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1 Smooth manifolds and vector bundles

1.1 Basic definitions

In the field of differential geometry one is concerned with geometric objects that look locally like
Rn for some n ∈ N. In the following we will clarify exactly what this should mean and explain
the reason for the term “differential” in differential geometry.

Remark 1.1. Recall the definition of a topological space. Let M,N be topological spaces.
A map f : M → N is called continuous if for all U ⊂ N open, f−1(U) ⊂ M is open. A
continuous map is called a homeomorphism if it has an inverse, that is if it is bijective as a
map between sets, and the inverse is continuous. A basis of the topology of a topological
space M is a collection of open sets B, so that for all U ⊂ M open there exist an index set I
and corresponding open sets Bi each contained in B, such that ∪i∈IBi = B. Note that I might
be uncountable.

The study of topological spaces in full generality is not the topic of this course. We need to
introduce two additional properties that topological spaces might fulfil in order to define the
kind objects will study, namely smooth manifolds.

Definition 1.2. Let M be a topological space. M is called Hausdorff1 if for any two distinct
points p, q ∈M , p 6= q, we can find U, V ⊂M open, such that p ∈ U , q ∈ V , and U ∩ V . This

1Felix Hausdorff (1868 – 1942)
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means that we can separate any distinct points in M with disjoint open sets. M is said to
fulfil the second countability axiom (or, simply, are second countable) if its topology has a
countable basis.

Figure 1: Open sets U and V in a Hausdorff space separating two points p and q.

If the reader is new to general topology and the above definitions seem confusing, consider
the following well known examples of Hausdorff topological spaces that are second countable.
These are also basically the only examples the reader has to keep in mind for this course.

Example 1.3. For any n ∈ N0, Rn equipped with its standard topology induced by the Euclidean
norm is Hausdorff and second countable. A choice for a countable basis of the topology is given
by

B := {Br(p) | r ∈ Q>0, p ∈ Qn} .

[Exercise: Prove that B is in fact a basis of the norm topology on Rn.]

Now we have introduced all topological perquisites. Next, we will give a precise meaning to
the term “locally looks like” that we have used before

Definition 1.4. Let M be a Hausdorff topological space that is second countable. An n-
dimensional smooth atlas on M ,

A = {(ϕi, Ui) | i ∈ A} ,

is a collection of tuples (ϕi, Ui), each consisting of an open set Ui ⊂M and a homeomorphism

ϕi : Ui → ϕi(Ui) ⊂ Rn, (1.1)

such that

(i)
⋃
i∈A

Ui = M , that is the Ui form a covering of M ,

(ii)
ϕi ◦ ϕ−1

j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj) (1.2)

is smooth for all i, j ∈ A with Ui ∩ Uj 6= ∅.
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Figure 2: Two charts (ϕi, Ui) and (ϕj , Uj) with Ui ∩ Uj 6= ∅.

Maps of the form (1.1) together with their domains are called charts on M and the maps in
(1.2) are corresponding transition functions. Any two charts (ϕi, Ui), (ϕj , Uj), not necessarily
from the same atlas, are called compatible if the corresponding transition function ϕi ◦ ϕ−1

j

and its inverse are smooth.

In the following we will simply speak of atlases and drop the prefix “n-dimensional smooth”,
unless it is of specific value for a statement. Now consider the following questions. Firstly assume
that you are given two different atlases A and B on M . What is a good notion for compatibility
of these two atlases? A reasonable idea is to require that their charts are compatible in the
sense of (1.2). Secondly there should always be the question whether or not there is a canonical
choice for some sort of structure, in this setting that of an atlas. This leads us to the following
definition:

Definition 1.5. Two atlases A = {(ϕi, Ui) | i ∈ A} and B {(ϕi, Ui) | i ∈ B} on a second
countable Hausdorff topological space M are called equivalent if

A ∪B := {(ϕi, Ui) | i ∈ A ∪B}

is an atlas on M . This is equivalent to the requirement that the transition function ϕi ◦ ϕ−1
j

(1.2) for all i, j ∈ A ∪B are smooth. For A and B equivalent we write [A] = [B]. An atlas A on
M is called maximal if for all atlases A′ on M equivalent to A it holds that A′ ⊂ A.

Now we have all tools at hand to define the notion of a smooth manifold:

Definition 1.6. A second countable Hausdorff topological space M together with a maximal
n-dimensional smooth atlas A is called an smooth manifold of dimension n.

In the following we will always assume that smooth manifolds are of dimension n ≥ 1.

Remark 1.7. If one left out the requirement of second countability, the definition of a smooth
manifold would still be usable for effectively every local statement about smooth manifolds. This
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approach is for example taken in [O]. However some global constructions might not work, in
particular those involving a countable partition of unity (cf. Exercise ??) which might not exist.
An example of an analogue of a smooth manifold that is not second countable is the so-called
“long line” [SS].

We will call the process of defining a maximal atlas on M , defining the structure of a smooth
manifold on M . A caveat of the above definition is that it is not in any way clear how to
completely specify or write down a maximal atlas, at least not if n > 0. The following lemma
deals with this problem.

Lemma 1.8. Let A be an atlas on a second countable Hausdorff topological space M . Then A

is contained in a maximal atlas, i.e. there exists a maximal atlas A on M , such that A ⊂ A.

Proof. The set of atlases equivalent to A, Eq(A), is a partially ordered ordered set with respect
to the inclusion. By Zorn’s2 lemma Eq(A) contains a maximal element A which by construction
is an atlas and fulfils all requirements of a maximal atlas.

Remark 1.9. The precise statement of Zorn’s lemma is that every partially ordered set (S,<)
has a maximal element. This means that there exists smax ∈ S, such that either s < smax, or
neither s < smax nor s > smax. Note that smax is in general not unique.

Remark 1.9 raises the question whether a maximal atlas containing any given atlas is uniquely
determined. The answer is yes, and the proof feels a bit like we were cheating.

Lemma 1.10. Each atlas is contained in a unique maximal atlas.

Proof. Let A = {(ϕi, Ui) | i ∈ A} be an n-dimensional smooth atlas on a second countable
Hausdorff topological space M . We define

A := {(ϕ,U) | ϕ : U → ϕ(U) is a chart on M , ϕ and ϕi are compatible ∀i ∈ A} .

We now write A =
{

(ϕi, Ui)
∣∣∣ i ∈ A} and claim that it is both a maximal atlas and unique

in the stated sense. Firstly note that A ⊂ A and, hence,
⋃
i∈A

Ui = M . Next we need to show

that for any i, j ∈ A, ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj) is smooth. Being smooth is a local

property, so we fix any point p ∈ ϕj(Ui ∩Uj) and choose a chart (ϕ,U) in A, such that p ∈ ϕ(U).
Then we choose V ⊂ ϕ(U) ∩ ϕj(Ui ∩ Uj), V ⊂ Rn open, such that p ∈ ϕ−1(V ), observe that

ϕi ◦ ϕ−1
j = (ϕi ◦ ϕ−1) ◦ (ϕ ◦ ϕ−1

j )

coincide on V . Since the right-hand-side of the above equation is a composition of by construction
of A smooth maps, it follows that ϕi ◦ ϕ−1

j is smooth as well. This shows that A is indeed an
n-dimensional smooth atlas on M and that A ⊂ A. Lastly assume that A is not maximal. Then
there exists an atlas A′ on M that is equivalent to A and there exists a chart (ϕ,U) in A′ that
is not contained in A. By A ⊂ A this means that even though (ϕ,U) is compatible with every
chart in A it is not contained in A. This is a contradiction to the construction of A. This shows
that A is maximal and finishes the proof.

Remark 1.11. We have seen in Lemma 1.8 that it is sufficient to specify an atlas A on a
second countable Hausdorff topological space M in order to define the structure of a smooth
manifold on M without the need of requiring maximality of A. Furthermore, we have proven in
Lemma 1.10 that there exists a unique maximal atlas on M that is equivalent to A, meaning
that there is no possibility to choose an other structure of a smooth manifold on M for which A

is an atlas. This justifies calling a second countable Hausdorff topological space equipped with
any atlas, be it maximal or not, a smooth manifold.

2Max August Zorn (1906 – 1993)
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It is however not clear at this point whether for a given smooth manifold M with maximal
atlas A there might exist some other maximal atlas B on the underlying topological space M
that is not equivalent to A. This is in general a very difficult question. There are some examples
where this question has been answered, see the so-called exotic spheres [M] and for 4-dimensional
smooth manifolds [Sc].

Figure 3: Which of the three partially ordered sets (higher means ≥) is a good representation for the equivalence
classes of atlases?

Next we should ask ourselves how “good” we might expect a choice of an atlas for a given
smooth manifold to look like, meaning an atlas contained in the by definition provided maximal
atlas. Can we always choose a countable atlas, that is an atlas containing only a countable
number of charts, that is equivalent to our given maximal atlas? Can we always choose a finite
atlas if our manifold is connected? The answer is yes to both, but the latter is much more
difficult to prove than the former, for the non-compact case see [So].
Exercise 1.12.

(i) Show that every smooth manifold M with maximal atlas A has a countable atlas that is
equivalent to A. [Hint: Use that M is second countable.]

(ii) Show that every connected compact smooth manifold with maximal atlas A has a finite
atlas that is equivalent to A.

An important analytical tool that we will need in this course is to shrink the chart neigh-
bourhoods of a given atlas.
Definition 1.13. Let A = {(ϕi, Ui) | i ∈ A} be an atlas on a smooth manifold M . Another
atlas on M , Ã = {(ϕ̃i, Ũi) | i ∈ Ã}, will be called a refinement of A if for all i ∈ Ã there exists
j ∈ A, such that Ũi ⊂ Uj and ϕ̃i = ϕj |Ũi .

Exercise 1.14. Check that any atlas is equivalent to any possible refinement of itself.
We have now finished setting up the theoretical framework for the basic definitions of smooth

manifolds, so next we should study some examples.
Example 1.15. The probably easiest example of a smooth manifold is Rn equipped with the
atlas containing the sole chart (id,Rn) containing only the identity map

id = (u1, . . . , un), ui : (p1, . . . , pn) 7→ pi, (1.3)

with domain the whole Rn. It is also immediate that for any U ⊂ Rn open, U equipped with
(id, U) is also a smooth manifold.
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Figure 4: Refining a chart neighbourhood Ui into three proper subsets Ui1 , Ui2 , and Ui3 .

Definition 1.16. The maps ui, 1 ≤ i ≤ n, in (1.3) are called canonical coordinates on any
open subset U ⊂ Rn.

A similar notation is used for general smooth manifolds.

Definition 1.17. Let M be an n-dimensional smooth manifold and (ϕ,U) be a chart on M .
With the notation

ϕ = (u1 ◦ ϕ, . . . , un ◦ ϕ), ui ◦ ϕ : U → R, 1 ≤ i ≤ n,

the maps xi := ui ◦ ϕ, 1 ≤ i ≤ n, are called local coordinates on M , and ϕ is called local
coordinate system.

Now that we have setup our basic theoretical framework, it is time to look at some non-trivial
examples of smooth manifolds to get a better feeling for what one needs to validate to confirm
that a given space with an atlas is in fact a smooth manifold.

Example 1.18.

(i) Let Sn = {x = (x1, . . . , xn+1) ∈ Rn+1 | ‖x‖ = 1} denote the n-sphere, equipped with the
subspace topology. Let p± = (0, . . . ,±1) denote the north (+) and south (−) pole. An
atlas on Sn is given by the two charts

σ+ : Sn \ {p+} → Rn, x 7→ x

1− xn+1 ,

σ− : Sn \ {p−} → Rn, x 7→ x

1 + xn+1 .

The firs thing to check is that the two chart cover Sn, which is simply observing that
Sn \ p+ ∪ Sn \ p− = Sn. Next, we need to check that all transition functions are smooth
maps. We find that

σ−1
± =

(
2x

1 + ‖x‖2 ,±
‖x‖2 − 1
1 + ‖x‖2

)
.

Further calculation yields

σ+ ◦ σ−1
− = σ− ◦ σ−1

+ : Rn \ {0} → Rn \ {0}, x 7→ x

‖x‖2
.

Hence, the transition functions coincide and are given by the inversion on the n − 1-
sphere which is self-inverse and smooth.
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Figure 5: A sketch of the stereographic projection on S1.

