.

In Example 2.33 we used the term that a vector field spans a vector bundle. Conceptually,
this belongs in the setting of frames of vector bundles, which generalize the concept of a basis of
a vector space.

Definition 2.35. Let E → M be a vector bundle of rank k. A (local) frame of E over
U ⊂M , U open, is a set of k (local) sections

{si ∈ Γ(E|U ), 1 ≤ i ≤ k},

such that for all p ∈ U fixed, the vectors si(p) ∈ Ep, 1 ≤ i ≤ k, are linearly independent.
Equivalently,

spanR{si(p) ∈ Ep | 1 ≤ i ≤ k} = Ep

for all p ∈ U .
29Be aware of the sign!
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Exercise 2.36. Show that every local section s ∈ Γ(E|U ) in a vector bundle E can be written
as a C∞(U)-linear combination of the elements of a local frame of E →M over U . Check that
these prefactors in C∞(U) are uniquely determined for any given local section.

Local frames are very useful in order to check if subsets of a certain form of given vector
bundles are subbundles.

Lemma 2.37. Let E →M be a vector bundle of rank k and suppose that for some ` ∈ N with
1 ≤ ` ≤ k we are given a linear subspace Fp ⊂ Ep of constant dimension ` for all p ∈M . Then⊔
p∈M

Fp → M is, with all data necessary induced by E → M , a subbundle of E → M if and

only if for every p ∈ M we can find a local frame {s1, . . . , sk} of E|U → U , U ⊂ M an open
neighbourhood of p, such that for all q ∈ U , {s1(q), . . . , s`(q)} is a basis of Fq.

Proof. [L1, Lem. 10.32]

Subbundles might look very complicated at first glance, but at least locally we can use the
above lemma to always describe them as follows.

Lemma 2.38. Let F →M be a subbundle of rank ` of a vector bundle E →M of rank k > `.
For any p ∈ M we can find an open neighbourhood U ⊂ M of p and a local trivialization of
E →M over U , φ : E|U → U × Rk, such that

φ(ι(F |U )) = U × {(v1, . . . , v`, 0, . . . , 0) | (v1, . . . , v`) ∈ R`} ⊂ U × Rk.

In the above equation, ι : F ↪→ E denotes the inclusion map.

Proof. We use Lemma 2.37. Choose a local frame {s1, . . . , sk} of E → M over U ⊂ M , such
that {s1, . . . , s`} is a local frame of F →M over U . The inverse of the smooth map

η : U × Rk → E|U , (p, v1, . . . , vk) 7→
k∑
i=1

visi(p)

is smooth and a local trivialization of E →M over U . This follows from the implicit function
theorem. We obtain

η−1(ι(F |U )) = U × {(v1, . . . , v`, 0, . . . , 0) | (v1, . . . , v`) ∈ R`},

so setting φ = η−1 finishes the proof.

Lemma 2.38 means that locally up to vector bundle isomorphisms, subbundles of vector
bundles look like the inclusion in the first ` factors of the vector parts in U × R` → U into
U × Rk → U .

In the special case of the tangent bundle of an n-dimensional smooth manifold, a local frame
of TM →M over U ⊂M open is a set of n vector fields

{Xi, 1 ≤ i ≤ n}, Xi ∈ X(U) ∀1 ≤ i ≤ n,

such that for all p ∈ U , {(Xi)p, 1 ≤ i ≤ n} is a set of linearly independent vectors. This in
particular means that

spanR{(Xi)p, 1 ≤ i ≤ n} = TpU ∀p ∈ U,

and by Exercise 2.36 we can for each local vector field X ∈ X(U) find a uniquely determined set
of local functions fi ∈ C∞(U), 1 ≤ i ≤ n, such that X =

n∑
i=1

fiXi.
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Next we will use the language of local frames and subbundles to split up the (0, 2)-tensor
bundle T 0,2M → M over a smooth manifold into symmetric and antisymmetric parts. This
construction and similar constructions are important to properly understand our upcoming study
of curvature and the exterior differential on k-form analogues for smooth manifolds. Recall the
following fact from linear algebra.

Lemma 2.39. Let V be a finite-dimensional real vector space with basis {v1, . . . , vn}. Then

V ⊗ V ∼= Sym2(V )⊕ Λ2V,

where Sym2(V ) := spanR{vi⊗vj +vj⊗vi, 1 ≤ i, j ≤ n} and Λ2V := spanR{vi⊗vj−vj⊗vi, 1 ≤
i, j ≤ n}.

When viewed as matrices, the direct sum in Lemma 2.39 corresponds to writing a square
matrix as its symmetric and antisymmetric parts, which are uniquely determined. One writes

vivj := 1
2(vi ⊗ vj + vj ⊗ vi), vi ∧ vj := vi ⊗ vj − vj ⊗ vi,

and has vi ⊗ vj = vivj + 1
2vi ∧ vj for all 1 ≤ i, j ≤ n. In particular vivi = vi ⊗ vi. This concept

translates to local frames of vector bundles. We obtain the following.

Definition 2.40. Let M be a smooth manifold and let (x1, . . . , xn) be local coordinates on
U ⊂M . The bundle of symmetric (0, 2)-tensors on M is the subbundle

Sym2(T ∗M) ⊂ T 0,2M

with local frame over U given by
{
dxidxj = 1

2(dxi ⊗ dxj + dxj ⊗ dxi), 1 ≤ i, j ≤ n
}

. Sections
in Sym2(T ∗M)→M are precisely symmetric (0, 2)-tensor fields, which in particular include all
possible pseudo-Riemannian metrics on M . On the other hand we have the anti-symmetric
(0, 2)-tensors on M ,

Λ2T ∗M ⊂ T 0,2M,

with local frame over U given by
{
dxi ∧ dxj = dxi ⊗ dxj − dxj ⊗ dxi, 1 ≤ i, j ≤ n

}
. Sections in

Λ2T ∗M →M are called 2-forms and are denoted by Ω2(M). Local sections in Λ2T ∗M →M
over U ⊂M , U open, are denoted by Ω2(U).

With Definition 2.40, a pseudo-Riemannian metric g on M can be written locally as

g =
∑
i,j

gijdx
i ⊗ dxj =

∑
i,j

gijdx
idxj .

Make sure you understand why the second equivalence in the above equation holds true! Also
be aware that the rightmost sum in the above equation holds a certain error potential when
going from tensor to matrix notation. For example, the pseudo-Riemannian metric dxdy on R2

with canonical coordinates (x, y) is in matrix notation given by

dx dy “ = ”
(

0 1
2

1
2 0

)
.

Make absolutely sure to understand this.
Now suppose that we are given a smooth manifold M and a symmetric (0, 2)-tensor field

g ∈ T0,2(M). At each point p ∈M , we can associate to gp a natural number called its index as
follows.

66



Definition 2.41. The index of a symmetric (0, 2)-tensor field g ∈ T0,2(M) at p ∈M is defined
as

ν(p) := number of negative eigenvalues of gp,

where gp is viewed as symmetric matrix in local coordinates, i.e.

gp =
∑
ij

gij(p)dxi ⊗ dxj .

Exercise 2.42. Verify that the index in Definition 2.41 is well defined, meaning that it does
not depend on the choice of local coordinates.

How can we use the definition of the pointwise index of a symmetric (0, 2)-tensor field g to
test if g is a pseudo-Riemannian metric or not? The answer is as follows.

Proposition 2.43. Let M be a connected smooth manifold and g ∈ T0,2(M) a symmetric (0, 2)-
tensor field that is nondegenerate30 in all fibres TpM , p ∈M . Then g is a pseudo-Riemannian
metric.

Proof. It suffices to show that the index of g, ν : M → N0, is continuous, where N0 is equipped
with the discrete topology. In order to do so it suffices by using local charts and smooth curves
to prove that the number of negative eigenvalues of any smooth function with values in the
symmetric n× n-matrices,

A : I → Sym2((R∗)n), t 7→ A(t) ∈ Sym2((R∗)n),

such that A(t) is nondegenerate for all t ∈ I, is locally constant. This follows from the continuity
of the eigenvalues of A(t) viewed each as functions31 of t. To see this, consider the characteristic
polynomial of A(t) in dependence of t ∈ I,

Pt(λ) := det(A(t)− λ1).

Pt(λ) can be written as

Pt(λ) =
n∑
i=0

ai(t)λi,

where ai : I → R is smooth for all 0 ≤ i ≤ n and an(t) ≡ (−1)n. Thus, the proof reduces to the
continuous dependence of roots of a polynomial of fixed degree with smoothly varying prefactors
and fixed highest order monomial. Since we already know that the eigenvalues must be real by
the symmetry condition of A(t), the result follows from [Z].

Next suppose that we are given just a smooth manifold and want to construct a pseudo-
Riemannian metric. While this problem is usually difficult if the index of our metric is supposed
to be positive (and not equal to the dimension of our manifold), for the Riemannian case, that
is for vanishing index, we have the following nice result.

Proposition 2.44. Let M be a smooth manifold. Then there exists a Riemannian metric g on
M .

Proof. This is Exercise 2.12 (i). We remark here that if g is a Riemannian metric and h is a
symmetric (0, 2)-tensor with compact support, then for ε > 0 small enough g + h will still be a
Riemannian metric. This means that our constructed metric is far from unique.

30“nondegenerate” = at given point nondegenerate symmetric bilinear form
31More precisely: There exists a choice of n nowhere vanishing continuous functions λn : I → R \ {0}, such that

for all t ∈ I, the set {(1, λ1(t)), . . . , (n, λn(t))} is precisely the set of (indexed) eigenvalues of A(t).
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Let us return to isometries of pseudo-Riemannian manifolds, cf. Definition 2.13. We already
noted that they form a group, so it is reasonable to ask the following. It is clear that the identity
is always an isometry, so how can we perturb it infinitesimally while preserving the isometry
property? To answer that question we will use our knowledge of the Lie derivative and local
flows of vector fields.

Proposition 2.45. Let (M, g) be a pseudo-Riemannian manifold and let X ∈ X(M). Suppose
that for every local flow ϕ : I × U → M of X, ϕt : U → M is an isometry for all t ∈ I. Then
LXg = 0. The converse statement also holds true.

Proof. A local flow ϕ : I × U →M of X is an isometry of (M, g) for all t ∈ I if and only if

gp(v, w) = gϕt(p)(dϕt(v), dϕt(w))

for all t ∈ I, p ∈M , v, w ∈ TpM . Hence,

(LXg)(v, w) =
(
∂

∂t

∣∣∣∣
t=0

(ϕ∗t g)p
)

(v, w)

= ∂

∂t

∣∣∣∣
t=0

(
gϕt(p)(dϕt(v), dϕt(w))

)
= ∂

∂t

∣∣∣∣
t=0

gp(v, w)

= 0.

Since p ∈M , v, w ∈ TpM were arbitrary, this shows that LXg = 0.
For the other direction note that dϕt0 : TpM → Tϕt0 (p)M is a linear isomorphism for all

t0 ∈ I and, by the group property of local flows, we obtain dϕt+t0 = dϕtdϕt0 for t small enough.
We calculate for any t0 ∈ I, v, w ∈ TpM ,

0 = (LXg)(dϕt0(v), dϕt0(w))

= ∂

∂t

∣∣∣∣
t=0

(
gϕt(ϕt0 (p))(dϕtdϕt0(v), dϕtdϕt0(w))

)
= ∂

∂t

∣∣∣∣
t=0

(
gϕt+t0 (p)(dϕt+t0(v), dϕt+t0(w))

)
= ∂

∂s

∣∣∣∣
s=t0

(
gϕs(p)(dϕs(v), dϕs(w))

)
.

This shows that the smooth function I 3 s 7→ gϕs(p)(dϕs(v), dϕs(w)) ∈ R is constant for all
v, w ∈ TpM and, hence, that the local flow of X consists of isometries for any fixed time
parameter.

Definition 2.46. Vector fields as in Proposition 2.45, that is LXg = 0 for X ∈ X(M), (M, g) a
pseudo-Riemannian manifold, are called Killing32 vector fields of (M, g).

Proposition 2.45 in particular means that Killing vector fields generate local one parameter
groups of isometries. Killing vector fields, as a linear subspace of all vector fields, have the
following algebraic structure.

Lemma 2.47. Let (M, g) be a pseudo-Riemannian manifold. Killing vector fields form a Lie
subalgebra of (X(M), [·, ·]), meaning that for any Killing vector fields X,Y ∈ X(M), [X,Y ] is
also a Killing vector field.

32Wilhelm Karl Joseph Killing (1847 – 1923)
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Proof. Exercise. [Hint: Use the Jacobi identity L[X,Y ]Z = LX(LY Z) − LY (LXZ) for all
X,Y, Z ∈ X(M).]

In fact, one can show more if M is Riemannian, but the proof of the following is beyond the
scope of this course.

Theorem 2.48. Let (M, g) be a connected Riemannian manifold of dimension n. The the Lie
algebra of Killing vector fields is finite-dimensional of dimension at most 1

2n(n+ 1).

Proof. [KN, Thm 3.3], in the corresponding chapter the structure of the isometry group as a
Lie group acting on M is also treated.

Let us look at some explicit examples of Killing vector fields.

Example 2.49.
(i) Let A be an (n+ 1)× (n+ 1) skew real matrix, that is AT = −A. Then eAt ∈ O(n+ 1) for

all t ∈ R. Then the vector field X ∈ X(Sn) given by

Xp = ∂

∂t

∣∣∣∣
t=0

(
eAtp

)
∈ TpSn

is a Killing vector field of the standard round metric on Sn, that is the restriction
of the pointwise Euclidean scalar product in the ambient manifold Rn+1. Note that
eA· : R× Sn → Rn+1, (t, v) 7→ eAtv is the global flow of X.

(ii) Consider (Rn, 〈·, ·〉ν) for any 0 ≤ ν ≤ n as in Example 2.33 and fix (c1, . . . , cn) ∈ Rn. Then
X ∈ X(Rn), X =

∑
i
ci ∂
∂ui

, is a Killing vector field.

(iii) Let (M, g) and (N,h) be pseudo-Riemannian manifolds, X a Killing vector field on (M, g),
and Y a Killing vector field on (N,h). Then X+Y is a Killing vector field on (M×N, g⊕h).

Now suppose that we are given a pseudo-Riemannian manifold and do not know which vector
fields are Killing vector fields. How do we approach this problem, at least locally?

Lemma 2.50. Let (M, g) be a pseudo-Riemannian manifold. Then X ∈ X(M) is a Killing
vector field if and and only if it fulfils

n∑
k=1

(
Xk ∂gij

∂xk
+ ∂Xk

∂xi
gjk + ∂Xk

∂xj
gik

)
= 0 ∀1 ≤ i, j ≤ n

for all local coordinates (x1, . . . , xn) on M .

Proof. Exercise.

Remark 2.51. k-forms and corresponding bundle, exterior algebra structure, d-complex, cartans
magic formula as exercise, induced volume form Note: Not yet decided how to implement, in
full range far too much for this course, same for next remark.

Remark 2.52. Killing vector fields on induced volume form

Remark 2.53. We have seen the formal definition of isometries between pseudo-Riemannian
manifolds and how to describe infinitesimal isometries of a given pseudo-Riemannian manifold. It
is, however, in general a very difficult task to verify or disprove that two given pseudo-Riemannian
manifolds are isometric. For a reasonable approach to this kind of problem we will need the
definitions of the different curvatures of a pseudo-Riemannian manifold, but in order to introduce
these we will need to study so-called connections in vector bundles, which is what we will do
next.
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2.2 Connections in vector bundles

The subject of this section, connections in vector bundles, is motivated as follows. Suppose that
we are given a connected smooth manifold M . We know how to “connect” two points, namely
by specifying a smooth curve starting at one and ending at the other. Next, suppose that we are
given two tangent vectors v, w ∈ TM that are contained in different fibres. How do we connect
v and w or, more generally, their fibres? Since the total space TM of the tangent bundle is
a smooth manifold as well we can of course connect v and w, viewed as points in TM , via a
smooth curve in TM . But this does in a sense allow for too much freedom of choice, as we
want in a some sense canonical way connect Tπ(v)M with Tπ(w)M via a linear isomorphism. The
solution to this problem is to construct a so-called connection in TM →M with respect to a
given pseudo-Riemannian metric, such that all of the latter identifications of fibres are not only
linear isomorphisms, but also linear isometries. Furthermore we require that if we go around
an infinitesimal parallelogram in M and consider the identification of tangent spaces along the
corresponding piecewise smooth curve, we should end up with the identity. In the following we
will in detail describe these concepts and how to actually perform calculations with them. Before
actually defining what a connection in a vector bundle is, we will study a motivating example.

Remark 2.54. INSERT PIC! Consider the smooth curve γ : R→ R2,

γ(t) = ( t1 ) ∀t ∈ R.

At γ(0) = ( 0
0 ), let v ∈ Tγ(0)R2 be given by

v = (γ(0), ( 1
1 )) .

How would a reasonable approach to transport v along γ look like? Intuitively, we define a
vector field along γ

Xγ : R→ TR2, Xγ(t) = (γ(t), v) ∀t ∈ R,

so that Xγ(0) = v and Xγ(t) represents v “transported” to γ(t). Is this choice canonical in any
meaningful sense? The answer is yes, but we will need to develop a lot of tools to see that.
Observe that Xγ is the restriction of X := ∂

∂x + ∂
∂y ∈ X(R2) to the image of γ, where (x, y)

are the canonical coordinates on R2. How does our above construction look like in different
coordinates? In polar coordinates (r, ϕ) on R2 \ {(x, 0), x ≤ 0} we have

X = (cos(ϕ) + sin(ϕ)) ∂∂r + 1
r (cos(ϕ)− sin(ϕ)) ∂

∂ϕ .

The curve γ in polar coordinates is given by

γ(t) =
(
r(γ(t))
ϕ(γ(t))

)
=
( √

1+t2

arctan
(√

1+t2−1
))

.

Thus, when sketching X along γ in polar coordinates, our initial choice of transporting v along
γ does not look, in any way, “parallel” any more. So how do we solve this problem? How can
we define what transporting vectors along curves in a parallel way should be, and all that in a
coordinate independent way? To do that we will need not only connections in vector bundles,
but also need to single out a certain choice for a connection in the tangent bundle with the help
of a pseudo-Riemannian metric, the so called Levi-Civita33 connection.

First, we will introduce the most general concept of a connection in a vector bundle and then
focus on the tangent bundle and its various tensor bundles.

33Tullio Levi-Civita (1873 – 1941)
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Definition 2.55. Let E →M be a vector bundle. A connection in E →M is a bilinear map

∇ : X(M)× Γ(E)→ Γ(E), (X, s) 7→ ∇Xs,

that is C∞(M)-linear34 in the first entry, i.e.

∇fXs = f∇Xs ∀f ∈ C∞(M), X ∈ X(M), s ∈ Γ(E),

and fulfils the Leibniz rule

∇X(fs) = X(f)s+ f∇Xs ∀f ∈ C∞(M), X ∈ X(M), s ∈ Γ(E).

The last condition can be written as ∇(fs) = s⊗ df + f∇s. Note that a connection in E →M
can be canonically extended to local sections.