(ii) The n-dimensional real projective space RPn is defined as the set of lines in Rn+1.
Formally, RPn is the set of equivalence classes

RPn =
{

[x1 : . . . : xn+1]
∣∣∣ x = (x1, . . . , xn+1) ∈ Rn+1 \ {0}

}
,

where [x] = [y] if x = cy for some c ∈ R \ {0}. This precisely means that the non-zero
vectors x and y span the same line. One can check that RPn equipped with the quotient
topology induced by the canonical projection π : Rn+1 \{0} → RPn, x 7→ [x], 3 is Hausdorff
(draw a sketch!) and second countable. An atlas on RPn is given by (ϕi, Ui), 1 ≤ i ≤ n,

ϕi : π
(
Rn+1 \ {xi = 0}

)
→ Rn,

[x1 : . . . : xi−1 : xi : xi+1 : . . . : xn+1] 7→
(
x1

xi
: . . . : x

i−1

xi
: x̂i : x

i+1

xi
: . . . : x

n+1

xi

)
,

where “ ̂ ” means that the element is supposed to be left out so that we end up
with an n-vector. In order to check that the charts cover RPn it suffices to check that⋃

1 ≤ i ≤ nRn+1 \ {xi 6= 0} = Rn+1 \ {0}. Next we need to check that all transition
functions are smooth. Observe that the range of each ϕi is Rn for all 1 ≤ i ≤ n and that
for all i 6= j

ϕj
(
π
(
Rn+1 \ {xi = 0}

)
∩ π

(
Rn+1 \ {xj = 0}

))
=
{

Rn \ {xi = 0}, i < j,
Rn \ {xi−1 = 0}, i > j.

Furthermore we have for all 1 ≤ j ≤ n

ϕ−1
j ((x1, . . . , xn)) = [x1 : . . . : xj−1 : 1 : xj : . . . : xn].

Hence we obtain for all i < j

ϕi ◦ ϕ−1
j : Rn \ {xi = 0} → Rn \ {xj−1 = 0},

3The term “quotient topology” means that the open sets, in this case of RPn, are defined to be the images of
open sets in the domain of the projection, in this case Rn \ {0}. The notation of the elements in RPn with the “:”
is traditional.
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(x1, . . . , xn+1) 7→
(
x1

xi
, . . . ,

x̂i

xi
, . . . ,

xj−1

xi
,

1
xi
,
xj

xi
, . . . ,

xn

xi

)
,

and for i > j we find a similar formula. We see that all transition functions are indeed
smooth and conclude that RPn with the provided atlas is indeed a smooth manifold. The
local coordinate systems ϕi are called inhomogeneous coordinates on RPn.

Figure 6: A subset U of RP 1 is a set of lines through the origin 0 ∈ R2.

(iii) Let U ⊂ Rn be open an f : U → R a smooth map. Then the graph of f , graph(f) :=
{(x, f(x)) | x ∈ U} ⊂ Rn+1 is an n-dimensional smooth manifold with an atlas consisting
of a single chart ϕ : graph(f)→ U , (x, f(x)) 7→ x.

Figure 7: A sketch of the graph of a function f : U → R.
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(iv) For a given smooth manifold M with atlas A = {(ϕi, Ui) | i ∈ A}, any open subset U ⊂M
equipped with the restriction of the atlas A to U , A|U := {(ϕi, Ui∩U) | i ∈ A}, is a smooth
manifold.

An other important class of smooth manifolds are so-called smooth submanifolds of a given
smooth manifold. We will define that concept in full generality later, see Definition 1.57, but
we already know from real analysis what a smooth submanifold of Rn is. Recall the following
Theorem from real analysis.

Theorem 1.19. Let f : Rn × Rm → Rm, (x, y) 7→ f(x, y), be a smooth map and assume that
f(p) = 0 for a point p = (x0, y0) ∈ Rn × Rm and that the Jacobi matrix of f with respect to y
at p,

dyf |p =


df1
dy1 (p) . . . df1

dym (p)
... . . . ...

dfm
dy1 (p) . . . dfm

dym (p)

 ,
is invertible. Then there exists an open set U ⊂ Rn containing x0 and an open set V ⊂ Rm
containing y0, such that there exists a unique smooth map g : U → V fulfilling

f(x, y) = 0, x ∈ U, y ∈ V ⇔ y = g(x).

In particular we have g(x0) = y0.

Definition 1.20. An m < n-dimensional smooth submanifold of Rn is a subset M ⊂ Rn,
such that for all p ∈ M there exists an open set U ⊂ Rn containing p and a smooth map
f : U → Rn−m with Jacobi matrix of maximal rank n−m for all points in U fulfilling

M ∩ U = {x ∈ U | f(x) = 0}. (1.4)

With the help of the implicit function theorem 1.19 it follows that locally up to re-ordering
of coordinates on Rn, any smooth m < n-dimensional submanifold M of Rn can be written as
a graph of a smooth map g : V → Rn−m, V ⊂ Rm open. This in particular implies that, after
possibly reordering the coordinates on Rn, there exists locally near every point p in M a smooth
invertible map with smooth inverse

F : U → Rn, (1.5)

p ∈ U and U ⊂ Rn open, such that

F |U∩M : (x1, . . . , xn) 7→ (x1, . . . , xm, 0, . . . , 0). (1.6)

We call F a locally defining function of M , which is motivated by p ∈ U ∩M if and only if
um+1(F (p)) = . . . = un(F (p)) = 0 after possibly shrinking U .

Exercise 1.21. Prove the above statements.

Now that we have recalled the definition of smooth submanifolds of Rn, we need to ask
ourselves if it is compatible with our general definition of smooth manifolds, see Definition 1.6.

Exercise 1.22. Show that smooth submanifolds of Rn are smooth manifolds. [Hint: Use that
the inclusion map is smooth and construct new local coordinates on the ambient space Rn with
the help of (1.6).]

Note that there are subsets of Rn which are not smooth submanifolds but can still be
equipped with an atlas and, hence, are smooth manifolds:
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Figure 8: A cube.

Exercise 1.23. Show that the boundary of the unit cube [0, 1]n ⊂ Rn is not a smooth sub-
manifold of Rn but can be equipped with a smooth atlas. Find an explicit example of such an
atlas.

Yet another way to produce examples of smooth manifolds are products of smooth manifolds.

Lemma 1.24. Let M with atlas A = {(ϕi, Ui) | i ∈ A} be an m-dimensional smooth manifold
and N with atlas B = {(ψi, Vi) | i ∈ B} be an n-dimensional smooth manifold. Then the
Cartesian product of M and N , M ×N , equipped with the product topology and the product
atlas A×B := {(ϕi × ψj , Ui × Vj) | i ∈ A, j ∈ B} is an (m+ n)-dimensional smooth manifold.

Proof. This follows immediately from the definition of the product maps

ϕi × ψj : Ui × Vj → ϕi(Ui)× ψj(Vj) ⊂ Rm × Rm ∼= Rn+m, (p, q) 7→ (ϕi(p), ψj(q)).

Figure 9: A rough sketch of the cylinder S1 × (−1, 1).

Exercise 1.25. Show that under the additional assumption that A and B are maximal in
Lemma 1.24, the product atlas A×B is not necessarily maximal.

We now know what a smooth manifold is and we have seen some examples and counter-
examples. Next we will define smooth maps between manifolds. In the language of category
theory, these are the the homomorphism in the category of smooth manifolds.
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Definition 1.26. Let M and N be smooth manifolds of dimension m = dim(M) and n =
dim(N). A continuous map f : M → N is called smooth if for all charts (ϕ,U) of M , (ψ, V ) of
N , the map

ψ ◦ f ◦ ϕ−1 : ϕ(U ∩ f−1(V ))→ ψ(V ), (1.7)

is a smooth map between open sets in Rn and Rm. By the term “f in local coordinates” we
mean exactly the above formula (1.7) for a choice of charts (ϕ,U) and (ψ, V ).

Definition 1.27. By C∞(M) we denote the R-vector space of smooth R-valued functions
on a smooth manifold M , that is all smooth maps in the sense of Definition 1.26 of the form

f : M → R.

If U ⊂M is open, U is by restriction of the atlas of M a smooth manifold itself. By C∞(M) we
denote all smooth function f : U → R

Exercise 1.28. Show that for U ⊂M open with U 6= M , the restriction map C∞(M)→ C∞(U),
f 7→ f |U , is in general not surjective (find a counterexample). Ask yourself what kind of difficulties
might arise if one wanted to prove that the restriction map for any such U , M , is never surjective.

Example 1.29. An example of smooth functions on open subsets of a smooth manifold M are
the local coordinates xi : U → R of a given chart (ϕ,U), cf. Definition 1.17. This is the reason
why the xi are also called local coordinate functions.

Definition 1.30.

(i) Let M , N be smooth manifolds. A smooth map f : M → N is called a diffeomorphism
if it is invertible and its inverse is smooth.

(ii) Two manifolds M and N are called diffeomorphic if there exists a diffeomorphism
f : M → N .

Remark 1.31. There exist no two diffeomorphic smooth manifolds with different dimensions.
This follows from the fact that every diffeomorphism is automatically a homeomorphism of the
underlying topological spaces and, hence, locally a homeomorphism between open sets in Rm
and Rn. It follows from [Bro] that then m = n.

Exercise 1.32.

(i) Show that S1 and RP 1 are diffeomorphic.

(ii) Let M be a second countable Hausdorff topological space and let A and B be inequivalent
maximal atlases on M . Prove that M equipped with A is not diffeomorphic to M equipped
with B.

1.2 Tangent spaces and differentials

So far we have introduced the “geometric” part of differential geometry in the sense that we
have learned what the objects are that we will be studying, namely smooth manifolds. We have
however not made sense of the “differential” part yet, which is what we will do next.

Remark 1.33. Recall the definition of tangent vectors in Rn that you know from real analysis.
A tangent vector at a point p ∈ Rn is defined to be an equivalence class of smooth curves through
p, γ : (−ε, ε)→ Rn, γ(0) = p, where

[γ] = [γ̃] :⇔ γ′(0) = γ̃′(0)

11



Figure 10: Two curves γ, γ̃ with γ(0) = γ̃(0) that are in the same class.

So-defined tangent vectors act on locally near p defined smooth functions f ∈ C∞(U), p ∈ U ,
U ⊂ Rn open, via

[γ]f := d(f ◦ γ)
dt

∣∣∣∣
t=0

(1.8)

which is precisely the directional derivative of f at p in the direction γ′(0). Note that the value of
[γ]f depends, aside from γ′(0), only on the values of f on an arbitrary small open neighbourhood
of p in Rn.

Furthermore recall that a tangent vector [γ] at p is called tangential to a smooth m < n-
dimensional submanifold M of Rn if for any locally defining function F : M ∩ U → Rn, cf.
equations (1.5) and (1.6), we have

dFp · γ′(0) ∈ Rm × {0}.

In the above equation, dFp denotes the Jacobi matrix of F at p and the the statement of the
equation just means that the last n −m entries of dFp · γ′(0) all vanish. Equivalently, [γ] is
tangential to M if it fulfils

dfp · γ′(0) = 0

for a smooth map f : U → Rn−m with Jacobi matrix of maximal rank with M ∩ U = {x ∈
U | f(x) = 0} for some open neighbourhood U ⊂ Rn of p.

The tangent space of Rn at p ∈ Rn is the collection of all tangent vectors at p and isomorphic
to {p} × Rn ∼= Rn. The tangent space of Rn is the disjoint union of the tangent spaces at all
points and is thereby given by R2n ∼= Rn × Rn. An element (p, v) in the tangent space has a
base point p and a direction v which is the tangent vector.

We want to define tangent vectors and the tangent space for general smooth manifolds. The
constructions should coincide (i.e. be isomorphic in some sense to be explained later, cf. Lemma
??) with the above definition when considered for Rn viewed as a smooth manifold. make

Lemma:
J(R,M) ∼=
TM

Definition 1.34. Let M be a smooth manifold. A tangent vector v at p ∈M is a linear map

v : C∞(M)→ R,

that fulfils the Leibniz rule4

v(fg) = g(p)v(f) + f(p)v(g).

The set of tangent vectors at any fixed point p ∈M form a real vector space:
4Compare this to the Leibniz rule you know from real analysis!
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Definition 1.35. The tangent space at p ∈M

TpM := {v : C∞(M)→ R | v tangent vector at p}

is the real vector space of all tangent vectors v at p ∈ M . This means that cv and v + w are
tangent vectors for all c ∈ R, v, w ∈ TpM , with

(cv)(f) = c · v(f), (v + w)(f) = v(f) + w(f),

for all f ∈ C∞(M).

A central property of tangent vectors at p ∈M is that for any f ∈ C∞, v(f) depends only on
the values of f on an arbitrary small open neighbourhood of p. We will need the following tools.

Definition 1.36. A smooth partition of unity of a smooth manifold M is a set of smooth
functions on M

{fi : M → [0, 1] | i ∈ I},

where I is an index set (e.g. N or R), such that for all x ∈M∑
i∈I

fi(x) = 1

A smooth partition of unity is called locally finite if

{i ∈ I | fi(x) 6= 0}

is finite for all x ∈ M . If {Ui ⊂ M | i ∈ I} is an open cover of M and supp(fi) =
{x ∈M | fi(x) 6= 0} fulfils

supp(fi) ⊂ Ui
for all i ∈ I, then it the smooth partition of unity is called subordinate to the open cover
{Ui ⊂M | i ∈ I}.

Proposition 1.37. Let M be a smooth manifold and {Ui, i ∈ I} an open covering of M . Then
there exists a locally finite countable partition of unity on M subordinate to the open covering
{Ui, i ∈ I}.

Proof. Exercise. [Hint: You might use your knowledge from real analysis and assume that
the statement of this proposition is true for M = Rn, n ≥ 1. Also recall the existence of a
countable atlas on any given manifold that is equivalent to the defining maximal atlas, see
Exercise 1.12.]

Definition 1.38. Let M be a smooth manifold and U ⊂M open. Let V be a subset of M with
non-empty interior that is compactly embedded in U . Then a bump function with respect to
the given data is a compactly supported smooth function b ∈ C∞(M), such that

b|V ≡ 1, supp(b) ⊂ U. (1.9)

Proposition 1.39. Let M , U , V be as in Definition 1.38 arbitrary but fixed. Then there exists
a bump function b fulfilling (1.9).

Proof. We know from real analysis that this statement is true for M = Rn. By using Proposition
1.37 it follows for arbitrary smooth manifolds as well.

13



Figure 11: A bump function b w.r.t. V and U .

Exercise 1.40.
(i) Fill in the details of the proof of Proposition 1.39.

(ii) Let U ⊂M be any open subset of a smooth manifold M , V ⊂ U a compactly embedded
set with non-empty interior, and b ∈ C∞(M) a bump function with respect to this data.
Let F : U → Rn, n ≥ 1, be a smooth map. Show that

bF : M → Rn, (bF )(p) = b(p)F (p) ∀p ∈ U, (bF )(p) = 0 ∀p ∈M \ U

is smooth (the above globally on M defined map is called the trivial extension of
bF : U → Rn to M).

Now that we can use the existence of bump functions on smooth manifolds, we can continue
our study of tangent vectors.

Proposition 1.41. Let v ∈ TpM be any tangent vector.

(i) Let f, g ∈ C∞(M) and assume that for an open neighbourhood U ⊂M of p ∈M , f |U = g|U .
Then v(f) = v(g).

(ii) Let f ∈ C∞(M) be a smooth function that is locally constant near p ∈M , meaning that
there exists an open neighbourhood U ⊂M of p, such that f |U ≡ c for some c ∈ R. Then
v(f) = 0.

Proof. By the linearity of tangent vectors we have v(f) = v(g) if and only if v(f − g) = 0. Thus,
in order to prove (i) it suffices to show that if v(f) = 0 for some f ∈ C∞(M) then f must
already vanish near p, meaning that f |U ≡ 0 for some open neighbourhood U ⊂ M of p. Let
V ⊂ U be open and compactly embedded with p ∈ V and fix any bump function b ∈ C∞(M),
such that

b|V ≡ 1, supp(b) ⊂ U.
Then bf ≡ 0 on M . By using the Leibniz rule for tangent vectors and v(0) = 0 by linearity we
obtain

0 = v(0) = v(bf) = f(p)v(b) + b(p)v(f) = 0 + v(f).
Hence, v(f) = 0 as claimed.

We can now use (i) and find that for any locally constant function f |U ≡ c for some open
neighbourhood U ⊂M of p, the value of v(f) is the same as v(c), where we view c ∈ R as the
constant function on M with value c. We calculate

v(f) = v(c) = cv(1) = cv(1 · 1) = c(1 · v(1) + 1 · v(1)) = 2cv(1) = 2v(f).

This shows that v(f) = 0.

14



Remark 1.42. Proposition 1.41 shows that the action of tangent vectors at a point only depends
on the local form of the functions near that point. This is sometimes phrased as “tangent vectors
are local objects”. This allows us to define the action of tangent vectors on functions that are
only defined locally. Let v ∈ TpM , U ⊂ M an open neighbourhood of p, and let f ∈ C∞(U).
Since the the action of v on globally defined functions only depends on their behaviour near p, it
is reasonable to define

v : f 7→ v(bf),

for any bump function b with p contained in the interior of its support, so that supp(b) ⊂ U
and such that there exists V ⊂ U compactly embedded with nonempty interior fulfilling p ∈ V ,
V ⊂ supp(b), and b|V ≡ 1. Note that v(bf) does not depend on the choice of such a bump
function b. On the other hand, any open subset U ⊂M is a smooth manifold itself by restricting
any atlas on M . This means that for any p ∈ U , the tangent space TpU is well-defined. For any
ṽ ∈ TpU , we can define its action on C∞(M) by

ṽ(f) := ṽ(f |U ).

By Proposition 1.41 we know that ṽ(f) does in fact only depend on the behaviour of f on any
open neighbourhood of p in U , which is then automatically an open neighbourhood of p in M .
This means that we can canonically identify TpM and TpU for all U ⊂M open and all p ∈ U .
From now on we will simply write v(f) for v ∈ TpM and f ∈ C∞(U) a locally defined smooth
function with p ∈ U .

This motivates a slightly different definition of tangent vectors in TpM as linear maps on the
germ of smooth functions at p ∈M

Fp := {f ∈ C∞(U) | p ∈ U, U ⊂M open}/∼

where f ∼ g if and only if there exists U ∈M open and contained in the domain of definition
of both f and g, such that f |U = g|U . The notion of a germ comes from sheaf theory. For an
introduction see [Bre]. One can show that Fp is an R-algebra and then define tangent vectors
v ∈ TpM as linear maps

v : Fp → R

fulfilling the Leibniz rule v([f ][g]) = g(p)v([f ]) + f(p)v([g]). This definition is equivalent to our
definition with the same reasoning as for why TpM and TpU for U ⊂M open can be identified.
This approach is used in [G].

While we have explained how a tangent vector should behave and have seen that it depends
only on the local behaviour of functions, we do not yet have a convenient way to write down
actual examples of tangent vectors. To do so we introduce specific tangent vectors that generalize
partial derivatives we know from real analysis to smooth manifolds in any given local coordinate
system.

Definition 1.43. Let ϕ = (x1, . . . , xn) be a local coordinate system on a smooth manifold M .
The tangent vector ∂

∂xi

∣∣∣
p
∈ TpM is defined as

∂

∂xi

∣∣∣∣
p

(f) := ∂f

∂xi
(p) := ∂(f ◦ ϕ−1)

∂ui
(ϕ(p))

for all f ∈ C∞(M).

Lemma 1.44. ∂
∂xi

∣∣∣
p

is a well-defined tangent vector.
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Proof. Linearity follows from the fact that partial derivatives in Rn are linear with respect to
scalar multiplication. For the Leibniz rule we recall that partial differentiation in Rn fulfils the
Leibniz rule and calculate for any two f, g ∈ C∞(M)

∂(f · g)
∂xi

(p) = ∂((f · g) ◦ ϕ−1)
∂ui

(ϕ(p)) = ∂((f ◦ ϕ−1) · (g ◦ ϕ−1))
∂ui

(ϕ(p))

= g(p)∂(f ◦ ϕ−1)
∂ui

(ϕ(p)) + f(p)∂(g ◦ ϕ−1)
∂ui

(ϕ(p)) = g(p) ∂f
∂xi

(p) + f(p) ∂g
∂xi

(p).

Important examples of ∂
∂xi

∣∣∣
p

acting on smooth function are derivatives of coordinate functions.

Example 1.45. Let ϕ = (x1, . . . , xn) be a local coordinate system on a smooth manifold M
covering p ∈M . Then

∂xj

∂xi
(p) = δji

for all 1 ≤ i ≤ n, 1 ≤ j ≤ n. This follows from (xj ◦ ϕ−1)(u1, . . . , un) = uj .

Using Definition 1.43 we can write down any tangent vector v ∈ TpM in a fixed local
coordinate system (ϕ,U) with p ∈ U as a linear combinations of the ∂

∂xi

∣∣∣
p
’s.

Proposition 1.46. For all p ∈M and any local chart (ϕ = (x1, . . . , xn), U) with p ∈ U , the set
of tangent vectors

{
∂
∂xi

∣∣∣
p
, 1 ≤ i ≤ n

}
is basis of TpM .

Figure 12: The tangent space TpM at p ∈M is the linear span of the ∂
∂xi

∣∣
p
’s.

Proof. First we show that the set of ∂
∂xi

∣∣∣
p
’s is a linearly independent set of tangent vectors at p.

Assume there exist (c1, . . . , cn) ∈ Rn 6= 0, such that

v0 :=
n∑
i=1

ci
∂

∂xi

∣∣∣∣
p

vanishes identically as a linear map v0 : C∞(M)→ R. There exists at least one 1 ≤ j ≤ n, such
that cj 6= 0. But then

v0(xj) = cj 6= 0
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which is a contradiction to v0 = 0.
Next we need to show that every tangent vector TpM can be written as a linear combination

of the ∂
∂xi

∣∣∣
p
’s. Assume without loss of generality that ϕ(U) = Br(0) for some r > 0 with

ϕ(p) = 0, that is the Euclidean unit ball with radius r. This can always be achieved by shrinking
U and translating ϕ(U) if necessary. For any smooth function g on ϕ(U), it follows from the
fundamental theorem of calculus5 that with

gi(q) :=
1∫

0

∂g

∂ui
(tq)dt.

for all q ∈ ϕ(U) we have

g = g(0) +
n∑
i=1

giu
i

on ϕ(U). In particular, we obtain for any f ∈ C∞(U) with g = f ◦ ϕ−1

f = g ◦ ϕ = f(p) +
n∑
i=1

fix
i

where fi = gi ◦ϕ. By acting with the tangent vector ∂
∂xi

∣∣∣
p
, 1 ≤ i ≤ n, on both sides of the above

equation we obtain6

fi(p) = ∂f

∂xi
(p).

Hence, we get using xi(p) = 0 for 1 ≤ i ≤ n for v ∈ TpM fixed

v(f) = 0 +
n∑
i=1

(
v(fi)xi(p) + fi(p)v(xi)

)
=

n∑
i=1

∂f

∂xi
(p)v(xi).

Since f was arbitrary this shows that the tangent vectors v and
n∑
i=1

v(xi) ∂
∂xi

∣∣∣
p

coincide. Hence, v
can be written as a linear combination of the proposed basis vectors. This finishes the proof.

Corollary 1.47. The dimensions of a smooth manifold M and its tangent space TpM coincide
for all p ∈M .

Example 1.48. As an example how the coordinate tangent vectors ∂
∂xi

∣∣∣
p

change for different
coordinates consider the following example. Let f ∈ C∞(M) be any smooth function and
(x1, . . . , xn) be local coordinates covering p ∈M . Then (y1, . . . , yn) := (2x1, x2, . . . , xn) are also
local coordinates covering p. The vectors ∂

∂xi

∣∣∣
p

and ∂
∂yi

∣∣∣
p

coincide for 2 ≤ i ≤ n, but for i = 1
we have

∂

∂x1

∣∣∣∣
p

= 2 ∂

∂y1

∣∣∣∣
p

.

See Figure 13 for a sketch of this example.

We now know the properties of tangent vectors and how they can be written locally, meaning
that we can now properly calculate with them in fixed local coordinates. This allows us to define
an analogue of the Jacobi matrix for smooth manifolds.

5If you do not see this, apply the fundamental theorem of calculus to t 7→ g(tq) for q ∈ ϕ(U) fixed.
6Verifying this is a good exercise.
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Figure 13: The lines in M , respectively the images of the charts, are supposed to be level sets of f .

Definition 1.49. Let M be a smooth manifold of dimension m and N be a smooth manifold of
dimension n.

(i) The differential at a point p ∈ M of a smooth function f ∈ C∞(M) is defined as
the linear map

dfp : TpM → R, v 7→ v(f).
In a given local coordinate system ϕ = (x1, . . . , xm) on M that covers p, dfp is of the form

dfp : ∂

∂xi

∣∣∣∣
p
7→ ∂f

∂xi
(p).

(ii) The differential at a point p ∈ M of a smooth map F : M → N in given local
coordinate systems ϕ = (x1, . . . , xm) on M and ψ = (y1, . . . , yn) on N covering p ∈M and
F (p) ∈ N , respectively, is defined as the linear map

dFp : TpM → TF (p)N,
∂

∂xi

∣∣∣∣
p
7→

n∑
j=1

∂F j

∂xi
(p) ∂

∂yj

∣∣∣∣
F (p)

,

where we have used the notation
F j := yj ◦ F.