The defining conditions of a connection hint at their interpretation as certain types of
derivatives. In comparison with the Lie derivative (for E = TM), we see that it differs
from a connection by the tensoriality property in the first argument. Recall that in general
LfXY 6= fLXY for vector fields X,Y ∈ X(M). This fact points to preferring a connection over
the Lie derivative for the concept of a derivative of vector fields since a derivative should ideally
only depend on the direction in which we are differentiating and the local behaviour of the
section we are taking the derivative of, and not on the local behaviour of our direction as part
of a vector field. Next, we need to ask ourselves how to actually calculate with a connection.
The answer lies in the use of local frames.

Definition 2.56. Let ∇ be a connection in a vector bundle E →M of rank ` and let {s1, . . . , s`}
be a local frame of E →M over U ⊂M open, such that there exist local coordinates (x1, . . . , xn)
on U ⊂M . This can always be achieved after possibly shrinking U . Let further dim(M) = n.
Define

∇si := ωi, ωi(X) = ∇Xsi ∀X ∈ X(M),

for all 1 ≤ i ≤ `. Then each ωi is an E-valued 1-form35, that is ωi ∈ Γ(E|U ⊗ T ∗M |U ) for all
1 ≤ i ≤ `. Thus we have

ωi =
n∑
j=1

ωij ⊗ dxj

for all 1 ≤ i ≤ `, where ωij ∈ Γ(E|U ) for all 1 ≤ i ≤ `, 1 ≤ j ≤ n. We can further write

ωij =
∑̀
k=1

ωkijsk,

with ωkij ∈ C∞(U) for all 1 ≤ i ≤ `, 1 ≤ j ≤ n, 1 ≤ k ≤ `. Recall that for any local section

s ∈ Γ(E|U ) we can write s =
k∑
i=1

f isi with f i, 1 ≤ i ≤ k, uniquely determined for s. We obtain
the general formula

∇s =
∑̀
i=1

si ⊗ df i +
n∑
j=1

∑̀
i,k=1

f iωkijsk ⊗ dxj . (2.7)

On the other hand we might write

∇si = ωi =
∑̀
k=1

sk ⊗ ωki

34a.k.a. “tensorial”
35That means: Plug in a (local) vector field, get a (local) section in E.

71



for all 1 ≤ i ≤ k, where ωki ∈ Ω1(U) for all 1 ≤ i, k ≤ `. The ωki are called connection 1-forms
and determine the connection ∇ in E|U → U completely. We can view (ωki ) as an (`× `)-matrix
valued map where each entry is a local 1-form on M .

Remark 2.57. Warning: Connections, and with them the corresponding connection 1-forms,
do not transform like tensors if E is some tensor power of TM . The reason for that is that a
connection itself is not tensorial in the second argument, so changing frames will lead to the new
connection 1-forms to depend on the partial derivatives of the corresponding transformation.
The explicit transformation behaviour will be studied in detail for connections in TM →M .

The benefit of writing down a connection locally using its connection 1-form is the easy-
to-formulate transformation behaviour when changing the local frame of E (not the local
coordinates on M). Changing the frame without changing the coordinates on the base space is
not too important for our purposes, but nevertheless a nice exercise. Observe in particular that
the transformation is not tensorial, that is not simply the pullback in the frame part.

Exercise 2.58. Let ∇ be a connection in a vector bundle E →M of rank `. Let {s1, . . . , s`}
and {s̃1, . . . , s̃`} be local frames of E over a chart neighbourhood U ⊂M , equipped with local
coordinates (x1, . . . , xn), that are related by the (`× `)-matrix valued smooth map

A : U → GL(`), (s1, . . . , s`) ·A = (s̃1, . . . , s̃`).

Let (ωki ) denote the matrix of connection 1-forms with respect to the local frame {s1, . . . , s`}
and (ω̃ki ) the matrix of connection 1-forms with respect to the local frame {s̃1, . . . , s̃`}. Show
that the two matrices of connection 1-forms are related by

(ω̃ki ) = A−1dA+A−1(ωki )A.

In the above equation, dA denotes the differential of the map A : U → GL(`), where we identify
TGL(`) ∼= GL(`)× End(R`)36.

Connections, just like tangent vectors, are local objects in the following sense.

Lemma 2.59. Let ∇ be a connection in a vector bundle E →M of rank `. Let U ⊂M be open
and suppose that for two vector fields X,Y ∈ X(M) and two sections in E →M , s, s̃, we have

X|U = Y |U , s|U = s̃|U .

Then ∇Xs and ∇Y s̃ coincide on U .

Proof. Note that ∇Xs|U = ∇Y s|U , which follows from the tensoriality property in the first
argument of any connection. It thus suffices to show that ∇Xs|U = ∇X s̃|U . Using Definition
2.56 we write, after possibly shrinking U , s and s̃ in a local frame {s1, . . . , s`} of E|U ,

s|U =
∑̀
i=1

f isi, s̃|U =
∑̀
i=1

f̃ isi,

with fi, f̃i ∈ C∞(U) for all 1 ≤ i ≤ `. Equation (2.7) and f i = f̃ i for all 1 ≤ i ≤ n by assumption
now imply that s and s̃ coincide on U imply that ∇Xs|U = ∇X s̃|U holds true.

If one prefers to work without coordinates or frames, one can proceed as follows. By the
linearity in the second argument, ∇Xs and ∇X s̃ coincide in U if and only if ∇X(s− s̃)|U ≡ 0.
Hence, it suffices to prove ∇Xs|U = 0 if s|U = 0. Fix p ∈ U and choose a bump function

36Recall that GL(`) is open in the real (`× `)-matrices.
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b ∈ C∞(M) and an open neighbourhood of p, V ⊂ U , that is precompact in U , such that b|V ≡ 1
and supp(b) ⊂ U . Then by the Leibniz rule

0 = ∇X0|p = ∇X(bs)|p = X(b)s|p + b(p)∇Xs|p = ∇Xs|p.

Since p ∈ U was arbitrary, this finishes the proof.

Lemma 2.59 means that (∇Xs)(p) for any p ∈ M depends only on Xp ∈ TpM and the
restriction of s to an arbitrary small open neighbourhood of p in M .

Before continuing, we remark that there is a connection we are probably already aware of,
although not under that name.

Example 2.60. Consider Rn with canonical coordinates (u1, . . . , un) and induced global frame{
∂
∂u1 , . . . ,

∂
∂un

}
of TRn → Rn. Vector fields on Rn can be, as we described before introducing

vector fields on smooth manifolds, viewed as smooth vector valued functions. So a reasonable
approach for a connection, defined in our choice of coordinates, is

∇XY :=
∑
i

X(Y i) ∂

∂ui
∈ X(Rn)

for all vector fields X =
∑
i
Xi ∂

∂ui
and Y =

∑
i
Y i ∂

∂ui
. This means that, in canonical coordinates,

we differentiate Y entrywise in X-direction. One verifies that the so-defined operator ∇ in fact is
a connection in TRn → Rn. This construction is, however, not coordinate-independent, meaning
that in different coordinates, ∇XY will not be the entrywise differentiation of Y in X-direction.
Note that all connection 1-forms of the above connection identically vanish.

As described in the above example, we need to investigate how a connection in TM →M ,
written in a choice of local coordinates and induced local frame, behaves under a change of
coordinates. This problem is equivalent to understanding how the connection 1-forms transform
under a change of coordinates and induced change of local frame of TM →M . To do so we will
introduce the so-called Christoffel symbols, which are commonly used to describe connections
and, consequently, connection 1-forms in the tangent bundle of a smooth manifold. The difference
to a connection in a general bundle is that a choice of coordinates on M automatically gives us
a local frame in TM .

Definition 2.61. Let ∇ be a connection in TM →M and let (x1, . . . , xn) be local coordinates
on U ⊂M . Then in the induced local frame of TM ,

∇ ∂

∂xi

∂
∂xj

=
n∑
k=1

Γkij ∂
∂xk

,

where Γkij ∈ C∞(M), 1 ≤ i, j, k ≤ n. The terms Γkij are called Christoffel37 symbols of the
connection ∇ with respect to the chosen local coordinates (x1, . . . , xn). The Christoffel symbols
specify the connection ∇ in TM |U → U completely, meaning in particular that two connections
in TM →M coincide if they have the same Christoffel symbols for all local coordinates on M .
In comparison with the most general case, the Christoffel symbols are for the special case of the
tangent bundle with induced local frame precisely the terms ωkij in equation (2.7).

Note that, if one wants to be very precise, it is at this point not clear if every manifold
admits a connection in its tangent bundle. This is either a not so easy exercise or a good excuse
to consult [L1, Prop. 4.5]. The answer is yes, every manifolds admits a connection in its tangent
bundle, and the space of connections is, in a sense, very big, see also Definition 2.81.

Similar to Exercise 2.58, but with the difference that we now also change the local coordinates
on the base manifold, we obtain the following transformation rule for Christoffel symbols.

37Elwin Bruno Christoffel (1829 – 1900)
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Lemma 2.62. Let M be an n-dimensional smooth manifold, ∇ a connection in TM →M . Let
further ϕ = (x1, . . . , xn) and ψ = (yn, . . . , yn) local coordinate systems on an open set U ⊂M .
Let Γkij denote the Christoffel symbols of ∇ with respect to ϕ and let Γ̃kij denote the Christoffel
symbols of ∇ with respect to ψ. Then the following identity holds:

Γkij =
∑
ρ

∂2yρ

∂xi∂xj
∂xk

∂yρ
+
∑
µ,ν,ρ

∂yµ

∂xi
∂yν

∂xj
∂xk

∂yρ
Γ̃ρµν .

Proof. Direct calculation using ∂
∂xi

=
∑
j

∂yj

∂xi
∂
∂yj

and the corresponding inverse formula.

Suppose that we are given a connection ∇ in TM →M . Then ∇ induces a connection in all
tensor powers T r,sM →M of the tangent bundle by requiring compatibility with contractions.

Lemma 2.63. Let ∇ be a connection in TM → M . Then ∇ induces a connection in each
tensor bundle38 T r,sM →M , r ≥ 0, s ≥ 0, such that

(i) the induced connection in T 1,0M ∼= TM →M coincides with ∇,

(ii) ∇f = df for all f ∈ T0,0(M) = C∞(M),

(iii) the induced connection is a tensor derivation in the second argument, meaning that

∇(A⊗B) = (∇A)⊗B +A⊗ (∇B)

whenever the tensor field A⊗B is defined,

(iv) the induced connections commute with all possible contraction, meaning that for any
contraction C : Tr,s(M)→ Tr−1,s−1(M) we have

∇(C(A)) = C(∇(A))

for all tensor fields A ∈ Tr,s(M).

The so-defined connections in each tensor bundle T r,sM →M are uniquely determined by the
above properties.

Proof. We proceed as follows. First we define a candidate for a connection in each tensor bundle,
then we show that it fulfils all of the above properties, and finally prove uniqueness. In order
to define a connection in T r,sM → M it suffices to specify what it does on sections that can
be, locally, written as pure tensor products of r local vector fields and s local 1-forms. For
T 1,0M →M , we simply take ∇ to be our initial connection, which thereby automatically fulfils
(i) and for f ∈ T0,0(M) = C∞(M) we set ∇f = df , thereby fulfilling (ii). Now we define ∇ in
T 0,1M →M in such a way, that (iii) and (iv) will be satisfied. Set for all 1-forms ω ∈ Ω1(M)

(∇Xω)(Y ) := X(ω(Y ))− ω(∇XY )

for all vector fields X,Y ∈ X(M). After checking [Exercise!] that this defines a connection in
T 0,1M →M , we proceed as initially mentioned and obtain a connection in T r,sM →M for all
r ≥ 0, s ≥ 0 by requiring (iii) to hold on pure and, hence by linear extension, on all tensor fields.
After checking that this really does define a connection [Again, exercise!] it remains to check
that (iv) holds. This can be done inductively using (iii) after checking that it holds for the only
possible contraction in T 1,1M →M , which on pure tensor fields is of the form

C(X ⊗ ω) = ω(X)
38Conventionally denoted by the same symbol ∇.
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for all X ∈ X(M), ω ∈ Ω1(M), and analogously for local sections. We find for all X,Y ∈ X(M)
and all ω ∈ Ω1(M)

∇Y (C(X ⊗ ω)) = ∇Y (ω(X)) = Y (ω(X))

which by definition of ∇ in T 0,1M →M and our imposed condition (iii) coincides with

Y (ω(X)) = (∇Y ω)(X) + ω(∇YX) = C(X ⊗ (∇Y ω) + (∇YX)⊗ ω) = C(∇Y (X ⊗ ω)).

It remains to show uniqueness. Suppose there is an other connection ∇̃ fulfilling all requirements
of this lemma. By linearity in the second argument it suffices to show that ∇ and ∇̃ coincide
on local pure tensor fields. By (i) and (iii) it further suffices to show that ∇ and ∇̃ coincide in
T 0,1M = T ∗M →M . This follows from (i), (ii), and (iv) by direct calculation of the left- and
right-hand of ∇̃(C(A)) = C(∇̃(A)) for A = X ⊗ ω where X is any local vector field and ω is
any local 1-form.

Observe that Lemma 2.63 is, formally, very similar to Proposition 1.157 about the Lie
derivative of tensor fields.

Exercise 2.64. Let ∇ be a connection in TM → M and Γkij its Christoffel symbols in local
coordinates (x1, . . . , xn). Find a formula for the analogue of the Christoffel symbols of the
induced connection ∇ in T ∗M →M with respect to the local frame given by the local coordinate
1-forms.

Remark 2.65. Differentiation of tensor fields with respect to a connection induced by a
connection in the tangent bundle is sometimes called covariant differentiation. ∇XA for
X ∈ X(M), A ∈ Tr,s(M), is then called covariant derivative of A in direction X. When
talking about covariant derivatives make sure to always specify the corresponding connection.

A central usage of connections is a preferred way to “transport”, that is smoothly change,
vectors along a curve in the base manifold. In order to properly introduce this concept, we need
to study how to in a covariant manner differentiate vector fields, or more generally tensor fields,
along curves. This is to be read in the way that we want to give meaning to expressions of the
form

∇γ′A

where γ : I →M is a smooth curve in a smooth manifold M and A is a tensor field that is only
parametrised along γ(I) ⊂M . Recall the definition of vector fields along curves, Definition
1.102, and keep it in mind for the differences when compared with what is to come next.

Definition 2.66. An (r, s)-tensor field A = Aγ , r, s ≥ 0, on a smooth manifold M along a
curve γ : I →M is a smooth map

Aγ : I → T r,sM, t 7→ Aγ(t) ∈ T
r,s
γ(t)M.

If γ is an embedding and thus γ(I) is a submanifold of M , an (r, s)-tensor field Aγ along γ is
simply a parametrisation39 of a smooth section in T r,sM |γ(I) → γ(I).

Note that Definition 2.66 relaxes Definition 1.102 for vector fields, that is (1, 0)-tensor fields,
as it allows the vector field to not be just the velocity vector field of the curve up to multiplication
with a smooth map. In the following, “vector field along a curve” is to be understood in the
sense of Definition 2.66.

A tensor field along a curve need not be the restriction of a tensor field of the ambient
manifold to the image of the curve. This is the general case, as the curve is allowed to have
self-intersections. We have however the following local result.

39i.e. t 7→ Aγ(t)
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Lemma 2.67. Let γ : I →M be a smooth curve and suppose that γ′(t0) 6= 0. Let further Aγ
be an (r, s)-tensor field along γ. Then there exists an open interval I ′ ⊂ I with t0 ∈ I ′, such
that Aγ |I′ is the restriction of an (r, s)-tensor field A ∈ Tr,s(M) to γ(I ′).

Proof. Following the proof of Proposition 1.122, we can assume without loss of generality that,
after restriction to I ′ and a suitable choice of local coordinates ϕ = (x1, . . . , xn) on U ⊂ M
with γ(I ′) ⊂ U , γ is of the form t 7→ ϕ−1(t, 0, . . . , 0), so that x1(γ(t)) = t and xi(γ(t)) = 0 for
2 ≤ i ≤ n. Hence, if

Aγ(t) =
∑

f i1...ir j1...js(t)
∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs ,

with all f i1...ir j1...js : I ′ → R smooth, the tensor field

A =
∑(

f i1...ir j1...js ◦ x1
) ∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs

fulfils the requirements of this lemma.

A tensor field A as in Lemma 2.67 is called local extension of a given tensor field along a
curve. This in particular means that we can, at least locally, extend vector fields along curves to
vector fields of the ambient manifold.

Suppose that we are given a vector field X along a curve γ and a connection in the tangent
bundle TM →M of the ambient manifold M . How can we, covariantly w.r.t. ∇, differentiate
X in direction of γ′? Be aware that X need not be the restriction of a vector field on M to the
image of γ, and in general in our sense the restriction of TM →M to the image of γ need not
be a vector bundle at all. The latter is in particular the case if the image of γ is not a smooth
submanifold of M . Thus what we are looking for is not a connection in the sense of Definition
2.55.

Proposition 2.68. Let M be a smooth manifold and ∇ a connection in TM → M . Let
γ : I → M be a smooth curve and denote the set of vector fields along γ by Γγ(TM). Then
there exists a unique R-linear map

∇
dt : Γγ(TM)→ Γγ(TM),

such that
∇
dt(fX) = ∂f

∂t
X + f ∇dtX

for all f ∈ C∞(I) and all X ∈ Γγ(TM) and, if X = X|γ(I),
∇
dtX = ∇γ′X

for all t ∈ I.

Proof. First suppose that a map ∇dt fulfilling the requirements exists. We show that it is then
unique. If γ′(t0) = 0, we set ∇dtX|t=t0 = 0 for all X ∈ Γγ(TM). This is compatible with the
tensoriality in the first argument of any connection, so that

(
∇
dtX

)∣∣∣
t=t0

= 0 for all vector fields
X along γ that are restrictions X = Xγ of vector fields X ∈ X(M). If γ′(t0) 6= 0, we use the
locality property of connections, cf. Lemma 2.59, and Lemma 2.67 with analogous coordinate
choice (x1, . . . , xn)40 to obtain the local formula

(
∇
dtX

)∣∣∣
t=t0

=
(
∇γ′X

)∣∣∣
t=t0

=
n∑
k=1

∂Xk

∂t
(t0) +

n∑
i,j=1

∂γi

∂t
(t0)Xj(t0)Γkij(γ(t0))

 ∂

∂xk

∣∣∣∣
t=t0

(2.8)

40And restricting the domain of definition of γ if necessary so that its image is contained in the coordinate
domain.
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for all X =
n∑
k=0

Xk(t) ∂
∂xk

and corresponding local extension X =
n∑
k=1

(
Xk ◦ x1

)
∂
∂xk

. This shows

that if the operator ∇dt exists, it is uniquely determined by the connection ∇. On the other hand
observe that formula (2.8) defines by the locality property of connections an operator ∇dt fulfilling
the requirements of this proposition. To see this one must check the right hand side of (2.8)
actually transforms as a connection and is thus independent of the chosen local extension X of
X, which is a lengthy but not difficult calculation.

Definition 2.69. The linear differential operator ∇γ′ is called covariant derivative along γ.

Remark 2.70. In local coordinates (x1, . . . , xn) on U ⊂ M , the covariant derivative along
γ : I →M41 of X ∈ Γγ(TM) locally of the form X =

n∑
k=1

Xk ∂
∂xk

, Xk = Xk(t) ∈ C∞(I) for all

1 ≤ k ≤ n, is given by the local formula

∇γ′X =
n∑
k=1

∂Xk

∂t
+

n∑
i,j=1

∂γi

∂t
XjΓkij

 ∂

∂xk
. (2.9)

Note that for the sake of readability we simply wrote Γkij instead of Γkij ◦ γ in the above equation.

Exercise 2.71. Formulate and prove an analogous statement to Proposition 2.68 for any vector
bundle E →M , including in particular the tensor bundles T r,sM →M , where the sections in
E →M along a curve γ : I →M are defined analogously to Definition 2.66.

Proposition 2.68 and Exercise 2.71 in particular imply compatibility of ∇γ′ with contractions.

Corollary 2.72. Let A be an (r, s)-tensor field on a smooth manifold M along γ : I → M
with r, s ≥ 1. Let C : Tr,s(M)→ Tr−1,s−1(M) be any contraction and note that C canonically
extends to (r, s)-tensor fields along curves. Then C(∇γ′A) = ∇γ′(C(A)).

Remark 2.73. We will not use the notation ∇dt and simply write ∇γ′ instead, even if we plug
in a vector field along γ that is, globally, not the restriction of a vector field in the ambient
manifold. The reason is firstly that the notation ∇dt obfuscates the curve that we are working
with, and secondly that locally if γ′(t) 6= 0, we can assume that any vector field along γ is the
restriction of a vector field in the ambient manifold, together with a parametrisation, see Lemma
2.67.

Proposition 2.68 allows us to answer the question posed in Remark 2.54 from the beginning
of this section.

Definition 2.74. Let X ∈ Γγ(TM) be a vector field along a smooth curve γ : I →M and let ∇
be a connection in TM →M . X is called parallel along γ, or simply parallel, if ∇γ′X = 0.

Using Exercise 2.71 and Corollary 2.72, one can similarly define parallel sections of an
arbitrary vector bundle E →M along curves. For E = T ∗M we obtain that a 1-form along a
smooth curve γ : I →M , ω ∈ Γγ(T ∗M), is parallel along γ with respect to a connection ∇ in
TM →M if and only if

∂(ω(X))
∂t

− ω(∇γ′X) = 0

for all X ∈ Γγ(TM).
Next, suppose that we are given a connection in TM →M , a smooth curve γ : I →M , and

a vector v ∈ Tγ(t0)M , t0 ∈ I. Does this data specify a preferred way to define a vector field X
along γ with initial value Xγ(0) = v? This is, formulated using our newly gained knowledge,
the question we asked at the beginning of this section. The answer is as follows.

41w.l.o.g. γ(I) ⊂ U
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Theorem 2.75. Let ∇ be a connection in TM → M , γ : I → M , t0 ∈ I, a smooth curve
with non-vanishing velocity, and v ∈ Tγ(t0)M . Then there exists a unique vector field along γ,
X ∈ Γγ(TM), such that X is parallel along γ and Xγ(t0) = v. This means that X is the unique
solution to the initial value problem

∇γ′X = 0, Xγ(t0) = v. (2.10)

Proof. It follows from Remark 2.70 that locally, (2.10) is an ordinary differential equation which
thus has, locally, a unique solution [A1]. Here locally means restricted to a coordinate domain.
So we need to deal with cases where γ(I) is not covered by a single chart. This detail of the
proof is left as an exercise to the reader. Alternatively see the proof of [L1, Thm. 4.11].

Exercise 2.76. Formulate and prove Theorem 2.75 for any vector bundle, not just the tangent
bundle.

Example 2.77. Let γ : R → R2 and X = Xγ ∈ Γγ(TR2) as in Remark 2.54. Let ∇ be the
connection in TR2 → R2 defined by setting its Christoffel symbols in canonical coordinates all
equal to 0. Then X is parallel along γ, i.e. ∇γ′X = 0, meaning that X solves the initial value
problem of parallelly transporting v = (γ(0), ( 1

1 )) along γ.

Suppose that we are given a connection in TM →M and somehow know how to, at least
locally, solve every possible parallel transport equation with respect to any smooth curve and all
initial values. Can we use this data to recover our connection? What does this tell us about the
geometric interpretation of connections in general? To answer these questions, first observe the
following property of parallel translations.

Lemma 2.78. Let ∇ be a connection in TM → M and let γ : I → M be a smooth curve.
Consider parallel translations along γ as maps

P tt0(γ) : Tγ(t0)M → Tγ(t)M,

mapping initial values v ∈ Tγ(t0)M , t0 ∈ I, of the differential equation ∇γ′X = 0, to the value of
its uniquely solution X at t ∈ I, namely Xγ(t) ∈ Tγ(t)M . Then P tt0(γ) is a linear isomorphism
for all t0, t ∈ I.

Proof. Linearity of P tt0(γ) follows by observing that whenever X solves ∇γ′X = 0 for initial
value v ∈ Tγt0M , cX is also parallel along γ for all c ∈ R and is the unique solution of the
parallel transport equation for initial value cv ∈ Tγ(t0)M . To see that P tt0(γ) is invertible, fix
t ∈ I and let γ̃(s) := γ(t − s). Then the parallel transport with respect to γ̃ from s = 0 to
s = t − t0, P t−t00 (γ̃) : Tγ(t)M → Tγ(t0)M is precisely the inverse of P tt0(γ) : Tγ(t0)M → Tγ(t)M ,
which follows from ∇γ̃′(X ◦ (t− s)) = 0 for X being the unique solution of ∇γ′X = 0 with fixed
initial value in Tγ(t0)M .

Using Lemma 2.78, we can describe a connection in TM →M completely using its parallel
transport solutions.

Proposition 2.79. Let ∇ be a connection in TM →M and X,Y ∈ X(M). For p ∈M arbitrary
let γ : (−ε, ε) → M , ε > 0, be an integral curve of X with γ(0) = p, and let P tt0 denote the
corresponding parallel transport maps. Then

(∇XY )p = ∂

∂t

∣∣∣∣
t=0

P 0
t (γ)Yγ(t).
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Proof. First note that t 7→ P 0
t (γ)Yγ(t) is smooth, which follows from the smoothness of the local

prefactors of the defining differential equation in local coordinates by setting (2.9) to zero and,
of course, replacing γ and X appropriately. Here the smooth manifold structure in TpM is given
by its linear isomorphy to Rn. Furthermore, P 0

t (γ)Yγ(t) ∈ TpM for all t ∈ (−ε, ε), so it makes
sense to take its time derivative. Choose a basis {v1, . . . , vn} of TpM , e.g. via local charts. For
each 1 ≤ i ≤ n, Vi = Vi|γ(t) := P t0(γ)vi defines a parallel vector field along γ, i.e. ∇γ′Vi = 0.
Hence, {V1, . . . , Vn} is a parallel frame of TM → M along γ|(−ε,ε), meaning that each vector
field along γ that is the restriction of a vector field on the ambient manifold can be written as a
C∞((−ε, ε))-linear combination of the Vi’s. Thus we can in particular write

Yγ =
n∑
i=1

f iVi,

f i ∈ C∞((−ε, ε)) for all 1 ≤ i ≤ n. After recalling that (∇XY )p = ∇γ′Yγ
∣∣
t=0 (cf. (2.8)), we

calculate
∇γ′Yγ

∣∣
t=0 =

n∑
i=1

(
∂f i

∂t
Vi + f i∇γ′Vi

)∣∣∣∣∣
t=0

=
n∑
i=1

∂f i

∂t
(0)vi.

On the other hand, we have for all t ∈ (−ε, ε)

P 0
t (γ)Yγ(t) = P 0

t (γ)
(

n∑
i=1

f i(t)Vi|γ(t)

)
= f i(t)vi, (2.11)

where we used that P 0
t (γ) =

(
P t0(γ)

)−1 and that, by construction, Vi is precisely the parallel
extension of vi along γ for all 1 ≤ i ≤ n. Taking the t-derivative at t = 0 of the right hand side
of (2.11) finishes the proof.

Together with the tensoriality in the first argument of ∇XY , Proposition 2.79 implies the
following, maybe at first sight surprising, fact.

Corollary 2.80. Let ∇ be a connection in TM → M and X,Y ∈ X(M). Then (∇XY )p
depends only on Xp, any choice of smooth curve γ : (−ε, ε)→M , ε > 0, with γ′(0) = Xp, and
Yγ , that is Y along γ.

We will later use Corollary 2.80 in order to define induced connections on submanifolds.
Note at this point that Corollary 2.80 implies that, after having chosen γ, we might change Y
outside of the image of γ as we like and still will not change the value of (∇XY )p.

Lastly before turning our focus on connections on pseudo-Riemannian manifolds we should
ask ourselves how two, possibly different, connections in the tangent bundle of a smooth manifold
are related. This will allow us to make (at least a limited) sense of the term “affine space of
connections”.

Definition 2.81. Let M be a smooth manifold and let ∇1,∇2 be connections in TM → M .
Then the difference tensor A ∈ T1,2(M) of ∇1 and ∇2 is defined as

A(X,Y ) := ∇1
XY −∇2

XY

for all X,Y ∈ X(M).

Exercise 2.82. Show that the difference tensor as in Definition 2.81 is, in fact, a tensor field.

The above definition and exercise can be interpreted as follows. In order to describe the
space of all connection in the tangent bundle of a given smooth manifold M , one first chooses
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a reference connection ∇ in TM → M . Then every other connection ∇̃ in TM → M can be
written as

∇̃XY = ∇XY +A(X,Y ),

where A ∈ T1,2(M) is a (1, 2)-tensor field, namely the difference tensor of ∇̃ and ∇. This
means that we can view the space of all connections in TM → M as an affine space, given
by ∇+ T1,2(M), where ∇ is the chosen reference point and T1,2(M) the (infinite dimensional if
dim(M) > 0) real vector space.

Remark 2.83. We understand what a connection, in particular in TM → M and its tensor
bundles, is. But we have not yet singled out a preferred one. The first step for doing so does not
depend on any extra data on a given manifold M , but still has a nice geometric interpretation.

Definition 2.84. The torsion tensor T ∈ T1,2(M) of a connection ∇ in TM →M is given by

T (X,Y ) := ∇XY −∇YX − [X,Y ]

for all X,Y ∈ X(M). The connection ∇ is called torsion-free if T ≡ 0.

Exercise 2.85.

(i) Show that the torsion tensor of a connection in TM →M is, in fact, a tensor field.

(ii) Show that a connection in TM →M is torsion-free if and only if all its Christoffel symbols
in all local coordinates fulfil Γkij = Γkji.

(iii) Show that two connections in TM →M have the same torsion tensor if and only if their
difference tensor is symmetric in its covector part.

Note that one consequence of Exercise 2.85 (iii) is that requiring torsion-freeness does not
determine a connection in TM →M uniquely.

Next we should ask ourselves what torsion-freeness means geometrically. The following
explanation is taken from [G, Bem. 2.6.2].

Remark 2.86. Consider for n ≥ 2 the connection in TRn → Rn given in Example 2.60, fix
p ∈ Rn, and choose two linearly independent vectors v, w ∈ TpRn. Let further ε > 0 and

γv := t 7→ p+ tv, γw := t 7→ p+ tw.

For any t > 0, the four vectors
v, w, P 1

0 (γv)w,P 1
0 (γw)v

can be interpreted as the edges of a parallelogram. What is the proper analogue for this
picture for general smooth manifolds M and connections in TM →M? The answer lies in making
t > 0 infinitesimally small and using Proposition 2.79. We fix p ∈ M and local coordinates
ϕ = (x1, . . . , xn) on U ⊂M , p ∈ U . For 1 ≤ k ≤ n and ε > 0 small enough, consider the smooth
curves

γk : (−ε, ε)→M, x`(γk(t)) = δ`kt ∀1 ≤ k, ` ≤ n,

so that γ′k = ∂
∂xk

. For any i 6= j, we obtain using Proposition 2.79

T
(

∂
∂xi
, ∂
∂xj

)∣∣∣
p

=
(
∇ ∂
∂xi

∂
∂xj
−∇ ∂

∂xj

∂
∂xi

)∣∣∣∣
p

= ∂

∂t

∣∣∣∣
t=0

(
P 0
t (γi) ∂

∂xj
− P 0

t (γj) ∂
∂xi

)
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= lim
t→0
t>0

∂
∂xi

∣∣∣
p

+ P 0
t (γi) ∂

∂xj
− ∂

∂xj

∣∣∣
p
− P 0

t (γj) ∂
∂xi

t
.

Hence, the “infinitesimal” parallelograms spanned by any two different coordinate vectors and
their parallel translations close, meaning that there is no “gap” when gluing the “infinitesimal”
edges together. Note that since our chosen coordinates were arbitrary, it is easy to generalise
this statement for any two linear independent vectors in TpM , and not just for the coordinate
vectors.

Recall that the infinitesimal symmetries of a pseudo-Riemannian manifold are given by
Killing vector fields, cf. Definition 2.46. How can we connect this concept with connections in
the tangent bundle of a pseudo-Riemannian manifold? The answer lies in parallel translations
and requiring that for any fixed start- and end-points they must be linear isometries. It is,
however, not immediately obvious how to implement this.

Definition 2.87. Let (M, g) be a pseudo-Riemannian manifold. A connection ∇ in TM →M
is called metric if ∇g = 0, that is

X(g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ) (2.12)

for all X,Y, Z ∈ X(M).

What does it mean in a geometric sense that a connection is metric? The answer is, in fact,
our initial ansatz for a sensible restriction of which connections to consider in the tangent bundle
of a given pseudo-Riemannian manifold.

Proposition 2.88. A connection in TM → M on a pseudo-Riemannian manifold (M, g) is
metric if and only if its parallel transport maps P tt0(γ) : Tγ(t0)M → Tγ(t)M are linear isometries
for all smooth curves γ : I →M .

Proof. All possible42 parallel transport maps P tt0(γ) are linear isometries if and only if for all
such P tt0(γ) and all v, w ∈ TpM , p = γ(t0), the map

t 7→ gγ(t)(P tt0(γ)v, P tt0(γ)w)

is constant. By considering affine reparametrisations of curves by t→ t+ c for constant c ∈ R,
it is easy to see that this holds if and only if

∂

∂t

∣∣∣∣
t=t0

gγ(t)(P tt0(γ)v, P tt0(γ)w) = 0 (2.13)

for all parallel translations P tt0(γ). By considering P tt0(γ)v and P tt0(γ)w as vector fields along γ,
it now follows from the tensor derivation property of any connection ∇ that if ∇ is metric, the
left hand side of (2.13) must always vanish. If one has problems seeing that, one might want to
formally replace ∂

∂t

∣∣∣
t=0

by ∇γ′ |t=0.
For the other direction we suppose that (2.13) holds for all parallel translations. Let

X,Y, Z ∈ X(M). One then, similarly to the proof of Proposition 2.79, fixes p ∈ M and
constructs a local parallel frame of TM along a curve γ fulfilling γ′(0) = Xp. We now write Yγ
and Zγ in that parallel frame. The last step is, using these local forms, writing out

Xp(g(Y, Z)) = ∇γ′(gγ(Yγ , Zγ)|t=0

using the tensor derivation property of ∇ and Proposition 2.79. By the imposed equality (2.13)
it then follows that (2.12) must hold. Since X,Y, Z and p were arbitrary, it follows that ∇ is
indeed a metric connection.

42As in corresponding to a smooth curve γ : I →M .
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Remark 2.89. How does a metric connection ∇ on a pseudo-Riemannian manifold (M, g) relate
to the notion of Killing vector fields? Observe that for a given Killing vector field X ∈ X(M)
and any integral curve γ : (−ε, ε)→M of X, the parallel translation P t0(γ)γ′(0) of γ′(0) along
γ with respect to ∇ is a linear isomorphism for all t ∈ (−ε, ε). However, after restricting the
local flow ϕ : (−ε, ε) × U → M that contains γ of X if necessary, it does in general not hold
that P t0(γ)γ′(0) = dϕt(γ′(0)), since P t0(γ)γ′(0) need not be tangent to γ for t 6= 0. If however
P t0(γ)γ′(0) is tangent to γ for all t ∈ (−ε, ε), the equality must hold simply by the fact that
both sides of the equation are linear isometries for all t ∈ (−ε, ε). This train of thought leads
to the definition of geodesics, cf. Definition 2.98, and in extension to the geodesic flow, cf.
Definition 2.102.

Definition 2.90. Let (M, g) be a pseudo-Riemannian manifold. A connection ∇ in TM →M
is called Levi-Civita connection if it is metric and torsion-free.

As always when defining some abstract object, we need to ask ourselves if it exists, and
furthermore “how” unique it is. In the case of a Levi-Civita connection we obtain the following
characterisation.

Proposition 2.91. Let (M, g) be a pseudo-Riemannian manifold. Then there exists a unique
Levi-Civita connection in TM →M .

Proof. Follows from the following Proposition 2.92.

In order to prove Proposition 2.91 we will use the following convenient result which can
furthermore be used to find an explicit local formula for the Levi-Civita connections.

Proposition 2.92. Let (M, g) be a pseudo-Riemannian manifold and ∇ a connection in
TM → M . Then ∇ is the Levi-Civita connection of (M, g) if and only if it satisfies the
Koszul formula

2g(∇XY,Z) = X(g(Y,Z)) + Y (g(X,Z))− Z(g(X,Y ))
− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]) (2.14)

for all X,Y, Z ∈ X(M). Furthermore, the Koszul formula determines the connection uniquely.

Proof. First we will show that ∇, defined by the Koszul formula, is in fact a connection. If we
have shown this, it follows from the fibrewise nondegeneracy of g that it is uniquely determined
as 2g(∇XY, Z)− 2g(∇̃XY,Z) = 0 for all X,Y, Z ∈ X(M) if ∇̃ is any other connection satisfying
the Koszul formula. Instead of writing out the details, we will specify what to do and leave the
actual calculations to the reader as this is a tedious, but rewarding exercise. Bilinearity in both
arguments of∇ is easily checked. Next, we need to show that∇fXY = f∇XY for all f ∈ C∞(M).
Since g is fibrewise nondegenerate, this is equivalent to showing that g(∇fXY,Z) = fg(∇XY,Z)
for all X,Y, Z ∈ X(M). Now we write out the right hand side of the Koszul formula and use the
identity for the Lie derivative of vector fields43 LfX = fLX +X ⊗ df . Next we want to prove
∇X(fY ) = f∇XY +X(f)Y for all X,Y ∈ X(M). We proceed as in the previous step and consider
g(∇X(fY ), Z) instead so we need to check that g(∇X(fY ), Z) = fg(∇XY,Z) + X(f)g(Y, Z).
Again, this amounts to using the afore mentioned identity of the Lie derivative of vector fields
and the right hand side of the Koszul formula. At this point we have shown that ∇ is, in fact, a
connection in TM →M . In order to show that ∇ is torsion free we can use local coordinates
(x1, . . . , xn) on U ⊂ M . Since the torsion tensor T of ∇ is a tensor field and g is fibrewise
nondegenerate, it suffices to show that

g
(
T
(

∂
∂xi
, ∂
∂xj

)
, ∂
∂xk

)
= 0

43Careful when considering e.g. the Lie derivative of 1-forms!
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for all 1 ≤ i, j, k ≤ n. Since T
(

∂
∂xi
, ∂
∂xj

)
= ∇ ∂

∂xi

∂
∂xj
−∇ ∂

∂xj

∂
∂xi

, we can write

g
(
T
(

∂
∂xi
, ∂
∂xj

)
, ∂
∂xk

)
= g

(
∇ ∂
∂xi

∂
∂xj

, ∂
∂xk

)
− g

(
∇ ∂
∂xj

∂
∂xi
, ∂
∂xk

)
,

and replace each term using the right hand side of the Koszul formula. It turns out that it
does, in fact, vanish for all 1 ≤ i, j, k ≤ n and, hence, that ∇ is torsion free. Alternatively, one
simply observes (and uses) that the terms 1+2, 3, and 4+5 in the right hand side of the Koszul
formula are symmetric in Y and Z. In order to show that ∇ is metric, that is ∇g = 0, we use
that this property is equivalent to Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ) for all X,Y, Z ∈ X(M).
Writing out the right hand side using the Koszul formula yields the result. Again, one might
alternatively use that the terms 2+3, 4, and 5+6 in the right hand side of the Koszul formula
are skew in Y and Z.