The rank of F at p is the rank of the linear map dFp : TpM → TF (p)N , which coincides
with the rank of the Jacobi matrix of F at p in the local coordinate systems ϕ, ψ,(

∂F j

∂xi
(p)
)
ji

∈ Mat(n×m,R).

In the above equation, j is the row and i is the column of the matrix.
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Figure 14: Sketch of the differential at p ∈M of a smooth map F : M → N .

Example 1.50. Let ϕ = (x1, . . . , xn) be a local coordinate system on a smooth manifold M
covering p ∈M . Then dϕp : TpM → Tϕ(p)Rn ∼= Rn is of the form

dϕp = (dx1, . . . , dxn)p = (dx1
p, . . . , dx

n
p ), dxjp

(
∂

∂xi

∣∣∣∣
p

)
= δji .

We will usually omit the base point and simply write dxi := dxip if it is clear from either the
context or the tangent vector’s base point that dxi acts on.

Remark 1.51. Note that Definition 1.49 (i) is a special case of (ii) (using the canonical
coordinate u1 on R).

Similar to real analysis, the differential of smooth maps between smooth manifolds fulfils the
following chain rule.

Lemma 1.52. Let M,N,P be smooth manifolds and F : M → N , G : N → P , smooth maps.
Then

d(G ◦ F )p = dGF (p) ◦ dFp
for all p ∈M .

Proof. For any v ∈ TpM and f ∈ C∞(P ) we have

d(G ◦ F )p(v)(f) = v(f ◦G ◦ F ) = dFp(v)(f ◦G) = dGF (p)(dFp(v))(f).

Definition 1.53.

(i) A smooth map between smooth manifolds F : M → N is called an immersion if
dFp : TpM → TF (p)N is injective for all p ∈M .

(ii) F : M → N is called a submersion if dFp : TpM → TF (p)N is surjective for all p ∈M .

(iii) An immersion F : M → N is called an embedding if F is injective and an homeomorphism
onto its image F (M) ⊂ N equipped with the subspace topology.

(iv) A smooth map F : M → N between smooth manifolds of the same dimension is called a
local diffeomorphism if for all p ∈M there exists an open neighbourhood of p, U ⊂M ,
such that F |U : U → N is a diffeomorphism onto its image.
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Figure 15: An immersion, an embedding, and a submersion. Which is which?

Suppose that we are given a smooth map F : M → N , dim(M) = dim(N), and want to
check if it is a local diffeomorphism. At first this sounds fairly complicated, but luckily we can
use the following result.

Theorem 1.54. Let F : M → N be a smooth map between two manifolds of the same dimension
n and let p ∈M be arbitrary. Then dFp : TpM → TF (p)N is a linear isomorphism if and only if
there exists an open neighbourhood U ⊂ M of p, such that F |U is a diffeomorphism onto its
image.

Proof. Let (ϕ,U) and (ψ, V ) be local charts covering p ∈M and F (p) ∈ N , respectively. Observe
that, by definition, dFp is a linear isomorphism if any only if its Jacobi matrix in the given local
coordinates is invertible. On the other hand, there exists an open neighbourhood U ⊂M of p,
such that F |U is a diffeomorphism onto its image if and only if there exist open sets U ′, V ′ ⊂ Rn
with ϕ(p) ∈ U ′, ψ(F (p)) ∈ V ′, such that

ψ ◦ F ◦ ϕ−1 : U ′ → V ′

is a diffeomorphism. We can without loss of generality assume that ϕ(U) = U ′ and ψ(V ) = V ′.
Hence, the “⇒”-direction of the statement of this theorem follows from the inverse function
theorem7. The “⇐”-direction follows from the fact that invertible smooth maps with smooth
inverse in the real analysis setting have pointwise invertible Jacobi matrix.

Corollary 1.55. F : M → N is a local diffeomorphism if and only if dFp is a linear isomorphism
for all p ∈M .

7Which, in turn, follows from the implicit function theorem. Note, however, that one usually proves the implicit
function theorem using the inverse function theorem, see e.g. [?, R]
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Exercise 1.56.

(i) Find explicit examples of an immersion that is not injective and an injective immersion
that is not an embedding.

(ii) Show that for all n ∈ N, the map

π : Sn → RPn, (x1, . . . , xn) 7→ [x1 : . . . : xn]

is a local diffeomorphism but not a diffeomorphism.

1.3 Submanifolds

We already know what a smooth submanifold of Rn is. Using Definition 1.53 we can now define
what a smooth submanifold in our more general setting should be.

Definition 1.57. Let N be an n-dimensional and M be an m-dimensional smooth manifold.
Let further F : M → N be a smooth map.

(i) F (M) ⊂ N is called an embedded smooth submanifold if F is an embedding.

(ii) If F is the inclusion map ι : M ↪→ N , we will say that M ⊂ N is a smooth submanifold
if the inclusion is an embedding.

(iii) If M ⊂ N is a smooth submanifold, the number dim(N)− dim(M) is called the codimen-
sion of M in N . Smooth submanifolds of codimension 1 are called hypersurfaces.

We will be mainly concerned with smooth submanifolds that are given as subsets of the
ambient manifold. The first thing one should ask is how to obtain a the structure of a smooth
manifold on a submanifold and if it coincides with the initial manifold structure.

Proposition 1.58. Let M ⊂ N , dim(M) = m < n = dim(N), be a smooth submanifold and
let p ∈M be arbitrary. Then there exists a chart8 (ϕ = (x1, . . . , xn), U) on N , such that U ∩M
is an open neighbourhood of p in M and

xm+1(q) = . . . = xn(q) = 0

for all q ∈ U ∩M . The first m entries in ϕ are a local coordinate system on M near p.

Proof. Fix p ∈M ⊂ N and choose local coordinates (x1, . . . , xn) on N and (y1, . . . , ym) on M
covering p. Since M is a submanifold of N , the differential of the inclusion map ι : M → N at p,
dιp, is injective and its Jacobi matrix(

∂xi

∂yj
(p)
)
ij

∈ Mat(n×m,R)

has rank m. After reordering the xi-coordinate functions, we can assume without loss of
generality that the first m rows are linearly independent. By the implicit function theorem that
means that the first m coordinates on N form, by restriction, a coordinate system on an open
set V ⊂M containing p. Furthermore, after possibly shrinking V , we have again by the implicit
function theorem that (q1, . . . , qn) ∈ ι(V ) ⊂ N if and only if xk(q) = fk(x1(q), . . . , xm(q)) for
uniquely defined functions fk : (x1, . . . , xm)(V ) → R for all m + 1 ≤ k ≤ n. Choose an open

8This means that this chart is compatible with the given maximal atlas on N .
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subset U ⊂ N , so that the local coordinates (x1, . . . , xn) are defined on V , U ∩ N = V , and
define on U smooth functions

F k := xk − fk(x1, . . . , xm), m+ 1 ≤ k ≤ n.

In the last step we will define new coordinates on N fulfilling the statement of this proposition
as follows. Define

ϕ : U → Rn, ϕ = (x1, . . . , xm, Fm+1, . . . , Fn).
The Jacobi matrix of ϕ at p with respect to the coordinates (x1, . . . , xn) is of the form(

idRm 0
A idRn−m

)
for some real-valued matrix A ∈ Mat((n−m)×m,R). The above Jacobi matrix is in particular
invertible, showing that ϕ is a local diffeomorphism. Furthermore

ϕ(U ∩M) = ϕ(V ) = (x1, . . . , xm, 0, . . . , 0).

Hence, the first m entries restriction of ϕ to V is a local coordinate system on M near p and
fulfils the claims of this proposition.

Definition 1.59. Local coordinates as in Proposition 1.58 for a submanifold M ⊂ N near a
given point p ∈M are called adapted coordinates.

An important consequence of Proposition 1.58 is that the smooth structure of a manifold
that can be realized as a smooth submanifold coincides with the smooth structure obtained by
adapted coordinates:

Corollary 1.60. Any smooth manifold M that can be realized as a submanifold of some ambient
manifold N is diffeomorphic to M , viewed as a topological subspace of N , equipped with any
atlas consisting only of adapted coordinates.

Note that adapted coordinates relate the definition of smooth submanifolds of Rn to the more
general Definition 1.57, cf. equation (1.6). Furthermore observe that Corollary 1.60 also means
that if we can cover a topological subspace9 of M by adapted coordinates it will automatically
be a submanifold of M . For a more detailed explanation of the latter see [L2, Thm. 5.8]. One
way to construct explicit examples of submanifolds is via pre-images of regular values of smooth
maps between smooth manifolds.

Definition 1.61. Let M and N be smooth manifolds and let F : M → N be a smooth map.
A point p ∈ M is called regular point of F if dFp : TpM → TF (p)N is surjective. Any point
q ∈ N , such that F−1(q) ⊂ M consists only of regular points, is called regular value of F .
Points in M that are not regular points of F are called critical points of F , and points in
N such that the pre-image under F in M contains at least one critical point of F are called
critical values of F .

Note that for a smooth map F : M → N to have regular values it is a necessary condition
that dim(M) ≥ dim(N).

Proposition 1.62. Let M and N be smooth manifolds with dim(M) = m ≥ n = dim(N). Let
F : M → N be smooth and let q ∈ N be a regular value of F . Then the level set

F−1(q) ⊂M

is an (m− n)-dimensional smooth submanifold of M . The structure of a smooth manifold on
F−1(q) is uniquely determined by requiring that the inclusion is smooth.

9Careful, needs to be second countable and Hausdorff.
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For the proof of the above definition we need the following definition and two theorems, cf.
[L2, Thm. 4.12, Thm. 5.12].

Definition 1.63. Let F : M → N be a smooth maps between smooth manifolds and let
(ϕ,U) and (ψ, V ) be local charts of M and N , respectively, such that F (U) ⊂ V . Let further
dim(M) = m and dim(N) = n. The coordinate representation of F in the local coordinate
systems ϕ and ψ is defined to be the smooth map

F̂ : ϕ(U)→ ϕ(V ), F̂ (u1, . . . , um) := (ψ ◦ F ◦ ϕ−1)(u1, . . . , um).

Theorem 1.64. Let M be an m-dimensional and N be an n-dimensional smooth manifold. Let
F : M → N be a smooth map of constant rank r. Then for each p ∈M there exist local charts
(ϕ,U) of M with p ∈ U and (ψ, V ) of N with F (p) ∈ V , such that F (U) ⊂ V and that the
coordinate representation of F is of the form

F̂ (u1, . . . , ur, ur+1, . . . , um) = (u1, . . . , ur, 0, . . . , 0).

Proof. For a detailed proof see [L2, Thm. 4.12]. The case r = 0 is left as an exercise. Assume
that r ≥ 1. The proof works as follows. Firstly, for p ∈M fixed we choose any local coordinates
M covering p and of N covering F (p). Since the statement of this theorem is local, by witching
to local coordinates we find that in order to prove it it suffices to consider the special case
M ⊂ Rm open and N ⊂ Rn open. This shows that this theorem is equivalent to the rank
theorem known from real analysis, see (in a slightly different formulation) [R, Thm. 9.32].

Theorem 1.65. Let M and N be smooth manifolds and F : M → N smooth and of constant
rank r. Each level set F−1(q) ⊂M , q ∈ N , is a smooth submanifold of codimension r in M .

Proof. Let q ∈ N and p ∈ F−1(q) be fixed. Using Theorem 1.64 we chose charts (ϕ =
(x1, . . . , xm), U) of M with p ∈ U and (ψ, V ) of N with q ∈ V fulfilling ϕ(p) = 0 and ψ(q) = 0,
such that the coordinate representation F̂ of F is of the form

F̂ : ϕ(U)→ ϕ(V ), F̂ (u1, . . . , ur, ur+1, . . . , um) = (u1, . . . , ur, 0, . . . , 0).

Then (ψ ◦ F )(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0) and, hence,

F−1(q) ∩ U = {p ∈ U | x1(p) = . . . = xr(p) = 0}.

We see that such a coordinate choice (up to reordering) of M yields adapted coordinates on
F−1(q)∩U . Since the rank of F is constant we can cover F−1(q) with such adapted coordinates
and obtain that it is, in fact, a smooth submanifold of M .

Lastly we will need the following fact.

Proposition 1.66. Let M and N be smooth manifolds and F : M → N any smooth map.
Suppose that p ∈M is a regular point of F . Then there exists an open neighbourhood U ⊂M
of p, such that all points in U are regular points of F . In particular this means that the set of
regular points of F is open in M .

Proof. Exercise. [Hint: Use local coordinates to reduce the proof to the case M ⊂ Rm open and
N ⊂ Rn open.]