Lemma 2.93. The Christoffel symbols of the Levi-Civita connection on a pseudo-Riemannian
manifold (M, g) with respect to local coordinates (x1, . . . , xn) are given by

Γkij = 1
2

n∑
`=1

(
∂gj`
∂xi

+ ∂gi`
∂xj
− ∂gij
∂x`

)
g`k

for all 1 ≤ i, j, k ≤ n.

Proof. Follows by inserting the local coordinate vector fields into the Koszul formula.

Example 2.94. The Christoffel symbols of the Levi-Civita connection of (Rn, 〈·, ·〉), cf. Example
2.60, vanish identically in canonical coordinates. In polar coordinates (r, ϕ) on R2 \ {(x, 0) ∈
R2 | x ≤ 0}, the Christoffel symbols with respect to the standard Riemannian metric, given by
dx2 + dy2 in canonical coordinates (x, y), are of the form

Γrϕϕ = −r, Γϕrϕ = Γϕϕr = 1
r
, 0 else.

Recall the definition of the Hessian matrix of a smooth function on Rn. Using the language
of connections and traces with respect to pseudo-Riemannian metrics, we can now describe a
coordinate-free way for these constructions.

Definition 2.95. Let ∇ be a connection in TM →M . The covariant Hessian of a smooth
function f ∈ C∞(M) is defined as the (0, 2)-tensor field

∇2f := ∇(∇f) = ∇df ∈ T0,2(M).

If (M, g) is a pseudo-Riemannian manifold and ∇ is the Levi-Civita connection, we can take the
trace of the covariant Hessian with respect to g and obtain the Laplace-Beltrami operator
on smooth functions f ∈ C∞(M) given by

∆f := trg(∇2f).

Note that there are different definitions of the Laplace-Beltrami operator, e.g. one involving
the divergence of vector fields, cf. for example [J].

Exercise 2.96. Show that the covariant Hessian of a connection ∇ in TM →M is symmetric
in the sense that ∇2f ∈ Γ(Sym2(T ∗M)) for all f ∈ C∞(M) if and only if ∇ is torsion-free.
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2.3 Geodesics

The acceleration of a smooth curve γ : I → Rn in canonical coordinates is defined as

γ′′ : I → TRn, t 7→
(
γ(t), ∂

2γ1

∂t2 , . . . ,
∂2γn

∂t2

)
,

which is a vector field along γ. How can we define γ′′ in a coordinate free way, such that it gives
the above formula on Rn for the Levi-Civita connection of the standard Riemannian metric
n∑
i=1

(dui)2?

Definition 2.97. Let M be a smooth manifold, ∇ a connection in TM →M , and γ : I →M
a smooth curve. Then ∇γ′γ′ ∈ Γγ(TM) is called the acceleration of γ (with respect to ∇).

Definition 2.98. A smooth curve γ : I → M is called geodesic with respect to a given
connection ∇ in TM →M if its acceleration vanishes, that is ∇γ′γ′ = 0.

The above definition of a geodesic might be formulated as follows: A curve is a geodesic if
and only if its velocity vector field is parallel. It follows from (2.9) that in local coordinates
(x1, . . . , xn) of M , ∇γ′γ′ is of the form

∇γ′γ′ =
n∑
k=1

∂2γk

∂t2
+

n∑
i,j=1

∂γi

∂t

∂γj

∂t
Γkij

 ∂

∂xk
, (2.15)

where the terms Γkij = Γkij ◦ γ are the Christoffel symbols of the given connection ∇ evaluated
along γ, and γk = xk ◦ γ as usual. Hence, γ is a geodesic if and only if in all local coordinates
covering a nonempty subset of the image of γ it holds that

∂2γk

∂t2
+

n∑
i,j=1

∂γi

∂t

∂γj

∂t
Γkij = 0 ∀1 ≤ k ≤ n. (2.16)

An alternative common notation for the above equation which uses the Einstein summation
convention is

ẍk + ẋiẋjΓkij = 0 (2.17)

for all 1 ≤ k ≤ n. The above equation comes with a certain error potential as the terms xi in
(2.17) denote the components of the curve and not the coordinate functions. Hence, caution is
advised when using (2.17) instead of (2.16).

Exercise 2.99. Verify that for the Levi-Civita connection ∇ of
(
Rn,

n∑
i=1

(dui)2
)

, the formula

∇γ′γ′ = γ′′, as explained in the motivation in the beginning of this section, holds true.

A nice property of geodesics with respect to metric connections is the following. It allows to
quickly check if a suspected geodesic can be excluded without having to calculate all Christoffel
symbols and its second derivatives.

Lemma 2.100. Let γ : I → M be a geodesic on a pseudo-Riemannian manifold (M, g) with
respect to a metric connection ∇. Then g(γ′, γ′) : I → R is constant.

Proof. We calculate

∂(g(γ′, γ′))
∂t

= ∇γ′(g(γ′, γ′)) = (∇γ′g)(γ′, γ′) + 2g(∇γ′γ′, γ′) = 0.
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Note that Lemma 2.100 in particular holds for the Levi-Civita connection. In the Riemannian
case, the speed of a curve γ can be defined as

√
g(γ′, γ′). The above lemma implies that geodesics

in Riemannian manifolds have constant speed.
At this point we have neither proved existence of geodesics nor examined their uniqueness.

Locally, we obtain the following result.

Proposition 2.101. Let M be a smooth manifold and ∇ a connection in TM → M . Let
further p ∈M and v ∈ TpM . Then there exists ε > 0 and a smooth curve γ : (−ε, ε)→M with
γ(0) = p and γ′(0) = v, such that γ is a geodesic. If γ1 : I1 →M and γ2 : I2 →M are geodesics
on M such that I1 ∩ I2 6= ∅ and for some point t0 ∈ I1 ∩ I2, γ1(t0) = γ2(t0) and γ′1(t0) = γ′2(t0),
then γ1|I1∩I2 = γ2|I1∩I2 .

Proof. It suffices to prove this proposition in local coordinates. The differential equation for a
geodesic in local coordinates (2.16) is a nonlinear system of second order ordinary differential
equations. In order to turn this system of n second order ODEs into a first order system of
ODEs, we increase the number of time-dependent variables to 2n. Locally this means instead of
trying to solve (2.16) we choose local coordinates ϕ = (x1, . . . , xn) on U ⊂M , p ∈ U , use, for
the sake of readability, the alternative notation (2.17), and consider the system of equations

ẋk = vk,

v̇i = −ẋiẋjΓkij , (2.18)

for 1 ≤ k ≤ n with fitting initial values. The first thing we need to clarify are the symbols
vk. These are precisely the induced coordinates on TU ⊂ TM , so that vk(V ) = V (xk) for all
V ∈ TqM with q ∈ U . In the above equation (2.18), the xk and vk are, however, to be read as
components of a curve (x = x(t), v = v(t)) : I → dϕ(TU), which is the price we have to pay
for improved readability. In these local coordinates, (2.18) can be viewed as the local version
of an integral curve equation of a vector field on TU , G ∈ X(TU), that is a smooth section in
TTU → TU . To see this first observe that since the xk and vk are coordinate functions on TU ,
they induce coordinates on TTU . The corresponding local frame in TTU → TU is given by{

∂
∂x1 , . . . ,

∂
∂xn ,

∂
∂v1 , . . . ,

∂
∂vn

}
.

One can imagine each ∂
∂xk

as being “horizontal” and each ∂
∂vk

as being “vertical”.44 Using the
Einstein summation convention, G is given by

G = vk ∂
∂xk
− vivjΓkij ∂

∂vk
. (2.19)

Note that by covering M with charts, G uniquely extends to a vector field on TM , that is
G ∈ X(TM), via the induced charts on TM . Since any integral curve of G, locally given by
(x, v) : I → dϕ(TU), t 7→ (x(t), v(t)), in particular fulfils ẋ = v, it is precisely the velocity vector
field of the curve x : I → ϕ(U), t 7→ x(t). This means that the projection of any integral curve of
G to M via the bundle projection π : TM →M is a geodesic. By Remark 1.108 or alternatively
e.g. [A1] the statement of this proposition follows.

In fact, since we were going to cite [A1] anyway, we could have simply “proved” the above
proposition without constructing the vector field G on the tangent bundle. It is however an
important ingredient in the construction of normal coordinates which we will introduce later, cf.
Definition 2.126. After getting over the initial shock of double tangent bundles, it also gives a
nice geometric way to in a sense obtain an infinitesimal generator of all geodesics with respect
to a given connection, at once.

44Careful: This is only to gain a visual intuition, there are actual related definitions of “horizontal” and “vertical”
in this setting.
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Definition 2.102. The (local) flow of the vector field G ∈ X(TM) which is in local coordinates
given by (2.19) is called geodesic flow with respect to ∇.

Local uniqueness of geodesics allows us to define a maximality property for geodesics.

Definition 2.103. A geodesic γ : I → M is called maximal if there exists no strictly larger
interval Ĩ ⊃ I and a geodesic γ̃ : Ĩ → M , such that γ̃|I = γ. This means that γ cannot
be extended to a larger domain while still keeping its geodesic property. A smooth manifold
with connection ∇ in TM →M is called geodesically complete if every maximal geodesic is
defined on I = R. A pseudo-Riemannian manifold (M, g), respectively the metric g, is called
geodesically complete if its Levi-Civita connection is complete.

Assume that we are given a geodesic γ : I →M on M with respect to a connection ∇. How
can we reparametrise γ while at the same time preserving its geodesic property?

Lemma 2.104. Let γ : I →M be a geodesic with non-vanishing speed with respect to ∇ and
f : I → I ′ a diffeomorphism. Then γ ◦ f is a geodesic with non-vanishing speed if and only if f
is affine-linear, that is of the form f(t) = at+ b for a ∈ R \ {0}, b ∈ R.

Proof. We find using the local formula (2.15) and the chain rule

∇(γ◦f)′(γ ◦ f)′ = f ′′ · γ′ ◦ f + (f ′)2 · (∇γ′γ′) ◦ f = f ′′ · γ′ ◦ f,

where the last equality comes from the assumption that γ is a geodesic. Hence, γ ◦f is a geodesic
if and only if f ′′ = 0, that is if f = at+ b with a ∈ R \ {0}, b ∈ R.

Corollary 2.105. Maximal geodesics are unique up to affine reparametrisation.

Exercise 2.106. Let γ : I → M be a geodesic with initial value γ(0) = p, γ′(0) = v ∈ TpM .
Show that for all a ∈ R, t 7→ γa(t) := γ(at) is a geodesic with initial value γa(0) = p, γ′a(t) = av,
defined on a fitting interval I ′.

Corollary 2.107. A geodesic in a pseudo-Riemannian manifold with respect to the Levi-Civita
connection with nonvanishing velocity can always be parametrised to be of unit speed, that is
either g(γ′, γ′) ≡ 1 or g(γ′, γ′) ≡ −1.

Before coming to a geometrically more intuitive way why geodesics should be studied, we
will take a look at some examples of geodesics.

Example 2.108.

(i) Each maximal geodesics of Rn equipped with the canonical connection in Example 2.60
with initial condition γ(0) = p ∈ Rn, γ′(0) = v ∈ TpRn ∼= Rn, is of the form

γ : R→ Rn, t 7→ p+ tv.

This in particular means that the canonical connection on Rn is geodesically complete.

(ii) Consider Sn ⊂ Rn+1 with induced metric g = 〈·, ·〉|TSn×TSn , where 〈·, ·〉 denotes the
standard Riemannian metric on Rn. The maximal geodesics of (Sn, g) with respect to the
Levi-Civita connection are great circles, that is

γ : R→ Sn, t 7→ eAtp

for γ(0) = p ∈ Sn, γ′(0) = Ap, A ∈ Mat(n × n) skew. This, again, means that the
Levi-Civita connection of (Sn, g) is geodesically complete.
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Exercise 2.109. Prove the claims in Example 2.108.

The geodesic flow of a given connection allows us to locally identify small enough open
neighbourhoods of points p ∈M with open neighbourhoods in the corresponding tangent space
TpM .

Definition 2.110. Let M be a smooth manifold with connection ∇ in TM → M . An open
neighbourhood of the zero section in TM →M is an open set V ⊂ TM such that for all
p ∈M , Vp := TpM ∩ V is an open neighbourhood of the origin 0 ∈ TpM . Note that the smooth
manifold structure and topology on TpM are induced by the local trivialisations of TM →M
and the corresponding fibrewise isomorphisms TpM ∼= Rn.

We want to use open neighbourhoods of the zero section for our upcoming construction of
the exponential map in Definition 2.112. To do so, we need the following additional result.

Lemma 2.111. Let ∇ be a connection in TM →M . Then there exists an open neighbourhood
of the zero section V ⊂ TM , such that for all v ∈ Vp ⊂ V , the maximal geodesic γv with initial
condition γv(0) = p, γ′v(0) = v, has domain containing the compact interval [0, 1].

Proof. Exercise 2.106 implies that if γv is defined on at least [0, 1], then γrv for r ∈ [0, 1] is
also defined on at least [0, 1]. We have seen in the proof of Proposition 2.101 that geodesics
can be viewed as projections of integral curves of a vector field on TM . Thus, by identifying45

M with the image of the zero section in TM and using Exercise 2.106, in order to prove this
proposition it in fact suffices to show that for all p ∈M ⊂ TM we can find εp > 0 and an open
neighbourhood46 Wp of p in TM , such that all integral curves of G (2.19) starting in Wp are
defined on at least [0, εp]. This follows from the fact that G is a smooth vector field. If εp < 1,
we rescale Wp fibrewise with scaling factor εp, so that we can assume without loss of generality
that all integral curves of G starting in Wp are defined on at least [0, 1]. Doing this procedure
for all p ∈M ⊂ TM , we obtain our desired open neighbourhood V ⊂ TM of the zero section in
TM →M by setting

V :=
⋃
p∈M

Wp.

Definition 2.112. Let V ⊂ TM be an open neighbourhood of the zero section in TM → M
such that for all v ∈ V , the unique maximal geodesic γv with respect to ∇ with initial condition
γv(0) = p, γ′v(0) = v, is defined on [0, 1]. The exponential map with respect to ∇ is defined as

exp : V →M, v 7→ γv(1).

The exponential map at p ∈M expp : Vp →M is the restriction of exp to Vp = V ∩ TpM .

The exponential map of a given connection can be used to construct useful local coordinates, in
particular when the connection is the Levi-Civita connection with respect to a pseudo-Riemannian
metric. This will be a later step, see Definition 2.126.

Proposition 2.113. Let M be a smooth manifold and ∇ a connection in TM →M . For all
p ∈M , the exponential map at p is a local diffeomorphism near 0 ∈ TpM .

45If you have problems with this step try drawing a sketch first.
46Note: Wp is not a subset of the fibre TpM !
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Proof. We will show d expp = idTpM , which together with Theorem 1.55 will complete the proof.
As in Definition 2.112 let γv denote the maximal geodesic with chosen initial value γv(0) = p,
γ′v(0) = v for v ∈ TpM . We use Exercise 2.106 and obtain

d expp(v) = ∂

∂t

∣∣∣∣
t=0

expp(tv) = ∂

∂t

∣∣∣∣
t=0

γtv(1) = ∂

∂t

∣∣∣∣
t=0

γv(t) = γ′v(0) = v.

Since v ∈ TpM was arbitrary the claim follows. Note that, strictly speaking, we identified T0TpM
with TpM for the domain of d expp via the canonical isomorphism (0, v) = v.

Note that exp is defined on TM if ∇ is geodesically complete. This however does not mean
that in this case there exists p ∈M , such that expp is a diffeomorphism.

Exercise 2.114.

(i) Show that for any p ∈ Rn, expp defined on TpRn with respect to the canonical connection
in Example 2.60 is a diffeomorphism.

(ii) Show that if M is compact and ∇ is any connection in TM → M , expp is never a
diffeomorphism for all p ∈M , independent of its domain Vp ⊂ TpM .

Instead of trying to solve the geodesic equations, we can also study the weaker requirement
that the velocity vector field of a curve and its acceleration are linearly dependent. This leads to
the following definition.

Definition 2.115. A smooth curve γ : I → M is called pregeodesic with respect to a
connection in TM → M if it has a reparametrisation as a geodesic, that is if there exists a
diffeomorphism f : I ′ → I, such that γ ◦ f is a geodesic.

Pregeodesics fulfil an equation similar to the geodesic equation.

Lemma 2.116. Any given pregeodesic γ : I →M with respect to a connection ∇ in TM →M
fulfils ∇γ′γ′ = Fγ′ for some smooth function F : I → R.

Proof. Let f : I ′ → I be a diffeomorphism such that γ ◦ f is a geodesic. Then, by definition,
∇(γ◦f)′(γ ◦ f)′=0. Writing out the left hand side of the equation with the help of the chain rule
and (2.15) yields the desired result. More specifically one obtains F = − f ′′

(f ′)2 ◦ f
−1.

While one might guess that setting the (covariant) acceleration of a curve to zero yields
something interesting, we do not yet have explained a geometric reason why one would study
geodesics. In the following we will see that geodesics are, in fact, critical points of the energy
functional. In the Riemannian case, geodesics are furthermore (local!) minimizers of the length,
viewed as a functional.

Definition 2.117. Let (M, g) be a pseudo-Riemannian manifold and let γ : [a, b] → M be a
smooth curve. The energy functional evaluated at γ, or simply energy of γ, is given by

E(γ) := 1
2

b∫
a

g(γ′, γ′)dt.

We see that in the Riemannian case the definition of the energy E(γ) of a curve is similar to
the definition of its length L(γ), cf. Definition 2.9.
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Remark 2.118. Note that the energy and length functionals can also be defined for piecewise
smooth curves, that is continuous curves γ : I →M defined on a compact interval I = [a, b],
such that there exists a finite subdivision Ii = [ai, ai+1], 1 ≤ i ≤ m, a1 = a, am+1 = b, of I
and smooth curves γi : Ii → M for each 1 ≤ i ≤ m, such that γ|Ii = γi for all 1 ≤ i ≤ m.
This approach is taken in [L1] (for Riemannian manifolds) and [O]. It involves some technical
subtleties. We will only work with smooth curves. Admittedly, this is obfuscating parts of the
larger picture, however it is from a geometric intuition point of view almost equivalent. If one
understands our slightly restricted approach well, generalizing it will be a rather easy task. The
interested reader is highly encouraged to take a look at the topic as presented in [O, Ch. 10].
We will proceed similarly to a mix of [Bae, Ch. 2.6] and [L1]

While we are talking about (nonlinear) functionals, we did not specify any further structure
on their domains, e.g. the structure of a Banach manifold. In fact, we will not be concerned with
questions like an optimal domain for E or L as for our purposes we only need to be concerned
with what type of perturbations for fixed γ we allow.