Proof of Proposition 1.62. Let F : M → N be smooth and q ∈ N a regular value of F . By
Proposition 1.66 the set

reg(F ) := {p ∈M | p regular point of F}
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is open in M and thereby a smooth submanifold of M . We further have F−1(q) ⊂ reg(F ). The
restriction of F to reg(F ),

F |reg(F ) : reg(F )→ N

is by Definitions 1.53 and 1.61 a submersion and thereby of constant rank equal to dim(N).
Using Theorem 1.65 it follows that F−1(q) ⊂ reg(F ) is a smooth submanifold. Since the
composition of the inclusions F−1(q) ⊂ reg(F ) and reg(F ) ⊂M is still the inclusion and thereby
in particular still a smooth embedding it follows that F−1(q) ⊂ M is a smooth submanifold.
Since reg(F ) ⊂M is open it follows with Theorem 1.65 that dim(F−1(q)) = m− n.

1.4 Vector bundles and sections

Up to this point, we know what tangent vectors at a specific given point are. The next step is
to study vector fields, that is maps that assign to points in a manifold tangent vectors in their
respective tangent spaces. In the general setting of smooth manifold these objects are more
involved than in the case we know from real analysis.

Remark 1.67. Recall that a smooth vector field on Rn is a smooth vector valued function

X : Rn → Rn, p 7→ Xp,

and we think of points (p,Xp) ∈ Rn×Rn as tangent vectors Xp with basepoint p. An example is
the position vector field X : p 7→ p. Observe that vector fields on Rn, similar to tangent vectors,
act on functions via

X(f) : Rn → R, p 7→ [γ]f,

where γ : (−ε, ε)→ Rn is any smooth curve, such that

γ(0) = p, γ′(0) = X(p),

cf. equation (1.8). Note that for any smooth vector field X on Rn and any f ∈ C∞(Rn),
X(f) ∈ C∞(Rn). One might also write X(f) = df(X) : p 7→ dfp(Xp).

Definition 1.68. A vector bundle E → M of rank k ∈ N over a smooth manifold M is a
smooth manifold E together with a smooth projection map π : E →M , such that

(i) the fibre Ep := π−1(p) is an k-dimensional real vector space for all p ∈M ,

(ii) for all p ∈ M there exists an open neighbourhood U ⊂ M of p and a diffeomorphism
ψ : π−1(U)→ U × Rk, such that ψ|Eq : Eq → q × Rk ∼= Rk is a linear isomorphism for all
q ∈ U and the diagram

π−1(U) U × Rk

U

π

ψ

prU

commutes. The map prU denotes the canonical projection onto the first factor.

E is called the total space, M is called the basis, and the map ψ is called a local trivialization
of the vector bundle E →M .

Vector bundles provide the setting for an analogue to vector valued functions on smooth
manifolds.
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Figure 16: Locally, E|U ∼= U × Rk.

Definition 1.69. Let E → M be a vector bundle. A local section in E → M is a smooth
map

s : U → E

with U ⊂ M open, such that π ◦ s = idU . This precisely means that s(p) ∈ Ep for all p ∈ U .
If U = M , s is called a (global) section. The set of local sections in E → M on U ⊂ M is
denoted by Γ(E|U ) and the set of global sections by Γ(E), where E|U denotes the vector bundle
π−1(U) → U . The support of a section (or, analogously, local section) in a vector bundle
s ∈ Γ(E) is defined to be the set

supp(s) := {p ∈M | s(p) 6= 0}.

Figure 17: A sketch of a section.

Exercise 1.70.
(i) Show that Γ(E) is a C∞(M)-module. Also show that Γ(E|U ) is a C∞(U)-module for all

U ⊂M open.

(ii) Show that for k > 0 the restriction map Γ(E)→ Γ(E|U ) for U ⊂M open and precompact,
such that the boundary of U , ∂U , is nonempty and a smooth hypersurface in M , is not
surjective.
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Definition 1.71. Let ψ : π−1(U)→ U×Rk and φ : π−1(V )→ V ×Rk be two local trivializations
of a vector bundle E →M . Assume that U ∩ V 6= ∅. Then the smooth map

ψ ◦ φ−1 : (U ∩ V )× Rk → (U ∩ V )× Rk

is called transition function10. For p ∈M fixed, (ψ ◦φ−1)(p, ·) is called transition function
at p.

Figure 18: How a transition function w.r.t. (ψU , U) and (ψV , V ) from the overlap of V × Rk and U × Rk to
itself can be imagined.

Lemma 1.72. Transition functions ψ ◦ φ−1 as in Definition 1.71 are of the form

ψ ◦ φ−1 : (p, v) 7→ (p,A(p)v), A(p) ∈ GL(k),

for all p ∈ U ∩ V , v ∈ Rn. The map

A : U ∩ V → GL(k), p 7→ A(p),

is smooth.

Proof. The diagram

U ∩ V × Rk π−1(U ∩ V ) U ∩ V × Rk

U ∩ V

φ−1

prU∩V
π

ψ

prU∩V

commutes and, hence, it is clear that ψ ◦φ−1 sends (p, v) to (p,A(p, v)) for some smooth function
A : U ∩ V × Rk → Rk. Smoothness follows from the diffeomorphism property of φ and ψ. We
need to show that for p fixed, A(p, ·) : Rk → Rk is an invertible linear map. This follows from
the fact that fibrewise φ and ψ are linear isomorphisms.

An important tool to construct vector bundles is from, heuristically speaking, a given set
transition functions.

10Note that a change of coordinates in a smooth manifold is also called a transition function. Always make sure
to clarify which kind of transition functions you are dealing with.
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Proposition 1.73 (“Vector bundle chart lemma”). Let M be a smooth manifold and assume
that for every p ∈M , Ep is a real vector space of fixed dimension k. Define a set

E :=
⊔
p∈M

Ep

together with a map π : E →M , π(v) = p for all v ∈ Ep and all p ∈M . Assume that {Ui, i ∈ I}
is an open cover of M and for each i ∈ I,

φi : π−1(Ui)→ Ui × Rk

is a bijection with the property that the restriction φi : Ep → {p} × Rk ∼= Rk is a linear
isomorphism for all p ∈M . Further assume that for all i, j ∈ I with Ui ∩ Uj 6= ∅ there exists a
smooth map τij : Ui ∩ Uj → GL(k), such that φi ◦ φ−1

j : (Ui ∩ Uj)× Rk → (Ui ∩ Uj)× Rk is of
the form

φi ◦ φ−1
j (p, v) = (p, τij(p)v).

Then there exists a unique topology and maximal atlas on E, such that π : E →M is a vector
bundle of rank k and the φi, i ∈ I, are local trivializations.

Proof. The proof follows [L2, Lem. 10.6]. Without loss of generality assume that we can find an
atlas {(ϕi, Ui) | i ∈ I} on M . This can always be achieved by shrinking the Ui if necessary and,
on possible new overlaps Ui ∩Uj , set τij ≡ idRk . Now we can explicitly construct an atlas on the
total space E. Define for i ∈ I

ψi : π−1(Ui)→ ϕi(Ui)× Rk, v 7→ (ϕi × idRk)(φi(v)).

In order for {(ψi, π−1(Ui)) | i ∈ I} to be a smooth atlas on E, we need to show that the transition
functions (as in transition functions of a smooth atlas, cf. Definition 1.4) are smooth. We check
that

ψi(π−1(Ui) ∩ π−1(Uj)) = ϕi(Ui ∩ Uj)× Rk

for all i, j ∈ I, and we find

ψi ◦ ψ−1
j = (ϕi × idRk) ◦ (φi ◦ φ−1

j ) ◦ (ϕ−1
j × idRk) : ϕj(Ui ∩ Uj)× Rk → ϕi(Ui ∩ Uj)× Rk.

Since, by assumption, τij(p) is invertible and depends smoothly on p ∈ Ui ∩ Uj , φi ◦ φ−1
j is a

diffeomorphism for all i, j ∈ I such that Ui ∩ Uj 6= ∅. Since the ϕi form a smooth atlas on M ,
each ϕi × idRk is a diffeomorphism. Hence, ψi ◦ ψ−1

j : ϕj(Ui ∩ Uj)× Rk → ϕi(Ui ∩ Uj)× Rk is
also a diffeomorphism for all i, j ∈ I such that Ui ∩ Uj 6= ∅. By defining the open sets on E as
the preimages of open sets under ψi, i ∈ I, we have that it is second countable and Hausdorff
by the assumption that M is a smooth manifold (and Rk is, of course, second countable and
Hausdorff as well). Equipped with the so-defined topology, B := {(ψi, π−1(Ui)) | i ∈ I} is a
smooth atlas on the total space E. Then all the maps φi, i ∈ I, are automatically smooth
and, since φi : Ep → {p} × Rk is a linear isomorphism by assumption, form a covering of local
trivializations which turns E →M into a vector bundle of rank k. The uniqueness of the smooth
manifold structure on E now follows from the assumption that all φi are diffeomorphisms onto
their image and, thus, every smooth atlas on E with that property must, by construction, be a
refinement of B and thus be contained in the same maximal smooth atlas as B.

Now we have all the tools at hand that we need to define the tangent bundle of a smooth
manifold.
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Definition 1.74. Let M be an n-dimensional smooth manifold. The tangent bundle11

TM →M of M is a vector bundle of rank n with total space TM :=
⊔
p∈M

TpM and projection

π(v) = p for all v ∈ TpM .

At this point, however, we still need to explain the structure of a smooth manifold on the
total space of the tangent bundle TM and we need to show that it actually is a vector bundle.

Proposition 1.75. The tangent bundle TM of any given manifold is, in fact, a vector bundle
of rank n.

Proof. We need to explain the topology on TM , find an atlas, and show that we can locally
trivialize it as a vector bundle. Fix a countable atlas (cf. Exercise 1.12)

A = {(ϕi = (x1
i , . . . , x

n
i ), Ui) | i ∈ A}

on M . Since π is assumed to be smooth and hence continuous, the pre-images {π−1(Ui) | i ∈ A}
form an open covering of TM . Taking pre-images under π of a basis of the topology on M is
not enough to explain the topology on M . For i ∈ A consider the maps

ψi : π−1(Ui)→ ϕi(Ui)× Rn,
ψi : v 7→ (ϕi(π(v)), v(x1

i ), . . . , v(xni )) = (ϕi(π(v)), dϕi(v)). (1.10)

and observe that each ψi is a bijection. We can think of the above maps as candidates for a
local trivialization that, via a chart on the manifold M itself, has its target space changed as in
in the following diagram

π−1(Ui)

Ui × Rn

ϕi(Ui)× Rn

ψi

ϕi×idRn

(1.11)

We define a basis of the topology on TM as

{ψ−1
i (V ) | i ∈ A, V ⊂ ϕi(Ui)× Rn open}

which is precisely the coarsest topology on TM , such that all maps ψi, i ∈ A, are homeomorphisms.
Since A is a countable set and the topology in each Ui has a countable basis, it follows that
the so-defined topology on TM is countable. To see that it is also Hausdorff, consider for
p 6= q ∈ TM the points ψi(p) and ψj(q) for fitting i, j ∈ A. If Ui ∩Uj = ∅, we can separate p and
q by π−1(Ui) and π−1(Uj). For Ui ∩ Uj 6= ∅, observe that each space ϕi(Ui)× Rn is Hausdorff
and we can thus find open neighbourhoods of ψi(p) and ψj(q) in ϕi(Ui ∩ Uj)×Rn that separate
these points. The pre-images under ψi of these sets will then separate p and q. Next consider
the transition functions (thought of as change of coordinates) of the ψi’s. For Ui ∩ Uj 6= ∅ we
have (recall Example 1.50)

ψi ◦ ψ−1
j : ϕj(Ui ∩ Uj)× Rn → ϕi(Ui ∩ Uj)× Rn,

(u,w) 7→ ((ϕi ◦ ϕ−1
j )(u), d(ϕi ◦ ϕ−1

j )u(w)). (1.12)

Since the transition functions ϕi ◦ ϕ−1
j are smooth it follows that the countable set

{(ψi, π−1(Ui)) | i ∈ A}
11Also simply called tangent space, without the “at p” part.
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{(ψi, π−1(Ui)) | i ∈ A} defines a countable atlas on TM . The vector bundle structure on TM is
explained by the local trivializations (ϕ−1

i × idRn) ◦ ψi, i ∈ A, cf. (1.11).

Remark 1.76. Compare the proofs of Proposition 1.73 and 1.75 for similarities and differences.
Note that, by Proposition 1.73 the structure of a vector bundle in TM → M is uniquely
determined by requiring that the transition functions are given by (1.12). Also note that the
transition functions of the local trivializations (ϕ−1

i × idRn) ◦ ψi are given by

(ϕ−1
i × idRn) ◦ ψi ◦

(
(ϕ−1

j × idRn) ◦ ψj
)−1

= (idM , d(ϕi ◦ ϕ−1
j )),

that is the matrix parts are differentials of the transition functions of the charts on M .