Definition 2.119. Let γ : [a, b]→M be a smooth curve and ε > 0. A smooth family of curves47

η : (−ε, ε) × [a, b] → M is called variation of γ if η(0, t) = γ(t) for all t ∈ [a, b]. η is called
variation with fixed endpoints of γ if η(s, a) = γ(a) and η(s, b) = γ(b) for all s ∈ (−ε, ε).
The vector field V along γ, Vγ(t) = ∂η

∂s (0, t) ∈ Tγ(t)M , is called variational vector field of η.

Note that for any variation with fixed endpoints we have Vγ(a) = Vγ(b) = 0. Can we obtain
every vector field along a given smooth curve γ : [a, b]→M as a variational vector field? The
answer is positive.

Lemma 2.120. Let γ : [a, b]→M be a smooth curve. Let further V ∈ Γγ(TM). Then there
exists a variation η of γ, such that V is the variational vector field of η. If Vγ(a) = Vγ(b) = 0, η
can be chosen to be a variation with fixed endpoints.

Proof. Fix a Riemannian metric g on M with Levi-Civita connection ∇. Let exp : V → M
denote the corresponding exponential map. We now define a variation of γ via

η : (−ε, ε)× [a, b]→M, η(s, t) := exp(sVγ(t)),

for ε > 0 small enough. Note that we can always find such an ε by the compactness of [a, b]
and the smoothness of V . If V vanishes at γ(a) and γ(b), η has the property η(s, a) = γ(a) and
η(s, b) = γ(b) for all s ∈ (−ε, ε). Furthermore we check with a calculation as the one in the
proof of Proposition 2.113

∂η

∂s
(0, t) = Vγ(t)

for all t ∈ [a, b]. Hence, η fulfils the required properties of this lemma.

Next we will determine the so-called first variation of the energy. The obtained formula will
show that geodesics with respect to the Levi-Civita connection of a pseudo-Riemannian manifold
are indeed critical points of the energy functional.

Lemma 2.121. Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita connection ∇.
Then the first variation of the energy at a smooth curve γ : [a, b] → M with respect to
a given variational vector field V ∈ Γγ(TM) with a choice of corresponding variation of γ,
η : (−ε, ε)× [a, b]→M , η : (s, t) 7→ η(s, t), is given by ∂

∂s

∣∣∣
s=0

E(η(s, ·)) and fulfils

∂

∂s

∣∣∣∣
s=0

E(η(s, ·)) = −
b∫
a

g(V,∇γ′γ′)dt+ g(Vγ(b), γ
′(b))− g(Vγ(a), γ

′(a)).

47Read: η is in particular a smooth map, “family of curves” is the geometric picture one should have in mind.
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In the special case that V vanishes at the start- and end-point of γ, we have have ∂
∂s

∣∣∣
s=0

E(η(s, ·)) =

−
b∫
a
g(V,∇γ′γ′)dt.

Proof. In this proof we will use the Einstein summation convention. Let η′ = η′(s, t) = ∂η
∂t

denote the velocity vector field of the family of smooth curves η for s fixed. Also recall Exercise
2.71. We calculate

∂

∂s

∣∣∣∣
s=0

E(η(s, ·)) = 1
2

b∫
a

∂

∂s

∣∣∣∣
s=0

g(η′, η′)dt = 1
2

b∫
a

∇V (g(η′, η′))dt =
b∫
a

g(γ′,∇V η′)dt.

For the last equality we have used that ∇ is metric. For the next step we need to prove that
∇V η′ = ∇γ′V . To do so we will use local coordinates. Fix p ∈ γ([a, b]) and choose local
coordinates (x1, . . . , xn) on an open neighbourhood of p ∈ M . Denote V s = V s

η(s,t) := ∂ηk

∂s
∂
∂xk

,
so that V 0 = V . It now suffices to show that (∇V sη′)|s=0 = ∇γ′V . Using formula (2.9) (while
not confusing s and t), we find

∇V sη′ =
(
∂2ηk

∂s∂t
+ ∂ηi

∂s

∂ηj

∂t
Γkij

)
∂

∂xk

and
∇γ′V =

(
∂2ηk

∂t∂s
+ ∂ηi

∂t

∂ηj

∂s
Γkij

)∣∣∣∣∣
s=0

∂

∂xk
.

The connection is torsion-free, which as we have seen in Exercise 2.85 is equivalent to the
Christoffel symbols being symmetric in the lower indices. Hence, the above local formulas for
(∇V sη′)|s=0 and ∇γ′V indeed coincide. Since p ∈ γ([a, b]) was arbitrary we deduce that the
equality holds for all t ∈ [a, b]. Thus we obtain using partial integration

b∫
a

g(γ′,∇V η′)dt =
b∫
a

g(γ′,∇γ′V )dt

=
b∫
a

(
∂

∂t
g(γ′, V )− g(∇γ′γ′, V )

)
dt

= g(Vγ(b), γ
′(b))− g(Vγ(a), γ

′(a))−
b∫
a

g(V,∇γ′γ′)dt.

Reordering the above equation finishes the proof.

Corollary 2.122. Geodesics defined on a compact interval with respect to the Levi-Civita
connection of a pseudo-Riemannian are critical points of the energy functional in the sense
that the first variation of the energy with respect to all variations with fixed end points vanishes.

One can also prove the converse statement.

Lemma 2.123. A curve in a pseudo-Riemannian manifold defined on a compact interval is a
geodesic with respect to the Levi-Civita connection if it is a critical point of the energy functional
in the sense of Corollary 2.122.

Proof. Exercise. [Hint: Use bump functions.]
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Exercise 2.124. Find a formula for the first variation of the length of a curve in a Riemannian
manifold. Are geodesics also critical points of the length functional in our sense?

Remark 2.125. In Riemannian geometry, one can show that geodesics with respect to the
Levi-Civita connection and with compact domain are not just critical points of the energy and
length functional, but also local minimisers. This means that for every variation with fixed
endpoints η : (−ε, ε)× [a, b]→M of a geodesic γ : [a, b]→M in (M, g), E(η(s, ·)) ≥ E(γ) for ε
small enough. We will not prove this here as it would conflict with the time constrains of this
course, for references see [L1, Ch. 6] and [Bae], or [G] (in German).

We return to the exponential map. We have seen in Proposition 2.113 that the exponential
map is a local diffeomorphism near every point of a given manifold with connection in its tangent
bundle. Hence, we can use the exponential map to define local coordinates near every given
point. In the case of pseudo-Riemannian manifolds equipped with their respective Levi-Civita
connection, these kind of coordinates are of particular interest.

Definition 2.126. Let M be a smooth manifold with connection ∇ in its tangent bundle.
Suppose that V ⊂ TpM is a star-shaped open neighbourhood of the origin, such that expp :
V → expp(V ) is a diffeomorphism. Then U = expp(V ) is an open neighbourhood of p ∈M and
is called normal neighbourhood of p ∈M . Let U ⊂M be such a normal neighbourhood of a
point p ∈M . Then the exponential map at p can be used to define local coordinates (x1, . . . , xn)
near p as follows. Choose a basis {v1, . . . , vn} of TpM and define coordinates implicitly via

expp

(
n∑
i=1

xi(q)vi

)
= q

for all q ∈ U . This just means that the xi are the prefactor functions of exp−1
p written in the

basis {v1, . . . , vn}. Smoothness of the xi follows from the implicit function theorem. If (M, g) is
a pseudo-Riemannian manifold with Levi-Civita connection ∇, normal coordinates at p ∈ M
with respect to an orthonormal basis {v1, . . . , vn} of TpM are called Riemannian normal
coordinates48 at p ∈M . If (M, g) is Riemannian and V = Br(0) = {v ∈ TpM | gp(v, v) < r}
for some r > 0, the corresponding domain of the Riemannian normal coordinates Bg

r (p) :=
expp(Bε(0)) is called geodesic ball of radius r centred at p in M . The upper index g
indicates the corresponding Riemannian metric.

Exercise 2.127. Let (M, g) be a connected pseudo-Riemannian manifold. Then any two points
of M can be connected by a piecewise smooth curve (cf. Remark 2.118), such that every smooth
segment of that curve is a geodesic.

The converse of the statement in the above exercise holds of course too, see (after trying to
solve the exercise yourself) [O, Ch. 3, Lem. 32].

Riemannian normal coordinates have the property that near their reference point, several
geometric data has a particularly simple form.

Proposition 2.128. Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita connection
∇ and let ϕ = (x1, . . . , xn) be Riemannian normal coordinates near p ∈M corresponding to a
choice of orthonormal basis {v1, . . . , vn} of TpM . Then g, written in its local form (2.1) with
local smooth functions gij as in (2.2), fulfils

gij(p) = εij

48Yes, also if M is not Riemannian but pseudo-Riemannian.
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for all 1 ≤ i, j ≤ n, where εij = g(vi, vj). The Christoffel symbols of ∇ and all partial derivatives
of the local smooth functions gij vanish at p, that is

Γkij(p) = 0, ∂gij
∂xk

(p) = 0,

for all 1 ≤ i, j, k ≤ n. If γ : (−ε, ε)→M , γ(0) = p, γ′(0) = w ∈ TpM , is a geodesic starting at
p ∈M such that its image is contained in the domain of ϕ, ϕ ◦ γ is of the form

ϕ(γ(t)) = tw

for all t ∈ (−ε, ε).

Proof. For gij(p) = εij we show that vk = ∂
∂xk

∣∣∣
p

for all 1 ≤ k ≤ n. Since xk(p) = 0 for all
1 ≤ k ≤ n by construction, we obtain (after, as before, identifying T0TpM ∼= TpM)

n∑
k=1

d expp
∣∣∣
0

(vk)⊗ dxk|p = idTpM . (2.20)

On the other hand we know by Proposition 2.113 that d expp |0(vk) = vk for all 1 ≤ k ≤ n.
Applying both sides of (2.20) to ∂

∂xk

∣∣∣
p

proves our claim and we deduce that gij(p) = εij .

Next, note that ∂gij
∂xk

(p) = 0 implies with the help of Lemma 2.93 that all Christoffel symbols
at p must also vanish. We will however first show the latter and use it to prove the former.
We first show that the local form of geodesics ϕ ◦ γ is of the claimed form. By construction
of the exponential map, γ(t) = expp(tw) for all t ∈ (−ε, ε). Writing w =

n∑
k=1

wkvk, we have by

definition of Riemannian normal coordinates

γ(t) = expp(tw) = expp

(
n∑
k=1

twkvk

)
= expp

(
n∑
k=1

xk(γ(t))vk

)
,

showing that ϕ(γ(t)) = tw for all t ∈ (−ε, ε) as claimed. Writing down the geodesic equation for
γ in our local coordinates as in (2.17) at p with ẍk(0) = ∂2(xk(γ))

∂t2 (0) = 0 and ẋk(0) = wk for all
1 ≤ k ≤ n shows that

n∑
i,j=1

Γkij(p)wiwj = 0

for all 1 ≤ k ≤ n. Since this holds for arbitrary initial condition for the geodesic γ′(0) = w ∈ TpM ,
this proves that for each fixed 1 ≤ k ≤ n, (Γkij(p))ij viewed as symmetric bilinear form on
TpM × TpM must vanish identically. Hence, Γkij(p) = 0 for all 1 ≤ i, j, k ≤ n.

For the last claim of this proposition, that is the vanishing partial derivatives of each gij at
p, observe that ∇ being metric implies

∂gij
∂xk

= ∂

∂xk

(
g

(
∂

∂xi
,
∂

∂xj

))
= g

(
n∑
`=1

Γ`ki
∂

∂x`
,
∂

∂xj

)
+ g

(
n∑
`=1

Γ`kj
∂

∂x`
,
∂

∂xi

)
for all 1 ≤ k ≤ n. Evaluating the above equation at p and using that all Christoffel symbols
vanish at p yields the desired result.

Remark 2.129. Warning: In Proposition 2.128 we have seen that with the right choice of
coordinates, any pseudo-Riemannian metric and Levi-Civita connection can be brought to a very
simple form at a chosen point. While this works of course for every point in the manifold,
this does not mean that every pseudo-Riemannian metric is locally of the form gij = εij on
some open neighbourhood of our chosen reference point, this can in general only be achieved at
said point! Otherwise, every manifold would be flat, and comparing with Section 3 shows that
this is clearly not the case.
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For the next corollary recall the definition of the Landau symbols and Taylor expansions.

Corollary 2.130. The Taylor expansion of gij in Riemannian normal coordinates (x1, . . . , xn)
at their reference point p ∈M is of the form

gij = εij +O

(
n∑
k=1

(xk)2
)
.

Before proving two, in practice very helpful, facts about geodesic completeness, we will review
other results in the setting of geodesics, variations, and the exponential map of Riemannian
manifolds that we cannot prove in detail due to time constrains. An excellent reference for the
following remark is [L1, Ch. 6] and [L1, Ch. 10].

Remark 2.131.

(i) We have seen that geodesics with compact domain in Riemannian manifolds are critical
points of the energy functional, and solving Exercise 2.124 shows that they are in fact
also critical points of the length functional. One can, however, show more and prove that
they are not just any type of critical point but local minimisers, meaning that for any
variation η of γ with fixed endpoints, E(η(s, ·)) ≥ E(γ) and L(η(s, ·)) ≥ L(γ) for s small
enough. For a reference see [L1, Ch. 6].

(ii) An other way to study Riemannian manifolds is in the context of metric geometry.
In fact, every Riemannian metric g on a smooth manifold M induces the structure of
a metric space on M , which in turn induces a topology on M . It turns out that the
induced topology on M coincides, independently of the Riemannian metric g, with the
initial topology on M .

(iii) We have interpreted variations of curves as a family of curves depending on one parameter.
In the case that γ : I →M is a geodesic and η : (−ε, ε)× I →M is a variation of γ, are
there choices for η, such that every η(s, ·) : I →M is a geodesic, not just η(0, ·) = γ? The
answer is yes, and the corresponding variational vector fields are called Jacobi fields.

In the setting of metric geometry, one can study if M is complete as a metric space. It turns
out that this is closely related to geodesic completeness:

Theorem 2.132 (Hopf-Rinow). Let (M, g) be a Riemannian manifold. Then the following are
equivalent:

(i) (M, g) is geodesically complete.

(ii) M with the induced metric49 from the Riemannian metric g is complete as a metric space.

(iii) Every closed and bounded50 subset of M is compact.

Proof. For this version of the theorem see [O, Ch. 5, Thm. 21] or, alternatively, [G, Thm. 2.10.2]
(in German), [L1, Thm. 6.13], [Bae, Thm. 5.2.2].

Example 2.133.

(i) Every compact Riemannian manifold is geodesically complete. This is an immediate
consequence of Theorem 2.132. In particular, compact submanifolds of Rn are geodesically
complete.

49As in metric space.
50W.r.t. the induced metric.
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(ii) Rn equipped with the pseudo-Riemannian metric induced by 〈·, ·〉ν , cf. Proposition 2.3, is
geodesically complete. Any bounded open submanifold of Rn with the restriction of these
metrics is incomplete.

(iii) The hyperbolic upper half plane, H = {(x, y) ∈ R2 | y > 0} equipped with the Riemannian
metric g = dx2+dy2

y2 , is geodesically complete.

Next we will discuss two methods for (realistically) checking whether a given Riemannian
manifold is complete. In particular they do not necessarily involve solving any geodesic equation
explicitly.

Lemma 2.134. A Riemannian manifold (M, g) is geodesically complete if and only if every
curve with image not contained in any compact set has infinite length.

Proof. If (M, g) is geodesically complete, a curve γ that is not contained in any compact set is
by Theorem 2.132 in particular not contained in the closure of the geodesic ball Bg

r (γ(t0)) for
any t0 in the domain of γ and any r > 0. Hence, γ has infinite length.

If (M, g) is geodesically incomplete, we can find an inextensible geodesic γ : [0, a) → M ,
a > 0, of unit speed. Suppose that γ([0, a)) is contained in a compactum K ⊂ M . Then γ
converges in K and can thus be extended as a geodesic, which is a contradiction.

Lemma 2.135.

(i) Let M be a smooth manifold and g, h Riemannian metrics on M . Assume that for all
p ∈ M and all v ∈ TpM , hp(v, v) ≥ gp(v, v), or h ≥ g for short. If (M, g) is geodesically
complete, (M,h) is also geodesically complete.

(ii) Let (M, g) be a Riemannian manifold. If there exists R > 0, such that Bg
R(p) is compactly

embedded in M for all p ∈M , then (M, g) is geodesically complete.

Proof. Exercise.

Remark 2.136. While geodesic completeness is defined for pseudo-Riemannian manifolds
with arbitrary index, its main importance lies in Riemannian geometry. A concept of similar
importance in Lorentz geometry is global hyperbolicity, cf. [BGP].

3 Curvature

In this section we will study different notions of curvature of pseudo-Riemannian manifolds.
For surfaces in R3, one has a heuristic idea what curvature should mean, i.e. looking locally
like a part of an affine plane should mean not curved, looking like a parabola, a hyperboloid,
or a monkey saddle should mean curved in some sense. How do we formalise this, even in the
aforementioned case, in a coordinate-free way? How does this relate to the notion of Gauß-
curvature of surfaces in R3? First, we will introduce the pseudo-Riemannian curvature tensor
by considering parallel translation around infinitesimal parallelograms. The reason why we want
to study curvature is as follows. As of now, we do not have effective tools to check if two given
pseudo-Riemannian manifolds might or might not be isometric. For example, while we have
shown that near every point we can find Riemannian normal coordinates turning the metric at
that point into a very simple form, it is not clear yet why this might not be possible locally.
This means that we do not know yet if we can always find local coordinates ϕ on a subset
U ⊂M a pseudo-Riemannian manifold near every fixed point so that the pseudo-Riemannian
metric has coordinate representation (ϕ(U), 〈·, ·〉ν). We will see that this is in general not true.
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Definition 3.1. Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita connection ∇.
The Riemann51 curvature tensor of (M, g) is defined as

R : X(M)× X(M)× X(M)→ X(M), R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (3.1)

for all X,Y, Z ∈ X(M). In the above formula, we understand ∇X∇Y Z as ∇X(∇Y Z), analogously
for X and Y interchanged.

Exercise 3.2.
(i) Check that the Riemann curvature tensor is, in fact, a tensor field, i.e. R ∈ T1,3(M).

(ii) Formally replace “∇” in the right hand side of (3.1) with “L”, that is the Lie derivative.
Verify that the so-defined expression vanishes identically.

(iii) Show that the Riemann curvature tensor vanishes identically if dim(M) = 1.

Before studying the Riemann curvature tensor any further, we must ask ourselves which
geometric picture motivates its definition in the first place. Compare the following construction
with Remark 2.86 and make sure to understand the difference.