Remark 1.77. Let M be a smooth manifold and ϕ = (x1, . . . , xn) a local coordinate system
covering p ∈M . Let v ∈ TpM ,

v =
n∑
i=1

vi
∂

∂xi

∣∣∣∣
p
.

Observe that with ψ as in (1.10)

ψ(v) = (x1(p), . . . , xn(p), v1, . . . , vn),

meaning that the vector part of ψ(v) consists of the prefactors of v in the basis
{

∂
∂xi

∣∣∣
p
, 1 ≤ i ≤ n

}
.

Exercise 1.78. Consider Sn with atlas the stereographic projections as in Example 1.18 (i).
Explicitly calculate the corresponding transition functions (1.12) in the tangent bundle TSn.

Given a smooth manifold, one might ask how “bad” the tangent bundle might look like. For
this question we first need to clarify when two vector bundles are considered isomorphic.

Definition 1.79. Let πE : E →M and πF : F →M be vector bundles over smooth manifolds
M . Then a smooth vector bundle homomorphism12 is a smooth map between the total
spaces

f : E → F,

such that the diagram
E F

M

πE

f

πF

commutes and f is fibrewise linear. The last condition means that for each p ∈M ,

f |Ep : Ep → Fp

is a linear map.

Definition 1.80. Two vector bundles π1 : E1 →M and π2 : E2 →M are isomorphic if there
exists a diffeomorphism F : E1 → E2 that is a smooth vector bundle map, so that

F |E1p : E1p → E2p

is a linear isomorphism for all p ∈M .
12a.k.a. “smooth vector bundle map”
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Definition 1.81. A vector bundle of rank k, E →M , is called trivializable if it is isomorphic
to M × Rk →M equipped with the canonical projection onto M .

Lemma 1.82. Assume that E → M is trivializable. Then there exists a nowhere vanishing
section s ∈ Γ(E).

Proof. Exercise.

The best case scenario we can expect for the tangent bundle of a smooth manifold is that it is
trivializable. This is in general false. An example of a smooth manifold that with non-trivializable
tangent bundle is S2. It follows from the “hairy ball theorem”13 [M]. But there are non-trivial
examples:

Exercise 1.83. Show that TS1 is trivializable and, hence, as a smooth manifold isomorphic to
the cylinder S1 × R. Draw a sketch of the isomorphism.

We have now all tools at hand to define vector fields on smooth manifolds.

Definition 1.84. Sections in the tangent bundle of a smooth manifold, Γ(TM), are called
vector fields. For X ∈ Γ(TM) we will denote the value of X at p ∈ M by Xp. For U ⊂ M
open, we will call elements of Γ(TM |U ) local vector fields, or simply vector fields if the setting
does not explicitly use the locality property. We will use the notations

X(M) := Γ(TM)

and
X(U) := Γ(TM |U )

for U ⊂M open.

Figure 19: A vector field on the 2-torus.

Remark 1.85. For a smooth manifold M and U ⊂ M open, the two vector spaces TpU and
TpM are canonically isomorphic via restriction of charts for all p ∈ U . In the following we will
omit using TpU and instead write TpM , e.g. if we want to denote the action of a tangent vector
on a function f ∈ C∞(U), v(f), we will write v ∈ TpM and not v ∈ TpU .

13German: “Satz vom Igel”
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Remark 1.86. Vector fields, similar to tangent vectors, act on C∞(M) by

X(f)(p) := Xp(f) = df(Xp).

Thus we may write X(f) = df(X) ∈ C∞(M). On the other hand, a map of the form X : M →
TM , p 7→ Xp ∈ TpM , is a vector field if X(f) : p 7→ dfp(Xp) is smooth for all f ∈ C∞(M).

Recall that in Proposition 1.46 we have shown that in local coordinates (x1, . . . , xn) the
tangent vectors ∂

∂xi

∣∣∣
p
, 1 ≤ i ≤ n, form a basis of TpM . We want to have a similar result for the

local form of vector fields in Γ(TM |U ) for U the chart neighbourhood of the local coordinates xi.

Definition 1.87. Let (ϕ = (x1, . . . , xn), U) be a chart on a smooth manifold M . The corre-
sponding coordinate vector fields are defined as

∂

∂xi
∈ X(U), ∂

∂xi
: p 7→ ∂

∂xi

∣∣∣∣
p
.

Proposition 1.88. Let (ϕ = (x1, . . . , xn), U) be a chart on a smooth manifold M and X ∈ X(U).
With Xi := X(xi) ∈ C∞(U) we have

X =
n∑
i=1

Xi ∂

∂xi
.

On the other hand for any choice of smooth functions f i ∈ C∞(U), 1 ≤ i ≤ n,

n∑
i=1

f i
∂

∂xi
∈ X(U).

Proof. The first claim follows from the fact that for any p ∈ U fixed, Xp =
n∑
i=1

Xp(xi) ∂
∂xi

∣∣∣
p
,

which follows from Proposition 1.46. The second claim follows from the fact that each ∂
∂xi

is a
vector field on U and Exercise 1.70 (i).

Exercise 1.89.

(i) Prove the statements in Remark 1.86.

(ii) Construct a vector field X ∈ X(S2) with precisely one bald spot, meaning that there should
exists precisely one p ∈ S2, such that Xp = 0.

There is an alternative, but equivalent, way of introducing vector fields on smooth manifolds,
see [O]. Recall that in Definition 1.34 we have initially defined tangent vectors to be linear maps
from C∞(M) to R satisfying a Leibniz rule. Vector fields can be introduced similarly using the
concept of derivations from differential algebra.

Definition 1.90. Let A be an algebra over a field K. A derivation of a A is a K-linear map
D : A→ A that fulfils the Leibniz rule

D(ab) = D(a)b+ aD(b)

for all a, b ∈ A. The set of all derivations of A is denoted by Der(A). If A is commutative,
Der(A) is an A module.

Recall that the smooth functions on a manifold, C∞(M), is an R-algebra.
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Proposition 1.91. Let M be a smooth manifold. Then vector fields on M are precisely
the derivations of C∞(M), meaning that X(M) and Der(C∞(M)) are isomorphic as C∞(M)
modules.

Proof. The map
ι : X(M)→ Der(C∞(M)), X 7→ (f 7→ X(f)),

is a C∞(M) module map. Injectivity of ι follows from X = 0 if and only if X(f) = 0 for all
f ∈ C∞(M) (see proof of Proposition 1.46 if you have problems seeing that fact). For surjectivity
we define for a given derivation D a vector field XD via

D 7→ XD, XD
p (f) = D(f)(p)

for all p ∈M and all f ∈ C∞(M). By Remark 1.86 we know that XD is in fact a smooth vector
field. The map D 7→ XD is precisely the inverse of ι.

We now know the algebraic properties of vector fields as derivations and we know how to
write down and calculate with vector fields locally. The following lemma describes explicitly
how vector fields behave under a change of coordinates.

Lemma 1.92. Let M be a smooth manifold and let (ϕ = (x1, . . . , xn), U), (ψ = (y1, . . . , yn), V )
be charts on M such that U ∩ V 6= ∅. For X ∈ X(M) fixed, we have on U ∩ V the following
forms of X in local coordinates

X =
n∑
i=1

X(xi) ∂

∂xi

and
X =

n∑
i=1

X(yi) ∂

∂yi
.

If we understand d(ψ ◦ ϕ−1) : ϕ(U ∩ V )→ GL(n) as a matrix-valued function which associates
each point u ∈ ϕ(U ∩ V ) the Jacobi matrix of ψ ◦ ϕ−1 at u we obtain

d(ψ ◦ ϕ−1)u ·

X(x1)
...

X(xn)


∣∣∣∣∣∣∣
ϕ−1(u)

=

X(y1)
...

X(yn)


∣∣∣∣∣∣∣
ψ−1(u)

for all u ∈ U ∩ V .

Proof. Follows from the definition of the Jacobi matrix and the coordinate vector fields.

If the above formula looks difficult to you, calculate some examples for M = Rn, ϕ = idRn ,
and ψ : Rn → Rn any diffeomorphism. Having defined vector fields and coordinate vector fields,
we can now properly define differentials of smooth maps, compared to our pointwise Definition
1.49.

Definition 1.93. Let M,N be smooth manifolds and F : M → N be a smooth map. The
differential of F is defined as the smooth map

dF : TM → TN, dF |π−1(p) = dFp ∀p ∈M.

The above equation just means that pointwise, dF is given by its differential as in Definition 1.49.
Thus, in local coordinates (x1, . . . , xm) of M and (y1, . . . , yn) of N with appropriate domain we
have

dF

(
∂

∂xi

)
=

n∑
j=1

∂F j

∂xi
∂

∂yj
, F j = yj ◦ F, ∀1 ≤ i ≤ m.

32



The (non-pointwise) Jacobi matrix in given local coordinates is defined similarly by allowing the
basepoint to vary and, as a map from chart neighbourhoods in M to GL(n), is also smooth.

Exercise 1.94. Check using local coordinates on TM and TN that dF and the Jacobi matrix
as in Definition 1.93 are actually smooth.

On the vector fields on a smooth manifold we have the structure of a Lie14 algebra. Before
describing this concept in detail, consider for two derivations X,Y ∈ Der(A) of an algebra A
the commutator of X and Y

[X,Y ] := XY − Y X.

Exercise 1.95. Show that [X,Y ] ∈ Der(A).

By Proposition 1.91 there must be an analogue construction on the set of vector fields on a
smooth manifold.

Definition 1.96. Let V be a real vector space. A Lie bracket on V is a skew-symmetric
bilinear map

[·, ·] : V × V → V, (X,Y ) 7→ [X,Y ]

that fulfils the15 Jacobi identity

[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]]

for all X,Y, Z ∈ V . A vector space V together with a Lie bracket is called Lie algebra.

Exercise 1.97.

(i) [·, ·] on Der(A) is a Lie bracket.

(ii) Show that the Jacobi identity as defined in Definition 1.96 is equivalent to∑
cyclic

[X, [Y, Z]] = 0,

for all X,Y, Z ∈ V , where
∑

cyclic
stands for the cyclic sum.

Proposition 1.98. The bilinear map on vector fields on a smooth manifold M

[·, ·] : X(M)× X(M)→ X(M), (X,Y ) 7→ [X,Y ],
[X,Y ](f) := X(Y (f))− Y (X(f)) ∀X,Y ∈ X(M) ∀f ∈ C∞(M),

is a Lie bracket on the vector space X(M).

Proof. Follows from Exercise 1.97 (i).

Note that [X,Y ]p(f) = Xp(Y (f)) − Yp(X(f)) for all p ∈ M , f ∈ C∞(M), X,Y ∈ X(M).
From real analysis we know that partial derivatives commute. We can formulate a similar result
for smooth manifolds with the help of the Lie algebra structure on X(M).

Lemma 1.99. Let M be a smooth manifold and (x1, . . . , xn) be local coordinates. Then[
∂

∂xi
,
∂

∂xj

]
= 0

for all 1 ≤ i ≤ n, 1 ≤ j ≤ n.
14Sophus Lie (1842 – 1899)
15Careful: There is more than one Jacobi identity, e.g. graded Jacobi identities.
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Proof. Exercise.

Exercise 1.100. Show that [X, fY ] = df(X)Y + f [X,Y ] for all X,Y ∈ X(M), f ∈ C∞(M).

Definition 1.101. Let φ : M → N be a smooth map and let X ∈ X(M). The smooth map

M 3 p 7→ (dφ(X))p = dφp(Xp) ∈ Tφ(p)N

is called a vector field along φ.

Note that dφX sends smooth functions on N to smooth functions on M via

(dφX)(f) = X(f ◦ φ) ∈ C∞(M)

for all f ∈ C∞(N).

Definition 1.102. Let I ⊂ R be an interval (equipped with canonical coordinate t), M a smooth
manifold, and γ : I →M a smooth curve. The velocity vector field (or simply velocity) of
γ is the vector field along γ

γ′ := dγ

(
∂

∂t

)
, t 7→ γ′(t).

Note that the explicit form of γ′(t) depends on the local coordinates ϕ = (x1, . . . , xn) on M :

γ′(t) =
n∑
i=1

∂γi

∂t
(t) ∂

∂xi

∣∣∣∣
γ(t)
∈ Tγ(t)M

for all t ∈ I, where γi = xi(γ) for all 1 ≤ i ≤ n

Figure 20: The velocity vector field of a curve γ.

Now that we have defined the velocity of smooth curves in smooth manifolds, we can relate
our initial definition of tangent vectors in Rn in Remark 1.33 to tangent vectors for general
smooth manifolds as follows.

Lemma 1.103. Let M be a smooth manifold, v ∈ TpM , and f ∈ C∞(M). Then

v(f) = ∂(f ◦ γ)
∂t

(0)

for every smooth curve γ : I →M , 0 ∈ I, with γ(0) = p and γ′(0) = v.
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Proof. Follows from the chain rule for differentials of smooth maps.

Recall the definition of an integral curve of a vector field on an open set of Rn. There is, of
course, a similar concept for smooth manifolds in general.

Definition 1.104. Let X ∈ X(M) for a smooth manifold M . An integral curve of X at
p ∈M is a smooth curve γ : I →M , where I ⊂ R is an interval, 0 ∈ I, such that γ(0) = p and

γ′(t) = Xγ(t)

for all t ∈ I. An integral curve γ : I →M of X is called maximal if there is no interval Ĩ ⊃ I,
such that Ĩ \ I 6= ∅ and there exists an integral curve γ̃ : Ĩ →M of X with γ̃|I = γ. A vector
field X is called complete if every maximal integral curve γ : I →M is defined on I = R.

If we omit the term “at p” for integral curves, we also mean that the interval I does not
necessarily contain 0.

Example 1.105. Consider X ∈ X(R2) that is in canonical coordinates (u1, u2) = (x, y) given
by

X = −y ∂
∂x

+ x
∂

∂y
.

Its integral curves at any point (x0, y0) ∈ R2 are of the form

γ : t 7→
(

cos(t) − sin(t)
sin(t) cos(t)

)(
x0
y0

)
.

Exercise 1.106.

(i) Write down the vector field X and its integral curves in Example 1.105 in polar coordinates.
Is X complete?

(ii) Construct a vector field on R2 \ {0} with precisely one periodic maximal integral curve
that is not a constant curve and no other periodic maximal integral curves.

Remark 1.107. While we have defined integral curves of vector fields, at this point we do not
know if they always exists and whether they are unique or not. With the help of the theory of
ordinary differential equations we obtain such results. Firstly note that locally, i.e. in any given
local coordinates, the equation

γ′ = Xγ

is an ordinary, in general non-linear, differential equation. Thus, for any given vector field
X ∈ X(M) and any p ∈M there exists an integral curve γ : I →M of X at p. If γ : I →M and
γ̃ : Ĩ →M are two integral curves of X at p, they coincide on I ∩ Ĩ which, by definition, is never
empty. For each p ∈M , there exists a unique maximal integral curve of X at p. Furthermore,
for a the integral curves of X at p depend locally smoothly on p ∈ M . The proofs of these
results need some care when an integral curves leaves a given coordinate neighbourhood but
are otherwise identical to the case M ⊂ Rn open. For literature on the subject of ordinary
differential equations and dynamical systems see e.g. [A1, A2]

In general it is a very difficult question whether a given vector field in X(M) is complete, at
least if M is not compact. For compact smooth manifolds M we have the following result.

Proposition 1.108. Vector fields on compact smooth manifolds are complete.
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Proof. [A1] Chapter 2.6 together with the fact that since M is compact, one can for any given
atlas A on M assume without loss of generality that A is finite, and we have that the closure of
the chart neighbourhoods of A are compact in M .

For M not compact we still have the following result on vector fields with compact support.

Proposition 1.109. Let X ∈ X(M) be a vector field with compact support, meaning that

supp(X) = {p ∈M | Xp 6= 0} ⊂M

is compact. Then X is complete.

Figure 21: A sketch of a vector field with compact support V ⊂ U .

Proof. Exercise. [Hint: Try proving this for M = Rn first.]

Definition 1.110. A local one parameter group of diffeomorphisms on a smooth manifold
M is a smooth map

ϕ : I × U →M, (t, p) 7→ ϕt(p),
such that I ⊂ R is an interval containing 0 ∈ R, U ⊂ M is open, ϕ0 = idU , ϕt : M → M is a
diffeomorphism for all t ∈ I, and

ϕs+t(p) = ϕs(ϕt(p))
for all p ∈ U and all s, t ∈ I with (s + t) ∈ I and ϕt(p) ∈ U . A one parameter group of
diffeomorphisms is a local one parameter group of diffeomorphisms with I = R and U = M .

Local one parameter groups of diffeomorphisms on smooth manifolds are closely related to
vector fields and their integral curves. For any given vector field on a smooth manifold we can
attempt to consider all integral curves of X “at once”. This leads to the following concept.

Definition 1.111. A local flow of a vector field X ∈ X(M) is a smooth map

ϕ : I × U →M, (t, p) 7→ ϕt(p),

for some interval I ⊂ R containing 0 ∈ R and an open set U ⊂M , such that ϕ0 = idU and for
every p ∈ U fixed, the smooth curve

t 7→ ϕt(p)
is an integral curve of X. This just means that

∂

∂t
(ϕt(p)) = Xϕt(p).

We say that a local flow of X is defined near a point p ∈M if p ∈ U . A local flow of X is called
(global) flow of X if I = R and U = M .
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By saying that a local flow ϕ : I × U →M is near some point p ∈M we mean that p ∈ U .

Lemma 1.112. Every vector field on M admits a local flow near any given point p ∈M .

Proof. Let X ∈ X(M) and p ∈M arbitrary but fixed. Choose a bump function b : M → R such
that on some open neighbourhood U ⊂M of p, b|U ≡ 1. The maximal integral curves at p of bX
are each defined on R by Proposition 1.109 and depend smoothly on p ∈M by Remark 1.107.
This already shows that vector fields with compact support admit a global flow ϕ. Fix ε > 0
and choose an open subset V ⊂ U , such that V is an open neighbourhood of p and for all q ∈ V
and all t ∈ (−ε, ε) ϕt(q) ∈ U . Geometrically this mean that the set V is not moved out of U by
the flow of bX for |t| < ε. Since X and bX coincide on U , their integral curves at all q ∈ V for
I = (−ε, ε) also coincide. Hence, the flow ϕ of bX restricted to (−ε, ε) × V is a local flow of
X.

We already see that Definition 1.111 and 1.110 look similar. They are connected as follows.

Proposition 1.113. Local flows of vector fields are local one parameter groups of diffeomor-
phisms.

Proof. It suffices to show that for a given vector field X with two integral curves γ : (a, b)→M
at p = γ(0) and γ̃ : (ã, b̃)→M with γ(s) = γ̃(0) for some s ∈ (a, b) we have

γ(s+ t) = γ̃(t)

for all t, such that (s+ t) ∈ (a, b) and t ∈ (ã, b̃). This means that γ̃ extends γ and follows from
the fact that t 7→ γ(s+ t) is an integral curve of X (for s small enough) and uniqueness of local
solutions:

(γ(s+ ·))′(t) chain rule= γ′(s+ t) = Xγ(s+t) = X(γ(s+·))(t).

Hence, for a local flow φ of X near p we obtain

φt(φs(p)) = φt(γ(s)) = γ̃(t) = γ(s+ t) = φs+t(p).

The following is an immediate consequence of Proposition 1.113.

Corollary 1.114. Assume that X ∈ X(M) is complete. Then its flow is a one parameter group
of diffeomorphisms.

In fact, one can prove that for any vector field X ∈ X(M) the set⋃
p∈M

(Ip × {p}) ⊂ (R×M)

is open, where Ip is the uniquely determined interval for the maximal integral curve γ : Ip →M
of X starting at γ(0) = p ∈M . For X complete, Ip = R for all p ∈M and, hence, the maximal
domain of definition of any local flow of X is R ×M , meaning X has a global flow. For the
proof see [G, S. 1.10.9].

Example 1.115. Translations in Rn are of the form Av : (p, v) 7→ p+ v where v = (v1, . . . , vn)
is the translation vector. Consider the constant vector field

n∑
i=1

vi
∂

∂ui

with global flow
ϕ : R× Rn → Rn, (t, p) 7→ p+ tv.

We see that ϕ(1, p) = Av(p) for all p ∈ Rn.
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We have seen that if the local flow of a vector field is a local one parameter group of
diffeomorphisms. The other direction is true as well.

Exercise 1.116. Let A ∈ SO(2) be fixed. Find X ∈ X(R2), such that its global flow ϕ fulfils
ϕ1(p) = Ap for all p ∈ R2. Can this always be achieved for any A ∈ O(2)?

We have seen that local flows of vector fields are local one parameter groups of diffeomorphisms.
The converse statement is also true.

Definition 1.117. Let ϕ : I ×U →M be a local one parameter group of diffeomorphisms. The
infinitesimal generator of ϕ is defined to be the map

U 3 p 7→ ∂

∂t

∣∣∣∣
t=0

(ϕt(p)) ∈ TpM.

[Note: We have secretly used Exercise 1.142, make sure you understand how and why.]

Lemma 1.118. Infinitesimal generators of local one parameter group of diffeomorphisms
ϕ : I × U →M are local vector fields in X(U). Infinitesimal generators of one parameter groups
of diffeomorphisms ϕ : R×M →M are complete.

Proof. Since any local one parameter group of diffeomorphisms is smooth, the map X : p 7→
Xp := ∂

∂t

∣∣∣
t=0

(ϕt(p)) is smooth, i.e. X ∈ X(U). Hence, for any one parameter group of
diffeomorphisms ϕ : R×M →M , X is a vector field in X(M). Its integral curves at p ∈M are
given by

t 7→ ϕt(p)

and are defined for all t ∈ R. This means that X is complete.

Recall the definition of the Lie bracket on X(M), cf. Proposition 1.98. We know the algebraic
motivation for it by considering vector fields as derivations of C∞(M). But what does [X,Y ] for
X,Y ∈ X(M) stand for geometrically? To answer this question we must define the pushforward
and pullback of vector fields under diffeomorphisms.

Definition 1.119. Let F : M → N be a diffeomorphism and let X ∈ X(M), Y ∈ X(N). The
pushforward of X under F is the vector field F∗X ∈ X(N) given by

(F∗X)q := dFF−1(q)
(
XF−1(q)

)
∀q ∈ N.

The pullback of Y under F is the vector field F ∗Y ∈ X(M) given by

(F ∗Y )p := d(F−1)F (p)
(
YF (p)

)
∀p ∈M.

Note that d(F−1)F (p) = (dFp)−1 for all p ∈M .

Exercise 1.120. Verify that if F : M → N is a diffeomorphism and γ is an integral curve of
X ∈ X(M), then F ◦ γ is an integral curve of F∗X. Formulate a version of this statement for
local diffeomorphisms.

In order to explain the Lie bracket of vector fields geometrically, we need one more result
about the local form of vector fields. Assume that X ∈ X(M) does not vanish everywhere. Then
near any point where X does not vanish we can find local coordinates on M in which X has a
particularly simple form.
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Figure 22: Locally rectifying a vector field.

Proposition 1.121. Let X ∈ X(M) and p ∈ M , such that Xp 6= 0. Then there exist local
coordinates on an open neighbourhood U ⊂M of p, such that X is of the form

Xq = ∂

∂x1

∣∣∣∣
q

for all q ∈ U .

Proof. Since X is as a section in TM it is in particular a continuous map and, hence, we can
find an some open neighbourhood U of p ∈ M , such that Xq 6= 0 for all q ∈ U . Assume
without loss of generality that U is contained in a chart neighbourhood. Choose any local
coordinate system φ = (y1, . . . , yn) on U and let (u1, . . . , un) denote the canonical coordinates
on Rn. We can assume without loss of generality, after possibly shrinking U and re-ordering the
yi’s, that φ∗(X) ∈ X(φ(U)) is transversal along the inclusion map {u1 = 0} ∩ φ(U) ↪→ Rn to
N := {u1 = 0} ∩ φ(U), meaning that

(φ∗X)q 6∈ TqN ∼= Tq{u1 = 0} ⊂ TqRn

for all q ∈ N . Let, after again possibly shrinking U , Φ : I × φ(U)→ Rn denote a local flow of
φ∗X. Since

(φ∗X)q = ∂

∂t

∣∣∣∣
t=0

Φt(q) 6= 0

by the transversality condition, we obtain with Theorem 1.54 after possibly shrinking I that

F := Φ|I×N : I ×N → Φ(I ×N)

is a diffeomorphism, where we understand I as the “time” part so that Φ(t, q) := Φt(q), and
Φ(I ×N) ⊂ Rn is open. Denoting the canonical coordinates in I by u1 and in N by (u2, . . . , un)
(which is compatible with the canonical inclusion I ×N ⊂ Rn), we in particular have

dF(u1,u2,...un)

(
∂

∂u1

∣∣∣∣
(u1,u2,...,un)

)
= (φ∗X)Φ(u1,u2,...,un)

for all (u1, . . . , un) ∈ I ×N . Now we can define coordinates on φ−1(φ(U) ∩ Φ(I ×N)) ⊂M by

ψ = (x1, . . . , xn) := F−1 ◦ φ : φ−1(φ(U) ∩ Φ(I ×N))→ F−1(φ(U) ∩ (I ×N)) ⊂ Rn

and obtain for the local formula of X in the local coordinate system ψ and all q ∈ φ−1(φ(U) ∩
Φ(I ×N))

Xq = ∂

∂x1

∣∣∣∣
q
.
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In local coordinates as the ones constructed in Proposition 1.121, local flows look particularly
simple.