Lemma 3.3. Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita connection ∇. For
any X ∈ X(M), denote for every p ∈M by P t0(X) : TpM → Tγ(t)M the parallel transport map
with respect to ∇ along the integral curve γ : (−ε, ε)→M of X with γ(0) = p for ε > 0 small
enough. For p ∈ M fixed we have P t0(X) = P t0(γ). Let (x1, . . . , xn) be local coordinates on
U ⊂M . Then

R

(
∂
∂xi

∣∣∣
p
, ∂
∂xj

∣∣∣
p

)
∂
∂xk

∣∣∣
p

= ∂

∂s

∣∣∣∣
s=0

∂

∂t

∣∣∣∣
t=0

P s0

(
∂
∂xi

)−1
P t0

(
∂
∂xj

)−1
P s0

(
∂
∂xi

)
P t0

(
∂
∂xj

)
∂
∂xk

∣∣∣
p

(3.2)

for all 1 ≤ i, j, k ≤ n and all p ∈ U . The Riemann curvature tensor is the unique (1, 3)-tensor
field fulfilling (3.2) in all local coordinates.

Proof. In their coordinate representations, P t0
(

∂
∂xj

)
: TpM → Tγ(t)M for t ∈ (−ε, ε), ε small

enough, and the other parallel translations are smooth maps of the form

̂
P t0

(
∂
∂xj

)
: (−ε, ε)→ GL(n),

where GL(n) being the codomain follows from Lemma 2.78. The above map should be understood
as mapping prefactors of vectors in TpM written in the coordinate basis to prefactors of vectors
in Tγ(t)M , again written in the coordinate basis. This means for the right hand side of (3.2)
that the partial derivatives behave according to the product rule of matrix valued curves, i.e.
for all A,B : (−ε, ε)→ GL(n) smooth with A(0) = B(0) = 1 and all v ∈ Rn we have

∂
∂s

∣∣∣
s=0

∂
∂t

∣∣∣
t=0

A(s)−1B(t)−1A(s)B(t)v

=
(
∂
∂s

∣∣∣
s=0

A(s)−1
) (

∂
∂t

∣∣∣
t=0

B(t)−1
)
v +

(
∂
∂t

∣∣∣
t=0

B(t)−1
) (

∂
∂s

∣∣∣
s=0

A(s)
)
v

=
(
∂
∂s

∣∣∣
s=0

A(s)
) (

∂
∂t

∣∣∣
t=0

B(t)
)
v −

(
∂
∂t

∣∣∣
t=0

B(t)
) (

∂
∂s

∣∣∣
s=0

A(s)
)
v.

Note that ∂
∂s

∣∣∣
s=0

A(s) ∈ End(Rn), meaning that the derivative is in general not invertible. Using
Proposition 2.79 we thus obtain

∂

∂s

∣∣∣∣
s=0

∂

∂t

∣∣∣∣
t=0

P s0

(
∂
∂xi

)−1
P t0

(
∂
∂xj

)−1
P s0

(
∂
∂xi

)
P t0

(
∂
∂xj

)
∂
∂xk

∣∣∣
p

51As for Riemannian normal coordinates, R is always called the Riemann curvature tensor, even if (M, g) is not
Riemannian.
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=
(
∇ ∂
∂xi
∇ ∂
∂xj

∂
∂xk
−∇ ∂

∂xj
∇ ∂
∂xi

∂
∂xk

)∣∣∣∣
p

which proves equation (3.2). In order to show that the Riemann curvature tensor is indeed
the unique tensor field fulfilling the above, we only need to check that for any local functions
X1, Y 1, Z1, . . . , Xn, Y n, Zn ∈ C∞(U) and all p ∈ U ,

∑
i,j,k

Xi(p)Y j(p)Zk(p)R
(

∂
∂xi

∣∣∣
p
, ∂
∂xj

∣∣∣
p

)
∂
∂xk

∣∣∣
p

and (R(X,Y )Z)|p as in (3.1) coincide. This follows immediately from the tensoriality of R
proven in Exercise 3.2 (i).

Lemma 3.3 means that the Riemann curvature tensor measures the infinitesimal change of
vectors parallelly transported around infinitesimal parallelograms. It is important to note that
firstly, we allow pairs of opposite edges of said parallelograms to become small independently,
meaning that R involves second order differentiation. Secondly note that this already points to
the importance of planes in tangent spaces, that is two-dimensional linear subspaces, for the
interpretation of the curvature, see Lemma 3.18.

Lemma 3.4. In local coordinates (x1, . . . , xn) the Riemann curvature tensor of a pseudo-
Riemannian manifold (M, g) has components

R`ijk := dx`
(
R
(

∂
∂xi
, ∂
∂xj

)
∂
∂xk

)
,

so that locally52 R =
∑
i,j,k,`

R`ijk
∂
∂x`
⊗ dxi ⊗ dxj ⊗ dxk. The local functions R`ijk are given by

R`ijk =
∂Γ`jk
∂xi

− ∂Γ`ik
∂xj

+
n∑

m=1

(
Γ`imΓmjk − Γ`jmΓmik

)
for all 1 ≤ i, j, k, ` ≤ n.

Proof. Direct calculation.

The Riemann curvature tensor fulfils various symmetry and anti-symmetry identities.

Lemma 3.5. Let (M, g) be a pseudo-Riemannian manifold with Riemann curvature tensor R.
Then

(i) R(X,Y ) = −R(Y,X),

(ii) g(R(X,Y )Z,W ) = −g(Z,R(X,Y )W ),

(iii) R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0 (first or algebraic Bianchi identity),

(iv) g(R(X,Y )Z,W ) = g(R(Z,W )X,Y ),

(v) (∇XR)(Y,Z) + (∇YR)(Z,X) + (∇ZR)(X,Y ) = 0 (second or differential Bianchi iden-
tity)

for all X,Y, Z,W ∈ X(M).
52Warning: The order of the indices i, j, k, ` is not standardised. I have probably seen every possible

combination, so be careful to understand which index refers to which input in other lecture notes, papers, and
books.
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Proof. (i) follows from (3.1). Note that this means that R can be viewed as an End(TM)-valued
2-form, cf. Remark 2.51.

In order to show (ii) it suffices to show that g(R(X,Y )Z,Z) = 0 for all X,Y, Z ∈ X(M),
that is precisely (ii) for Z = W , which then implies

0 = 1
2 (g(R(X,Y )(Z +W ), Z +W )− g(R(X,Y )(Z −W ), Z −W ))

= g(R(X,Y )Z,W )− g(R(X,Y )W,Z).

We might further assume that [X,Y ] = 0, e.g. by setting X and Y locally to coordinate vector
fields, since R is a tensor field. We obtain using that ∇ is a metric connection

g(R(X,Y )Z,Z) = g(∇X∇Y Z,Z)− g(∇Y∇XZ,Z)
= X(g(∇Y Z,Z))− g(∇Y Z,∇XZ)− Y (g(∇XZ,Z)) + g(∇XZ,∇Y Z)
= 1

2(X(Y (g(Z,Z)))− Y (X(g(Z,Z)))) = 1
2 [X,Y ](g(Z,Z)) = 0

for all X,Y, Z with [X,Y ] = 0 which, as explained above, proves (ii).
For the third identity (iii) we might, as before, assume using the tensoriality of R that

[X,Y ] = [Y, Z] = [Z,X] = 0. Also observe that we might write (iii) as
∑

cycl.
R(X,Y )Z = 0. We

find for all X,Y, Z ∈ X(M) with pairwise vanishing Lie bracket∑
cycl.

R(X,Y )Z =
∑
cycl.
∇X∇Y Z −

∑
cycl.
∇Y∇XZ

=
∑
cycl.
∇Y∇ZX −

∑
cycl.
∇Y∇XZ

=
∑
cycl.
∇Y [Z,X] = 0,

where we have used that ∇ is torsion free.
(iv) is a combinatorial exercise53 and follows using the identities (i), (ii), and (iii).
For last identity (v) we will use Riemannian normal coordinates. Fix p ∈ M and let

(x1, . . . , xn) be Riemannian normal coordinates at p on an open neighbourhood U ⊂ M of p.
We want to show that for all

Xp =
n∑
i=1

Xi ∂

∂xi

∣∣∣∣
p
, Yp =

n∑
i=1

Y i ∂

∂xi

∣∣∣∣
p
, Zp =

n∑
i=1

Zi
∂

∂xi

∣∣∣∣
p
, X1, Y 1, Z1, . . . , Xn, Y n, Zn ∈ R,

it holds that
(∇XpR)(Yp, Zp) + (∇YpR)(Zp, Xp) + (∇ZpR)(Xp, Yp) = 0. (3.3)

Let X,Y, Z ∈ X(U) be the constant extensions of Xp, Yp, Zp in the sense that

X =
n∑
i=1

Xi ∂

∂xi
, Yp =

n∑
i=1

Y i ∂

∂xi
, Zp =

n∑
i=1

Zi
∂

∂xi
.

Note that [X,Y ] = [Y, Z] = [Z,X] = 0. Equation (3.3) follows if we can show that

((∇XR)(Y,Z)W + (∇YR)(Z,X)W + (∇ZR)(X,Y )W ) |p = 0

for all local vector fields W ∈ X(U). Recall that all Christoffel symbols in our chosen local
coordinates vanish at p, cf. Proposition 2.128. Hence, ∇AB|p = 0 for all possible combinations
of A,B ∈ {X,Y, Z}. We thus obtain for all cyclic permutations of X,Y, Z and all W ∈ X(U)

(∇ZR)(X,Y )W |p = (∇Z(R(X,Y )W )−R(∇ZX,Y )W −R(X,∇ZY )W −R(X,Y )∇ZW )|p
53“Exercise” as in you should try proving this yourself.
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= (∇Z(R(X,Y )W )−R(X,Y )∇ZW )|p .

Hence by using that p ∈ M was arbitrary, the tensoriality of R, and that W ∈ X(U) was
arbitrary we obtain

(∇ZR)(X,Y ) = [∇Z , R(X,Y )] = [∇Z , [∇X ,∇Y ]]

for all X,Y, Z ∈ X(M) with pairwise vanishing Lie bracket. In the above equation, [·, ·] means
the formal commutator of differential operators. By writing out∑

cycl.
[∇Z , [∇X ,∇Y ]] =

∑
cycl.

(∇X∇Y∇Z −∇X∇Z∇Y −∇Y∇Z∇X +∇Z∇Y∇X),

we find that
∑

cycl.
[∇Z , [∇X ,∇Y ]] = 0 and, hence, we conclude that (v) holds true.

The Riemann curvature tensor behaves well under isometries.

Lemma 3.6. Let F : (M, g)→ (N,h) be an isometry and let RM and RN denote the Riemann
curvature tensors of (M, g) and (N,h), respectively. Then

F∗
(
RM (X,Y )Z

)
= RN (F∗X,F∗Y )F∗Z

for all X,Y, Z ∈ X(M).

Proof. It suffices to show that F∗∇MX Y = ∇NF∗X(F∗Y ) for all X,Y ∈ X(M), where ∇M and ∇N
denote the Levi-Civita connections of (M, g) and (N,h), respectively. This is a lengthy, but
not difficult calculation using the Koszul formula (2.14) for ∇M and ∇N , the fact that we are
dealing with an isometry, which in particular means that F∗ : X(M)→ X(N) is bijective, and
Corollary 1.126.

Definition 3.7. A pseudo-Riemannian manifold with vanishing Riemann curvature tensor is
called flat.

The easiest examples of flat pseudo-Riemannian manifolds are (Rn, 〈·, ·〉ν), 0 ≤ ν ≤ n.
There exist other not so obvious examples, e.g. the Riemannian cylinder R× S1 and the torus
T 2 = S1 × S1, both equipped with the respective product metric.

Suppose that we are given a flat Riemannian manifold (M, g). In our definition this means
that its Riemann curvature tensor vanishes identically. This is, in fact, a sufficient condition
to show that locally, (M, g) is isometric to (Rn, 〈·, ·〉), where 〈·, ·〉 stands for the standard
Riemannian metric given in canonical coordinates by

n∑
i=1

(dui)2.

Theorem 3.8. An n-dimensional Riemannian manifold (M, g) is flat if and only if it is locally
isometric to (Rn, 〈·, ·〉), meaning that for all p ∈M there exists an open neighbourhood U ⊂M
of p and an isometry F : (U, g)→ (F (U), 〈·, ·〉), F (U) ⊂ Rn open.

Proof. Lemma 3.6 implies that local isometry to (Rn, 〈·, ·〉) implies flatness, i.e. R ≡ 0. The
other direction of this proof requires more work, for details see [L1, Thm. 7.3] (with slightly
different conventions). The idea is to construct a commuting54 orthonormal local frame of
TM → M near every given point. The key ingredient is that parallel transport of vectors at,
say, p ∈M , to a close enough point q ∈M does not depend on the chosen curve starting at p
and ending at q if it is required to be contained in a small enough open neighbourhood of both
p and q. This follows from a similar argument as in Lemma 3.3.

54w.r.t. the Lie bracket
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In Lemma 3.3 we have seen how to interpret the Riemann curvature tensor geometrically as
infinitesimal change of parallel transport of tangent vectors around infinitesimal parallelograms.
There is an alternative, more algebraically flavoured, interpretation of the Riemann curvature
tensor involving covariant derivatives of second order.

Definition 3.9. Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita connection ∇.
Then for all X,Y, Z ∈ X(M),

∇2
X,Y Z := (∇X(∇Z))(Y ) = ∇X∇Y Z −∇∇XY Z (3.4)

is called the second covariant derivative of Z in direction X,Y .

Note that the second covariant derivative ∇2
X,Y of vector fields is in general not symmetric

in X and Y . This holds true even if X = ∂
∂xi

and Y = ∂
∂xj

are both coordinate vector fields with
respect to local coordinates (x1, . . . , xn), contrary to partial derivatives with respect to local
coordinates, cf. Lemma 1.100. Also compare the second covariant derivative of vector fields with
the definition of the covariant Hessian in Definition 2.95.

Exercise 3.10. Check that (∇X(∇Z))(Y ) = ∇X∇Y Z −∇∇XY Z in (3.4) actually holds true
for all X,Y, Z ∈ X(M). Note that ∇X(∇Z) is to be understood as the covariant derivative of
the endomorphism field ∇Z ∈ Γ(End(TM)) in direction X.

By using second covariant derivatives, we can rewrite the Riemann curvature tensor as
follows.

Lemma 3.11. The Riemann curvature tensor of a pseudo-Riemannian manifold (M, g) with
Levi-Civita connection ∇ fulfils

R(X,Y )Z = ∇2
X,Y Z −∇2

Y,XZ (3.5)

for all X,Y, Z ∈ X(M).

Proof. Using torsion-freeness of ∇ we obtain

−∇∇XY Z +∇∇YXZ = −∇[X,Y ]Z

for all X,Y, Z ∈ X(M). Equation (3.5) now follows by writing it out using (3.4).

Lemma 3.11 means that the Riemann curvature tensor measure “how much” second order
covariant derivatives of vector fields do not commute. In the case that the given pseudo-
Riemannian manifold is flat we see that second order covariant derivatives in directions X,Y ,
respectively Y,X, do in fact commute. We can interpret this as a coordinate free Schwartz’s
Theorem for flat pseudo-Riemannian manifolds.

The Riemann curvature tensor of a pseudo-Riemannian manifold (M, g) is a (1, 3)-tensor field.
Another common definition is to instead define the Riemann curvature tensor as a (0, 4)-tensor
field R̃ ∈ T0,4(M) given by

R̃(X,Y, Z,W ) := g(R(X,Y )Z,W )

for all X,Y, Z,W ∈ X(M). It is clear that R can be recovered from R̃ by raising the fitting
index. In local coordinates (x1, . . . , xn), R̃ is of the form

R̃ =
∑
i,j,k,`

Rijk` dx
i ⊗ dxj ⊗ dxk ⊗ dx`, (3.6)

where Rijk` =
∑
m
g`mR

m
ijk. Recall that we have seen in Proposition 2.128 that the first partial

derivatives of the prefactors gij of the metric g in Riemannian normal coordinates (x1, . . . , xn)
vanish at the reference point. Using the above definition of the curvature as a (0, 4)-tensor field,
we obtain the following result for the second partial derivatives of the gij at the reference point.
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Lemma 3.12. Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita connection ∇ and
let ϕ = (x1, . . . , xn) be Riemannian normal coordinates at p ∈M corresponding to a choice of
orthonormal basis {v1, . . . , vn} of TpM . Let further Rijk` as in (3.6). Then the local prefactors
gij as in (2.2) of g fulfil

∂2gij
∂xk∂x`

(p) = 2
3Rijk`(p).

for all 1 ≤ i, j, k, ` ≤ n.

Proof. [Bae, Prop. 3.1.12], try to solve it yourself before looking it up!

The next curvature type we will study is the so-called sectional curvature which assigns to
each nondegenerate plane in a given tangent space a real number. For a pseudo-Riemannian
manifold (M, g), a plane Π ⊂ TpM being nondegenerate means that gp|Π×Π is a pseudo-Euclidean
scalar product.

Definition 3.13. Let (M, g) be a pseudo-Riemannian manifold with Riemann curvature tensor
R. Let Π ⊂ TpM be a nondegenerate plane spanned by linearly independent vectors v, w ∈ TpM .
The sectional curvature of Π is defined by

K(Π) := K(v, w) := g(R(v, w)w, v)
g(v, v)g(w,w)− g(v, w)2 .

The first thing we need to investigate if the sectional curvature is well-defined, that is we
need to show that K(Π) is independent of the basis vectors v, w of Π.

Lemma 3.14. K only depends on the plane Π, not on the choice of basis vectors v, w of Π.

Proof. Let {V,W} be another basis of Π. Then we can write v = aV + bW , w = cV + dW for
a, b, c, d ∈ R and since both {v, w} and {V,W} are a basis of Π we have that

det
(
a b
c d

)
= ad− bc 6= 0.

A short calculation shows g(R(v, w)w, v) = (ad − bc)2g(R(V,W )W,V ) and g(v, v)g(w,w) −
g(v, w)2 = (ad− bc)2(g(V, V )g(W,W )− g(V,W )2) which proves our claim. Note that the latter
also proves that Π is nondegenerate if and only if g(v, v)g(w,w)− g(v, w)2 6= 0.

Sectional curvature can be interpreted as a coordinate free generalisation of the Gauß-
curvature of surfaces in R3. In order to properly understand this we need more knowledge about
induced structure on submanifolds which is the topic of the next section, cf. Remark ??.

Definition 3.15. A pseudo-Riemannian manifold (M, g) is of constant curvature if its
sectional curvatures coincide at every point for every nondegenerate plane in the corresponding
tangent space.

Exercise 3.16.

(i) Find an explicit local formula for K
(

∂
∂xi
, ∂
∂xj

)
in terms of the Christoffel symbols and

their derivatives. How does this formula look like in Riemannian normal coordinates?

(ii) Show that (Sn, 〈·, ·〉|TSn×TSn) has positive constant curvature.

(iii) Show that the hyperboloids Hn
ν as in Example 2.33 (ii) have constant curvature and

determine the sign.
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It turns out that knowing all sectional curvatures at all points is equivalent to knowing the
Riemann curvature tensor. In order to prove this, we will define so-called abstract curvature
tensors.

Definition 3.17. A (1, 3)-tensor

F ∈ T 1,3
p M, F : (u, v, w) 7→ F (u, v)w ∈ TpM ∀u, v, w ∈ TpM,

on a pseudo-Riemannian manifold (M, g) is called abstract curvature tensor if it fulfils the
identities55

(i) F (v, w) = −F (w, v),

(ii) g(F (v, w)V,W ) = −g(V, F (v, w)W ),

(iii)
∑

cycl.
F (u, v)w = 0

for all u, v, w, V,W ∈ TpM .

Note that similarly to the identity Lem. 3.5 (iv) for the Riemann curvature tensor one can
show for abstract curvature tensors that gp(F (v, w)V,W ) = gp(F (V,W )v, w) for all v, w, V,W .

Lemma 3.18. Let (M, g) be a pseudo-Riemannian manifold with Riemann curvature tensor R
and assume that for p ∈M fixed and an abstract curvature tensor F ∈ T 1,3

p M

K(v, w) = g(F (v, w)w, v)
g(v, v)g(w,w)− g(v, w)2 (3.7)

for all linearly independent v, w ∈ TpM spanning a nondegenerate plane in TpM . Then F = Rp.

Proof. One checks that F − Rp is an abstract curvature tensor. By linearity it thus suffices
to show that K(v, w) = 0 for all linearly independent v, w ∈ TpM implies F = 0 in (3.7). As
discussed in the proof of Lemma 3.14, the denominator g(v, v)g(w,w)− g(v, w)2 does not vanish
by the requirement that Π = spanR{v, w} is nondegenerate. Hence, it suffices to show that
g(F (v, w)w, v) = 0 for all v, w spanning a nondegenerate plane implies F = 0. Note that this
is in fact equivalent to showing g(F (v, w)w, v) = 0 for all v, w ∈ TpM . In the Riemannian and
index equal to the dimension of M cases, every plane is nondegenerate, so this claim is trivial.
So supposed that the index of g is between 1 and n− 1. To see that the claim also holds in these
cases, first note that

TpM × TpM 3 (v, w) 7→ g(F (v, w)w, v) ∈ R (3.8)

is continuous. Suppose that g(F (v, w)w, v) = 0 for all v, w ∈ TpM spanning a nondegenerate
plane in TpM holds true but there are V,W ∈ TpM spanning a degenerate plane in TpM , such
that g(F (V,W )W,V ) 6= 0

g(F (V,W )W,V ) 6= 0. (3.9)

To show that this is a contradiction to the continuity of (3.8) we show that there exist vectors
Vε and Wε in arbitrary small open neighbourhoods of V,W in TpM , respectively, such that
Πε := spanR{Vε,Wε} is nondegenerate. A plane Πε spanned by linearly independent Vε,Wε is
nondegenerate if and only if g(Vε, Vε)g(Wε,Wε)− g(Vε,Wε)2 6= 0. This follows from the fact that
in the basis Vε,Wε of Πε ⊂ TpM , the representing symmetric 2× 2-matrix of g|Πε×Πε is given by(

g(Vε, Vε) g(Vε,Wε)
g(Vε,Wε) g(Wε,Wε)

)
.

55Compare these to Lemma 3.5 (i)–(v).
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If g(V, V ) = 0, that is V is a timelike vector, spanR{V,W} being degenerate is equivalent to
g(V,W ) = 0. In this case choose a vector ξ ∈ TpM , such that g(V, ξ) 6= 0. If g(V, V ) < 0, choose
ξ ∈ TpM with g(ξ, ξ) > 0, if g(V, V ) > 0, choose ξ ∈ TpM with g(ξ, ξ) < 0. In any of the three
described cases set Vε = V and Wε = W + εξ. Then

g(Vε, Vε)g(Wε,Wε)− g(Vε,Wε)2 = cε+
(
g(V, V )g(ξ, ξ)− g(V, ξ)2

)
ε2

for some c ∈ R. If c 6= 0, we see that there exists δ > 0 such that for all ε with 0 < |ε| < δ,
g(Vε, Vε)g(Wε,Wε)− g(Vε,Wε)2 is either positive (if c > 0) or negative (if c < 0). If c = 0, we
have by construction g(V, V )g(ξ, ξ) − g(V, ξ)2 < 0 in any case of g(V, V ) = 0, g(V, V ) < 0, or
g(V, V ) > 0. Hence, we again obtain that there exists δ > 0 such that for all ε with 0 < |ε| < δ,
g(Vε, Vε)g(Wε,Wε) − g(Vε,Wε)2 is negative. We conclude that in any case the corresponding
plane Πε is nondegenerate. Since ε is allowed to be arbitrary small and (3.9) is supposed to
hold, this is a contradiction to the assumption that g(F (v, w)w, v) = 0 for all v, w spanning a
nondegenerate plane and the continuity of (3.8).

The next step is to show that g(F (v, w)w, v) = 0 for all v, w ∈ TpM implies F = 0. First
note that g(F (v, w)u, v) is symmetric in u,w for all u, v, w ∈ TpM . This follows from

g(F (v, w)u, v) = g(F (u, v)v, w) = g(F (v, u)w, v)

for all u, v, w ∈ TpM . We further obtain

0 = g(F (v, w + u)(w + u), v) = 2g(F (v, w)u, v) = −2g(F (v, w)v, u)

for all u, v, w ∈ TpM , which shows F (v, w)v = 0 for all v, w ∈ TpM . Hence we have for all
u, v, w ∈ TpM

0 = F (v + u,w)(v + u) = F (v, w)u+ F (u,w)v,

which is equivalent to F (v, w)u = F (w, u)v. Using that we obtain

0 =
∑
cycl.

F (v, w)u = 3F (v, w)u

for all u, v, w ∈ TpM , proving that indeed F = 0.

As a consequence of Lemma 3.18 we obtain the following formula for the Riemann curvature
tensor of pseudo-Riemannian manifolds with constant curvature.

Corollary 3.19. Let (M, g) be a pseudo-Riemannian manifold with constant sectional curvature
K = c ∈ R. Then the Riemann curvature tensor of (M, g) fulfils

R(X,Y )Z = c(g(Y, Z)X − g(X,Z)Y ) (3.10)

for all X,Y, Z ∈ X(M).

Proof. We check that for every point p ∈ M , the right hand side of (3.10) restricted to
TpM × TpM × TpM defines an abstract curvature tensor fulfilling

K(v, w) = c

for all v, w spanning a nondegenerate plane in TpM . Lemma 3.18 now implies that the equality
(3.10) holds at p ∈M . Since p ∈M was arbitrary this finishes the proof.

Now we will introduce the Ricci56 curvature which is obtained by contracting the Riemann
curvature tensor.

56Gregorio Ricci-Curbastro (1853 – 1925)
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Definition 3.20. Let (M, g) be a pseudo-Riemannian manifold with Riemann curvature tensor
R. The Ricci curvature Ric ∈ T0,2(M) is defined as

Ric(X,Y ) := tr(R(·, X)Y )

for all X,Y ∈ X(M) where

R(·, X)Y ∈ T1,1(M), R(·, X)Y : Z 7→ R(Z,X)Y.

In local coordinates (x1, . . . , xn), the Ricci curvature is of the form

Ric =
n∑

i,j=1
Ricij dxi ⊗ dxj =

n∑
i,j=1

(
n∑
k=1

Rkkij

)
dxi ⊗ dxj .

Exercise 3.21.

(i) Show that Ric is symmetric, that is Ric(X,Y ) = Ric(Y,X) for all X,Y ∈ X(M).

(ii) Determine a local formula for each Ricij in terms of the Christoffel symbols.

(iii) Find a formula for Ric for pseudo-Riemannian manifolds of constant curvature.

The Ricci curvature plays a prominent role in general relativity and, as indicated by the
name, the study of the Ricci flow. On a pseudo-Riemannian manifold (M, g0) The Ricci flow is
(up to a multiplication of the right hand side with a constant) formally defined as a system of
second order ODEs

∂gt
∂t

= −2Ricgt ,

with fitting initial condition. Here gt is a smooth family of pseudo-Riemannian metrics and
Ricgt denotes the Ricci curvature of (M, gt). This is a very actively studied field of modern
mathematics, for an introduction see [CK, T].

In case that Ric = λg for a pseudo-Riemannian manifold (M, g) and some real number λ ∈ R,
(M, g) is called Einstein manifold. Einstein manifolds are subject of active research in both
physics, where they originate as critical points of the total scalar curvature functional, and
mathematics. For a (mathematical) introduction see [Bes].

Exercise 3.22. Find a solution of the Ricci flow equation for (M, g) Einstein. What can you
say about the maximal existence interval for the time variable t?

The Ricci curvature can be used to define a scalar curvature invariant as follows.

Definition 3.23. The scalar curvature of a pseudo-Riemannian manifold (M, g) is defined as

S := trg(Ric) ∈ C∞(M).

Note that Exercise 3.21 ensures that S is in fact well defined.

Exercise 3.24. Find a local formula of the scalar curvature in terms of the Christoffel symbols.

Why would one want to study scalar curvature invariants like the scalar curvature in the first
place? The answer is that they are useful when trying to prove that two given pseudo-Riemannian
manifolds are not isometric.

Lemma 3.25. The number of isolated local minima and maxima of the scalar curvature of a
pseudo-Riemannian manifold is invariant under isometries.
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Proof. Let (M, g) and (N,h) be two isometric pseudo-Riemannian manifolds with scalar curvature
SM , SN , respectively, and let F : M → N be an isometry. It follows from Lemma 3.6 that
SN = SM ◦ F . Since F is in particular a diffeomorphism the claim of this lemma follows.

Hence, if we have two pseudo-Riemannian manifold (M, g) and (N,h) (with the same index,
otherwise this would be a trivial statement) but do not know any of the topological invariants of
M and N like their respective fundamental or homology groups, but still want to show that they
are not isometric, we might as a reasonable ansatz try to study the extrema of their respective
scalar curvature functions. It is not enough to check that their scalar curvatures are different at
some points as we can see in the following exercise.

Exercise 3.26.

(i) Let (M, g) be a pseudo-Riemannian manifold and r > 0. Let Sg denote the scalar curvature
of (M, g) and Srg denote the scalar curvature of (M, rg). Show that Srg = r−1Sg.

(ii) Show that the 2-torus as the product T 2 = S1 × S1 equipped with the product metric57

and the 2-torus embedded in R3 via F : T 2 → R3 equipped with the induced metric
〈·, ·〉|TT 2×TT 2 are never isometric, independent of the chosen embedding F .

The scalar curvature can also be calculated using the sectional curvatures for a good choice
of basis of the tangent spaces.

Lemma 3.27. Let (M, g) be an n ≥ 2-dimensional pseudo-Riemannian manifold. For p ∈M
fixed let {v1, . . . , vn} be an orthonormal basis of TpM . Then

S(p) =
∑
i 6=j

K(vi, vj).

Proof. Exercise. [Hint: Simply write out the right hand side of the equation.]

Remark 3.28. Another commonly studied scalar curvature invariant of pseudo-Riemannian
manifolds is the so-called Kretschmann58 scalar which is for a pseudo-Riemannian manifold
(M, g) given by g(R,R) ∈ C∞(M), cf. Definition 2.23.

4 Pseudo-Riemannian submanifolds

4.1 Induced structures

In this section we will deepen our studies of pseudo-Riemannian submanifolds. Throughout this
sections, M will denote a smooth manifold which is supposed to be the ambient manifold of a
smooth submanifold M ⊂M . Recall that this means that M is an embedded submanifold of
M via the inclusion map ι : M →M . Also note that in this notation M is not the topological
closure of M . Similarly, we will denote the geometrical structures on the ambient manifold M
with bars, e.g. the Levi-Civita connection will be denoted by ∇.

Definition 4.1. The induced metric of a pseudo-Riemannian submanifold M in (M, g) given
by the restriction g := g|TM×TM is called first fundamental form.

Recall Definition 2.30.
57S1 ⊂ R2 with induced metric 〈·, ·〉|TS1×TS1 .
58Erich Justus Kretschmann (1887 – 1973)
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Definition 4.2. Let (M, g) be a pseudo-Riemannian submanifold of (M, g). We identify X(M)
with tangential sections of TM |M ∼= TM ⊕TM⊥ →M , where tangential means that the normal
part of these sections vanishes identically. Sections in the subbundle TM⊥ → M are called
normal sections and are denoted by X(M)⊥. We further define tangential and normal
projections as bundle maps

tan : TM ⊕ TM⊥ → TM, nor : TM ⊕ TM⊥ → TM⊥,

given fibrewise by tan(v + ξ) = v and nor(v + ξ) = ξ for all v ∈ TpM and all ξ ∈ TpM⊥.

The following holds for any smooth submanifolds M ⊂ M without any assumption on
additional geometric data like a pseudo-Riemannian metric.

Lemma 4.3. Let M ⊂ M be a smooth submanifold. Let further X,Y ∈ X(M) be arbitrary
and X,Y ∈ X(M) be arbitrary extensions of X,Y to M , i.e. Xp = Xp and Y p = Yp for all
p ∈M . Then [X,Y ]p ∈ TpM for all p ∈M .

Proof. Follows from Lemma 1.125 with φ = ι, see also Remark 1.127.

Whenever M ⊂M is a pseudo-Riemannian submanifold, the above Lemma 4.3 justifies the
notation [X,Y ] ∈ X(M) for all X,Y ∈ X(M), where X(M) is viewed as the set of sections of
the tangent part of the bundle TM |M ∼= TM ⊕ TM⊥ →M along M ⊂M .

Next we need to study the Levi-Civita connection of the ambient manifold and show that it,
in a certain sense, defines a connection in both TM →M and TM⊥ →M .

Lemma 4.4. Let M be a pseudo-Riemannian submanifold of (M, g) and let ∇ denote the
Levi-Civita connection of (M, g). Let X ∈ X(M) and Y ∈ Γ(TM |M ) with arbitrary extensions
X,Y ∈ X(M), respectively. Then

∇XY
∣∣∣
M
∈ Γ(TM |M )

is independent of the chosen extensions X and Y .

Proof. Any integral curve of X starting in M will have image contained in M and can thus be
viewed as an integral curve of X. Using Corollary 2.80 finishes the proof.

Lemma 4.4 in particular justifies the notation ∇XY for all X,Y ∈ X(M). Furthermore, it
implies the following.

Corollary 4.5. The Levi-Civita connection of a pseudo-Riemannian manifold (M, g) with
pseudo-Riemannian submanifold (M, g) induces a connection in TM ⊕ TM⊥ →M .

Note that it is at this point not clear if ∇ also induces a connection in the tangent bundle
TM →M and the normal bundle TM⊥ →M . The answer is yes to both as we will see next.

Proposition 4.6. Let (M, g) be a pseudo-Riemannian submanifold of (M, g). Then the Levi-
Civita connection ∇ of (M, g) is precisely the tangent part of the Levi-Civita connection ∇ of
(M, g) restricted to X(M)× X(M), i.e.

∇XY = tan∇XY

for all X,Y ∈ X(M).
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Proof. First we need to show that tan∇ restricted to X(M) × X(M) is, in fact, a connection.
This follows from the fibrewise linearity of tan : TpM → TpM and Lemma 4.4. Note that this
easily implies that tan∇A is well-defined for all tensor fields A ∈ Tr,s(M). Next we need to check
that tan∇ is metric and torsion-free. Let X,Y, Z ∈ X(M) be arbitrary and let X,Y , Z ∈ X(M)
be respective extensions. Since g = g|TM×TM we obtain for all p ∈M by the locality property
of tangent vectors and Lemma 4.4

(tan∇Xg)(Y, Z)|p =
(
X(g(Y,Z))− g(tan∇XY,Z)− g(Y, tan∇XZ)

)∣∣∣
p

=
(
X(g(Y , Z))− g(tan∇XY , Z)− g(Y , tan∇XZ)

)∣∣∣
p

=
(
X(g(Y , Z))− g(∇XY , Z)− g(Y ,∇XZ)

)∣∣∣
p
.

In the last equivalence we have used that Xp, Y p, Zp are tangent to M , hence the normal part of
e.g. ∇XY at p does not chance the value of g(∇XY , Z). Since ∇ is metric and X,Y, Z ∈ X(M)
and p ∈ M were arbitrary, it follows that tan∇g = 0 as claimed. For the torsion-freeness, let
X,Y ∈ X(M) be arbitrary with arbitrary extensions X,Y ∈ X(M), respectively. Using Lemmas
4.4, 4.3, and the fibrewise linearity of tan we obtain for all p ∈M(

tan∇XY − tan∇YX − [X,Y ]
)∣∣∣
p

=
(
tan∇XY − tan∇YX − [X,Y ]

)∣∣∣
p

= tan
(
∇XY −∇YX − [X,Y ]

)∣∣∣
p

= 0,

where the last equality follows from the torsion-freeness of ∇. Summarizing, we have shown
that tan∇ is a metric and torsion free connection in TM →M and, hence, coincides with the
Levi-Civita connection ∇ of (M, g).

Proposition 4.6 might be a surprising result at first glance, as it allows us to calculate covariant
derivatives in pseudo-Riemannian submanifolds with respect to the Levi-Civita connection using
only tangential projections and the Levi-Civita connection of the ambient manifold. The latter
is usually easier to handle, in particular if (M, g) = (Rn, 〈·, ·〉ν). By a result from Nash59 [N],
this is actually the most general case if the ambient manifold is Rn equipped with the standard
Riemannian metric 〈·, ·〉. The reader is encouraged to take a look at the related publication
since even though it is a very hard result, it is very neatly structured and well readable. The
following is a special case of [N, Thm. 3].

Theorem 4.7. Let (M, g) be a Riemannian manifold of dimension n. Then there exists an
isometric embedding of (M, g) into any open subset U ⊂ Rm for m = 3

2n
3 + 7n2 + 11

2 n equipped
with the standard Riemannian metric 〈·, ·〉.

The above theorem means that studying Riemannian manifolds is equivalent to studying
(automatically Riemannian) submanifolds of (Rn, 〈·, ·〉). However, in reality, constructing an
explicit embedding from, say, RPn equipped with some Riemannian metric into any given open
subset U ⊂ Rm for fitting m is far from trivial.

Exercise 4.8. Find a formula for the Christoffel symbols of the Levi-Civita connection of a
pseudo-Riemannian submanifold in adapted coordinates.

We have seen how to obtain a connection in the tangent bundle of a pseudo-Riemannian
submanifold (M, g) which turned out to be the best possible case, that is the Levi-Civita
connection. The Levi-Civita connection of the ambient manifold (M, g) also induces a connection
in the normal bundle TM> →M .

59John Nash (1928 – 2015)
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Proposition 4.9. Let (M, g) be a pseudo-Riemannian submanifold of (M, g) and let ∇ denote
the Levi-Civita connection of (M, g). Then

∇nor := nor∇ : X(M)× X(M)⊥ → X(M)⊥, (X, ξ) 7→ nor∇Xξ,

for all X ∈ X(M) and all ξ ∈ X(M)⊥ is a connection in TM⊥ → M , called the normal
connection.

Proof. Follows from the fibrewise linearity of nor and Lemma 4.4.

Recall that we have called the metric g = g|TM×TM of a pseudo-Riemannian submanifold
(M, g) of (M, g) the first fundamental form.

Definition 4.10. Let (M, g) be a pseudo-Riemannian submanifold of (M, g) with Levi-Civita
connection ∇ in TM →M . The second fundamental form of M is defined as

II : X(M)× X(M)→ X(M)⊥, II(X,Y ) := nor∇XY

for all X,Y ∈ X(M).

Lemma 4.11. The second fundamental form is a symmetric TM⊥-valued (0, 2)-tensor field,
that is a section in TM⊥ ⊗ Sym2(T ∗M)→M .

Proof. It is clear that II is C∞(M)-linear in its first argument. Hence it suffices to show that
II is symmetric in order to also obtain the C∞(M)-linearity in the second argument. For
the symmetry we check that for all X,Y ∈ X(M) using the fibrewise linearity of nor, the
torsion-freeness of ∇, and Lemma 4.3

II(X,Y )− II(Y,X) = nor
(
∇XY −∇YX

)
= nor[X,Y ] = 0.

Corollary 4.12. The Levi-Civita connection ∇ and second fundamental form II of a pseudo-
Riemannian submanifold (M, g) of (M, g) fulfil the Gauß equation60

∇XY = ∇XY + II(X,Y ) (4.1)

for all X,Y ∈ X(M).

Exercise 4.13.

(i) Find a formula for the second fundamental form in coordinates in terms of the Christoffel
symbols of (M, g) and (M, g).

(ii) For U ⊂ R2 open consider a smooth function f : U → R. The graph of f is a Rie-
mannian submanifold of (R3, 〈·, ·〉). Find a formula for the second fundamental form of(
graph(f), g = 〈·, ·〉|Tgraph(f)×Tgraph(f)

)
in terms of the first and second partial differentials

of f .

The covariant derivatives of normal fields along pseudo-Riemannian manifolds also split in a
certain manner. For this we need to define the following.

60There are many similar equations with that name, e.g. in affine and centro-affine differential geometry, so
one has to make sure to clarify the context.
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Definition 4.14. Let (M, g) be a pseudo-Riemannian submanifold of (M, g). For all ξ ∈ X(M)⊥,
the g-symmetric endomorphism field Sξ ∈ T1,1(M) defined by the Weingarten equation

g(II(X,Y ), ξ) = g(SξX,Y ) (4.2)

for all X,Y ∈ X(M) is called Weingarten61 map (alternatively shape operator).

Note that Sξ is well-defined for each ξ ∈ X(M)⊥ by the fibrewise nondegeneracy of g.

Exercise 4.15. Determine a coordinate description of the Weingarten map in adapted coordi-
nates.

Proposition 4.16. Let (M, g) be a pseudo-Riemannian submanifold of (M, g). The Weingarten
map fulfils the Weingarten equation

∇Xξ = −SξX +∇nor
X ξ (4.3)

for all X ∈ X(M) and all ξ ∈ X(M)⊥.

Proof. Follows by writing out g(∇Xξ, Y ) for Y ∈ X(M) arbitrary and using Definition 4.14,
Proposition 4.9, and the metric property of ∇.

4.2 Curvature of pseudo-Riemannian submanifolds

We have seen how to relate obtain the Levi-Civita connection and several related geometric data
of a pseudo-Riemannian submanifold from the geometric information of its ambient pseudo-
Riemannian manifold. We will now develop formulas for the various curvature tensors of
pseudo-Riemannian submanifolds. We start with relating the respective Riemann curvature
tensors.

Proposition 4.17. Let (M, g) be a pseudo-Riemannian submanifold of (M, g). The Riemann
curvature tensors R of (M, g) and R of (M, g) are related by the Gauß equation for Riemann
curvature tensors

g(R(X,Y )Z,W ) = g(R(X,Y )Z,W ) + g(II(X,Z), II(Y,W ))− g(II(Y,Z), II(X,W )) (4.4)

for all X,Y, Z,W ∈ X(M).

Proof. Since (4.4) is a tensor equation, we might without loss of generality assume [X,Y ] = 0.
Observe that for all X,Y, Z,W ∈ X(M), equation (4.3) implies

g(∇X∇Y Z,W ) = g(tan∇X∇Y Z,W )
= g(∇X(tan∇Y Z),W ) + g(tan∇X(nor∇Y Z),W )
= g(∇X∇Y Z,W ) + g(tan∇X(II(Y, Z)),W )
= g(∇X∇Y Z,W )− g(SII(Y,Z)X,W )
= g(∇X∇Y Z,W )− g(II(X,W ), II(Y,Z)).

By doing the same calculation as above with X and Y interchanged and using R(X,Y ) =
∇X∇Y −∇Y∇X for [X,Y ] = 0 we obtain the claimed formula (4.4).

Since the first fundamental form of a pseudo-Riemannian submanifold is simply the restriction
of the pseudo-Riemannian metric of the ambient manifold, Proposition 4.17 and Definition 3.13
imply the following for the sectional curvature of pseudo-Riemannian submanifolds.

61Julius Weingarten (1836 – 1910)

108



Corollary 4.18. Let (M, g) be a pseudo-Riemannian submanifold of (M, g). For every nonde-
generate plane spanned by v, w ∈ TpM in TpM ⊂ TpM , the sectional curvatures K of (M, g)
and K of (M, g) are related by

K(v, w) = K(v, w)− g(II(v, v), II(w,w))− g(II(v, w), II(v, w))
g(v, v)g(w,w)− g(v, w)2 . (4.5)

Equation (4.5) is particularly useful if the ambient manifold (M, g) has constant curvature
as it allows to calculate the sectional curvatures of any pseudo-Riemannian submanifold without
having to calculate its Riemann curvature tensor.

Example 4.19. Consider the unit n-sphere Sn ⊂ Rn+1 equipped with the restriction of the
standard Riemannian metric. The sectional curvatures of the ambient Riemannian manifold
(Rn+1, 〈·, ·〉) all vanish and since we are in the Riemannian setting, every plane in TpS

n is
nondegenerate for all p ∈ Sn. Without loss of generality we can assume for a given plane in
TpS

n ⊂ TpRn that it is spanned by two orthonormal vectors v, w ∈ TpM . Hence, the sectional
curvature of Sn of that plane is given by

K(v, w) = 〈II(v, v), II(w,w)〉 − 〈II(v, w), II(v, w)〉.

In the next step we need to determine II for which we will use (4.2). First note that TSn⊥ → Sn

is a rank 1 vector bundle. A global frame is given by the position vector field ξ ∈ X(Sn)⊥, ξp = p
for all p ∈ Sn. In order to determine the Weingarten map, we use (4.3), calculate

∇Xξ = X (4.6)

for all X ∈ X(Sn) and, hence, obtain Sξ = −idTSn . Since II is a TSn⊥-valued symmetric
(0, 2)-tensor, (4.6) implies with (4.2)

〈II(X,Y ), ξ〉 = −〈X,Y 〉

for all X,Y ∈ X(Sn), showing that II(X,Y ) = −〈X,Y 〉ξ. Hence, K(v, w) = 1, and since the
initial plane spanned by v, w was arbitrary this shows that the unit n-sphere Sn has constant
curvature with value 1.

Exercise 4.20.
(i) Show that Sn embedded as a sphere of radius r > 0 in (Rn, 〈·, ·〉) has positive constant

curvature 1
r2 .

(ii) Show that Hn
1 as a Riemannian submanifold of the n+ 1-dimensional Minkowski space

(Rn+1, 〈·, ·〉1) as in Example 2.33 (ii) has negative constant curvature.

4.3 Geodesics of pseudo-Riemannian submanifolds

Next we will use the results about curvature of pseudo-Riemannian submanifolds to find tools
for determining geodesics of pseudo-Riemannian submanifolds.

Proposition 4.21. Let (M, g) be a pseudo-Riemannian submanifold of (M, g) with respective
Levi-Civita connections ∇ and ∇. A smooth curve γ : I →M is a geodesic with respect to ∇ if
and only if ∇γ′γ′ is normal at every point, i.e. ∇γ′γ′ ∈ Γγ(TM⊥).

Proof. By the Gauß equation (4.1) we have

∇γ′γ′ = ∇γ′γ′ + II(γ′, γ′).

Since II(γ′, γ′) is precisely the normal part of ∇γ′γ′, the claim follows.
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Proposition 4.21 usually makes life easier in case the ambient manifold is the flat Euclidean
space. Try the following exercise first without our new results, that is by choosing coordinates,
and then with the help of Proposition 4.21.

Exercise 4.22. Let Sn ⊂ Rn+1 be the unit n-sphere with induced Riemannian metric. The
geodesics in Sn are curves of constant speed contained in the great circles.

Another interesting thing to consider for pseudo-Riemannian submanifolds (M, g) of (M, g)
is geodesics of its ambient manifold with initial condition in TM ⊂ TM , meaning γ(0) = p ∈M
and γ′(0) = v ∈ TpM ⊂ TpM . It is not automatically true that geodesics with such initial
conditions stay in the submanifold, see Exercise 4.22. In the following, geodesic refers to geodesic
with respect to the respective Levi-Civita connection.

Definition 4.23. A pseudo-Riemannian submanifold (M, g) of a pseudo-Riemannian manifold
(M, g) is called totally geodesic if all geodesics γ : I →M of (M, g) starting in M with initial
velocity tangent to M stay in M for all time, i.e. γ(I) ⊂M .

Using the Gauß equation (4.1) we obtain the following description of totally geodesic
submanifolds.

Lemma 4.24. A pseudo-Riemannian submanifold (M, g) of a pseudo-Riemannian manifold
(M, g) is totally geodesic if and only if its second fundamental form vanishes identically.

Proof. If II ≡ 0, (4.1) implies that ∇γ′γ′ = ∇γ′γ′ for all smooth curves γ : I →M . Hence, γ is
a geodesic in (M, g) if and only if it is a geodesic in (M, g).

Now suppose that II 6≡ 0. Fix p ∈ M and v ∈ TpM ⊂ TpM , such that II(v, v) 6= 0. For
ε > 0 small enough let γ : (−ε, ε)→M ⊂M be a geodesic in (M, g) with γ′(0) = v. By (4.1) it
follows that γ is not a geodesic in (M, g). Hence, (M, g) is not totally geodesic.

In order to check if a pseudo-Riemannian submanifold is totally geodesic we can use the
following equivalent conditions.

Proposition 4.25. Let (M, g) be a pseudo-Riemannian submanifold of (M, g). (M, g) is totally
geodesic if and only if one of the following equivalent statements hold:

(i) Every geodesic in (M, g) is a geodesic in (M, g).

(ii) For every geodesic γ : I → M with 0 ∈ I, I open, and initial conditions γ(0) = p,
γ′(0) = v ∈ TpM ⊂ TpM there exists ε > 0, such that γ((−ε, ε)) ⊂M .

(iii) For every smooth curve γ : [a, b]→M ⊂M the parallel transport in (M, g),

P ba(γ) : Tγ(a)M → Tγ(b)M

coincides with the parallel transport in (M, g),

P
b
a(γ) : Tγ(a)M → Tγ(b)M

restricted to Tγ(a)M ⊂ Tγ(a)M .

Proof. (i) is by definition of totally geodesic pseudo-Riemannian submanifolds, cf. Definition
4.23, equivalent to (M, g) being totally geodesic. (iii) is equivalent to (M, g) being totally
geodesic by Lemma 4.24.

To see that (i) and (ii) are equivalent, suppose first that (i) holds and let γ : I → M be a
geodesic in (M, g) with 0 ∈ I, I open, and γ′(0) = v ∈ TpM . On the other hand, let γ̃ : Ĩ →M
be a geodesic in (M, g) with 0 ∈ Ĩ, Ĩ open, and γ̃′(0) = v. By assumption, γ̃ is also a geodesic in
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(M, g) and by the uniqueness property of maximal geodesics coincides with γ on I ∩ Ĩ. Choosing
ε > 0 small enough so that (−ε, ε) ⊂ I ∩ Ĩ proves the claim.

Next suppose that (ii) holds. We have already seen that (i) is equivalent to the vanishing of
the second fundamental form II of M ⊂M . Let p ∈M and v ∈ TpM be arbitrary. Let further
γ : (−ε, ε)→ M for any ε > 0 small enough be a geodesic in (M, g) with γ(0) = p, γ′(0) = v,
such that γ((−ε, ε)) ⊂M . By the Gauß equation (4.1) we have

0 = ∇γ′γ′
∣∣∣
t=0

= ∇γ′γ′
∣∣
t=0 + IIp(v, v)

and by the fibrewise direct sum of the splitting TM |M = TM ⊕ TM⊥ and p and v being
arbitrary, we obtain II ≡ 0 as required.

A nice tool to construct totally geodesic pseudo-Riemannian submanifolds is by studying
fixpoints of isometries of their ambient manifold.

Proposition 4.26. Let (M, g) be a pseudo-Riemannian manifold and let F ∈ Isom(M, g) be an
isometry of (M, g). Suppose that a connected component M of Fix(F ) := {p ∈M | F (p) = p}
is a pseudo-Riemannian submanifold of (M, g). Then M is totally geodesic.

Proof. F , restricted to M , is the identity, i.e.

F |M = idM .

Hence, dF restricted to the subbundle TM ⊂ TM |M is also the identity, meaning that dF (v) = v
for all v ∈ TpM ⊂ TpM and all p ∈M . In order to show that M is totally geodesic, it suffices
to show by Proposition 4.25 (ii) that isometries map geodesics of (M, g) to geodesics of (M, g),
meaning that for ε > 0 small enough any geodesic of (M, g), γ : (−ε, ε)→M with γ(0) = p ∈M ,
γ′(0) = v ∈ TpM , will be contained in M by construction. This follows from F∗∇XY = ∇F∗XF∗Y
for all X,Y ∈ X(M), see the proof of Lemma 3.6.

While it is easy to produce “more” examples of totally geodesic pseudo-Riemannian sub-
manifold if we are given one by restricting to open subsets, in the case that a totally geodesic
pseudo-Riemannian submanifold is geodesically complete we have the following uniqueness
statement.

Proposition 4.27. Let M and N be connected totally geodesic geodesically complete pseudo-
Riemannian submanifolds of (M, g). If there exists p ∈M ∩N , such that TpM = TpN as linear
subspaces of TpM , we already have M = N .

Proof. We will show M ⊂ N , the other direction follows by symmetry of the arguments. Let
γ : [a, b] → M be a geodesic in M from p = γ(a) to q := γ(b). Note that M being totally
geodesic implies γ is also a geodesic in M . By the assumption of geodesic completeness of N ,
there exists a unique geodesic

γ̃ : R→ N

with γ̃′(a) = γ′(a). Since N ⊂ M is totally geodesic, γ̃ is also a geodesic in M . Hence, by
the uniqueness of maximal geodesics γ and γ̃|[a,b] coincide, showing in particular q ∈ N . By
Proposition 4.25 (iii) and the linear isometry property of P ba(γ) : TpM → TqM it follows that
TqM = TqN . By the connectedness of M and N and Exercise 2.127 we conclude that this
argument holds for all q ∈M , showing that q ∈ N .

Propositions 4.26 and 4.27 allow us to obtain the following.
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Corollary 4.28. The connected totally geodesic geodesically complete Riemannian submanifolds
of Rn with standard Riemannian metric are the affine m ≤ n-spaces, that is smooth submanifolds
of the form

M = p+ V, V ⊂ Rn m-dimensional linear subspace.

Exercise 4.29. Show that the connected totally geodesic geodesically complete m ≥ 1-
dimensional Riemannian submanifolds of Sn ⊂ Rn+1 equipped with the round metric62 are
precisely the great spheres

M = Sn ∩ V, V ⊂ Rn+1 (m+ 1)-dimensional linear subspace.

Next we specialise our studies to hypersurfaces, that is submanifolds of codimension one.

Remark 4.30. Let (M, g) be a pseudo-Riemannian hypersurface in (M, g), that is a smooth
hypersurface such that the restriction g = g|TM×TM is a pseudo-Riemannian metric on M . The
normal bundle TM⊥ → M is of rank 1, meaning that a local frame consists of a single local
vector field ξ ∈ X(U)⊥, U ⊂M , that is at each point orthogonal to TM . If TM⊥ →M is trivial,
that is if there exists a global frame or equivalently a vector field ξ ∈ X(M)⊥ spanning TM⊥,
M is called orientable. This in particular means that ξ is nowhere vanishing. There are in fact
other equivalent definitions of orientability, one being the existence of a global volume form on
M , cf. Remark 2.51.

Definition 4.31. Let (M, g) be a pseudo-Riemannian manifold with orientable pseudo-Riemannian
hypersurface (M, g). An orthogonal vector field ξ ∈ X(M)⊥ is called unit normal if g(ξ, ξ) ≡ 1
or g(ξ, ξ) ≡ −1.

Exercise 4.32. In the setting of Definition 4.31, show that a connected hypersurface admitting
a unit normal admits precisely two unit normals related by a sign flip.

In the case of M ⊂ M compact, one differentiates between the outward pointing and
inward pointing unit normal. For hypersurfaces the Gauß equations are of a rather simple
form.

Proposition 4.33. Let (M, g) be an oriented pseudo-Riemannian hypersurface of (M, g) and
let ξ ∈ X(M)⊥ be a unit normal with g(ξ, ξ) ≡ ε ∈ {−1, 1}. Then the second fundamental form
of M is of the form

II = ξ ⊗ g̃,

where g̃ ∈ Γ(Sym2(T ∗M)) is given by

g̃(X,Y ) = εg(SξX,Y )

for all X,Y ∈ X(M) with Sξ the Weingarten map. The Gauß equations for the curvature (4.4)
and the sectional curvature equation (4.5) are given by

g(R(X,Y )Z,W ) = g(R(X,Y )Z,W ) + ε(g(SξX,Z)g(SξY,W )− g(SξY,Z)g(SξX,W )),

K(v, w) = K(v, w)− εg(Sξv, v)g(Sξw,w)− g(Sξv, w)2

g(v, v)g(w,w)− g(v, w)2 ,

for all X,Y, Z,W ∈ X(M) and all v, w ∈ TpM spanning a nondegenerate plane.
62a.k.a. the restriction of the standard Riemannian metric
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Proof. The fact that ξ is by assumption nowhere vanishing implies that we can write II = ξ ⊗ g̃.
Furthermore, g(II(X,Y ), ξ) = εg̃(X,Y ) for all X,Y ∈ X(M) means that g̃ is uniquely determined.
By the Weingarten equation (4.2) we obtain

g(II(X,Y ), ξ) = g(SξX,Y )

for all X,Y ∈ X(M) and, hence, g̃(X,Y ) = εg(SξX,Y ) as claimed. For the other two equations
in this proposition observe that

g(II(X,Z), II(Y,W )) = εg̃(X,Z)g̃(Y,W ) = εg(SξX,Z)g(SξY,W ),

for all X,Y, Z,W ∈ X(M), which follows from ε = ε−1 and our previous results. The rest of this
proof is just writing out the formulas (4.4) and (4.5) and is left as an exercise for the reader.

Example 4.34. Let (M, g) be an orientable Riemannian hypersurface in (Rn+1, 〈·, ·〉). For
p ∈M and U ⊂ Rn+1 a small enough open neighbourhood of p, choose f ∈ C∞(U) of maximal
rank, such that

M ∩ U = {f = 0}.

After a possible overall sign flip of f , we can assume without loss of generality that the unit
normal of M is given locally on M ∩ U by

ξ =
grad〈·,·〉(f)√

〈grad〈·,·〉(f), grad〈·,·〉(f)〉
=

grad〈·,·〉(f)
‖grad〈·,·〉(f)‖ .

The second fundamental form of M ∩ U is then given by

II(X,Y ) = − 1
‖grad〈·,·〉(f)‖∇

2
f(X,Y )

for all X,Y ∈ X(M ∩ U), where ∇2
f denotes the Hessian of f , cf. Definition 2.95.
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