Corollary 1.122. Any local flow of X near p as in Proposition 1.121 is, if Xp 6= 0, in the local
coordinate system ψ = (x1, . . . , xn) of the form

ψ(ϕt(q)) = ψ(q) + te1,

for all q ∈ U , where e1 denotes the first unit vector in Rn in canonical coordinates, for |t| small
enough. Furthermore

dϕt

(
∂

∂xi

∣∣∣∣
q

)
= ∂

∂xi

∣∣∣∣
ψ−1(ψ(q)+te1)

for all q ∈ U and t small enough, where we understand the differential of ϕt for t fixed.

Next we will describe how the Lie algebra structure on vector fields is connected to their
local flows. To do so we will need to introduce the following concept.

Definition 1.123. Let M and N be smooth manifolds φ : M → N be a smooth map. Two
vector fields X ∈ X(M) and X ∈ X(N) are called φ-related if dφ(X) = Xφ. One then writes
X ∼φ X. Equivalently, X ∼φ X if X(f ◦ φ) = Y (f) ◦ φ for all f ∈ C∞(N).

We see that for φ : M → N an embedding and any X ∈ X(M), dφ(X), viewed as vector field
along φ, can be locally extended to a smooth vector field X ∈ X(N), such that dφ(X) = Xφ.
This means that, locally, we can find a φ-related vector field to X. For the next lemma, the
motivation is the case where φ is a change of coordinates on a smooth manifold.

Lemma 1.124. Let φ : M → N be a smooth map, X,Y ∈ X(M) and X,Y ∈ X(N), such that
X ∼φ X and Y ∼φ Y . Then [X,Y ] ∼φ [X,Y ].

Proof. Let f ∈ C∞(N) arbitrary. Then

[X,Y ](f ◦ φ) = X(Y (f ◦ φ))− Y (X(f ◦ φ))
= X(Y (f) ◦ φ)− Y (X(f) ◦ φ)
= (X(Y (f))− Y (X(f))) ◦ φ.

Lemma 1.124 means for φ a change of coordinates that the Lie algebra structure on vector
fields is compatible with changing coordinates in the sense that their Lie brackets are also related
by the same change of coordinates. Globally we have the following.

Corollary 1.125. For diffeomorphisms F : M → N ,

F∗[X,Y ] = [F∗X,F∗Y ]

for all X,Y ∈ X(M) and
F ∗[X,Y ] = [F ∗X,F ∗Y ]

for all X,Y ∈ X(N).

Proof. Follows from Definition 1.119 and Lemma 1.124.

Remark 1.126. In the case that φ is an embedding and dim(M) < dim(N), Lemma 1.124 also
implies that (locally and globally) [X,Y ] ◦ φ does not depend on the (local) extensions of X ◦ φ
and Y ◦ φ to vector fields on in N open neighbourhoods of points in φ(M).
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Means:
Vector
fields
tangent
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man-
ifold
have Lie
bracket
tangent
to sub-
mani-
fold.

Now we have cleared up all technical difficulties and can proof the following statement.

Proposition 1.127. Let X,Y ∈ X(M) and for p ∈ M arbitrary but fixed let ϕ : I × U → M
be a local flow of X near p. Then

[X,Y ]p = ∂

∂t

∣∣∣∣
t=0

(ϕ∗tY )p.

Figure 23: A sketch of Y along an integral curve γ through p of X.

Proof. First observe that the right hand side of the above formula is actually a well-defined
expression. This follows from (ϕ∗tY )p ∈ TpM for all t ∈ I and the fact that TpM is a real vector
space. In the following, dϕt is to be understand as differential of ϕt for t ∈ I fixed. First assume
that Xp 6= 0. Without loss of generality we can, with the help of Proposition 1.121, assume that
we have chosen local coordinates (x1, . . . , xn) on U ⊂M with p ∈M , such that Xq = ∂

∂x1

∣∣∣
q

for

all q ∈ U . Recall that, since ϕ is a local one parameter group of diffeomorphisms, ϕ−t = ϕ−1
t

whenever defined. Hence for |t| small enough we have

(ϕ∗tY )p = d(ϕ−1
t )ϕt(p)

(
Yϕt(p)

)
= (dϕ−t)ϕt(p)

(
Yϕt(p)

)
.

Observe that

(dϕ−t)ϕt(p) : ∂

∂xi

∣∣∣∣
ϕt(p)

7→ ∂

∂xi

∣∣∣∣
ψ−1(ψ(ϕt(p))−te1)

= ∂

∂xi

∣∣∣∣
ψ−1(ψ(p)+te1−te1)

= ∂

∂xi

∣∣∣∣
p
.

In the local coordinates (x1, . . . , xn), Y is of the form

Yq =
n∑
i=1

Y i(q) ∂

∂xi

∣∣∣∣
q

for all q ∈ U . Thus

(ϕ∗tY )p =
n∑
i=1

Y i(ϕt(p))
∂

∂xi

∣∣∣∣
p

and, hence,
∂

∂t

∣∣∣∣
t=0

(ϕ∗tY )p =
n∑
i=1

dY i

(
∂

∂x1

∣∣∣∣
p

)
∂

∂xi

∣∣∣∣
p

which coincides with [X,Y ]p =
[
∂
∂x1 , Y

]
p

by Lemma 1.99 and Exercise 1.100.
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Next assume that Xp = 0. If Xq = 0 for all q in an open neighbourhood U of p, the local
flow of X restricted to U will be the identity for all t ∈ I. Hence,

∂

∂t

∣∣∣∣
t=0

(ϕ∗tY )p = 0.

For any f ∈ C∞(M) observe that X(f) vanishes on U and thus

[X,Y ]p(f) = Xp(Y (f))− Yp(X(f)) = 0.

Lastly assume that Xp = 0 and X does not vanish identically on some open neighbourhood
of p. Let U ⊂ M be a compactly embedded open neighbourhood of p and choose a sequence
{pn}n∈N, lim

n→∞
pn = p, such that Xpn 6= 0 and pn 6= p for all n ∈ N. Then

[X,Y ]pn = ∂

∂t

∣∣∣∣
t=0

(ϕ∗tY )pn

for all n ∈ N. By continuity in the base point of both sides of the above expression we take their
limit as n→∞ and conclude that [X,Y ]p = ∂

∂t

∣∣∣
t=0

(ϕ∗tY )p as claimed

Proposition 1.127 gives an answer to the question what the lie bracket of two vector fields
should mean geometrically: [X,Y ] measures the infinitesimal change of Y along integral curves
of X or, by skew-symmetry, the negative infinitesimal change of X along integral curves of Y ,
both via the pullback. This motivates the following definition:

Definition 1.128. The Lie derivative of a vector field Y ∈ X(M) with respect to16 X ∈ X(M)
is defined as

LX(Y ) := [X,Y ] ∈ X(M).

We will see in Section 2.2 that there is a different and very important important alternative
concept how to measure infinitesimal changes of vector fields or, more general, sections of vector
bundles. Next we will study how to obtain, in a natural way, new vector bundles from given
bundles. This will allow us to define what a tensor field should be, which are central objects in
every flavour of differential geometry and in applications in physics.

Definition 1.129. Let πE : E →M be a vector bundle of rank k. The dual vector bundle
πE∗ : E∗ →M is pointwise given by

π−1
E∗(p)E

∗
p := HomR(Ep,R)

for all p ∈ M . The topology, smooth manifold structure, and bundle structure on E∗ is
obtained as follows. Let {(ψi, Vi) | i ∈ A} be a collection of local trivializations of a vector
bundle E of rank k, such that there exists an atlas A = {(ϕi, πE(Vi)) | i ∈ A} of M .17 Then
B := {((ϕi × idRk) ◦ ψi, Vi) | i ∈ A} is an atlas on E. Recall that for any finite dimensional real
vector space W , (W ∗)∗ and W are isomorphic via

W 3 v 7→ (ω 7→ ω(v)), ω ∈W ∗.

The topology on E∗ is given by pre-images of open images of the dual local trivializations
which are defined by

ψ̃i : π−1
E∗(πE(Vi))→ πE(Vi)× Rk, ωp 7→ (p, w),

16Or: “in direction of”.
17Exercise: Show that such a choice is always possible.
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where w ∈ Rk is the unique vector, such that ωp(vp) = 〈w,prRk(πE(vp))〉 for all vp ∈ π−1
E (p) and

〈·, ·〉 denotes the Euclidean scalar product on Rk induced by its canonical coordinates. The dual
atlas B∗ on E∗ is then defined by

B∗ := {((ϕi × idRk) ◦ ψ̃i, Vi) | i ∈ A}.

It follows that E∗ →M is a vector bundle of rank k.

Exercise 1.130. Show that the transition functions of E∗ →M fulfil

ψ̃i ◦ ψ̃j
−1

: (p, w) 7→
(
p, (A−1

p )Tw
)

for all p ∈ πE(Vi), where A : πE(Vi)→ GL(n) is given by the transition functions of E →M ,

ψi ◦ ψ−1
j : (p, v) 7→ (p,Apv).

Exercise 1.131. Show that (E∗)∗ → M is isomorphic to E → M as a vector bundle for any
vector bundle E →M .

The most important example of a dual bundle is the dual to the tangent bundle of a smooth
manifold (at least for this course).

Definition 1.132. The vector bundle T ∗M := (TM)∗ →M is called the cotangent bundle
of M . Pointwise we denote T ∗pM = (TM)∗p for all p ∈M . As for the tangent bundle we identify
for any U ⊂M open and p ∈ U the vector spaces T ∗pU ∼= T ∗pM via the inclusion map.

Similar to the tangent bundle, cf. Proposition 1.75, an atlas on M induces an atlas on the
total space T ∗M that is compatible with the bundle structure of T ∗M as the dual bundle of TM .
We will specify how a given local coordinate system ϕ = (x1, . . . , xn) on an open set U ⊂ M
induces a local coordinate system on the total space T ∗M . Let πT ∗M : T ∗M →M denote the
projection. In the tangent bundle case we used equation (1.10) to define the induced local charts.
This definition uses the action of tangent vectors v ∈ TpM , p ∈ U , on the coordinate functions
(x1, . . . , xn). In our present case of the cotangent bundle, elements in T ∗pM are linear maps

ω ∈ T ∗pM, ω : v 7→ ω(v) ∈ R ∀v ∈ TpM.

Thus we cannot let them act in any sensible way on the coordinate functions. However, recall
that the coordinate functions induce a basis of TpM for all p ∈ U , cf. Proposition 1.46. This
motivates defining a local coordinate system on T ∗M by

ψ̃ : π−1
T ∗M (U)→ ϕ(U)× Rn, ψ̃ : ω 7→

(
ϕ(πT ∗M (ω)), ω

(
∂

∂x1

∣∣∣∣
p

)
, . . . , ω

(
∂

∂xn

∣∣∣∣
p

))
. (1.13)

This local coordinate system is dual to the local coordinate system ψ on π−1
TM as in equation

(1.10) in the sense that for all ωp ∈ T ∗pM and all vp ∈ TpM

ωp(vp) = 〈prRn(ψ̃(ωp)), prRn(ψ(vp))〉, (1.14)

where prRn denotes the canonical projection to the vector part and 〈·, ·〉 denotes the Euclidean
scalar product induced by the canonical coordinates on Rn. The independence of the chosen
local coordinate system of the right hand side of (1.14) follows from Exercise 1.130.

We have defined vector fields as sections in the tangent bundle of a smooth manifold. Sections
of the cotangent bundle are of the same importance as vector fields when studying smooth
manifolds.
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Definition 1.133. Sections in T ∗M → M are called 1-forms and denoted by Ω1(M) :=
Γ(T ∗M). For U ⊂ M open, sections in Γ(T ∗M |U ) are denoted by Ω1(U) and called local
1-forms.

A straightforward way of obtaining explicit examples of 1-forms is as follows.

Example 1.134. Let f ∈ C∞(M). Then the differential18 of f , df ∈ Ω1(M), is given by

df : p 7→ dfp.

In local coordinates (x1, . . . , xn) we have df
(

∂
∂xi

)
= ∂f

∂xi
for all 1 ≤ i ≤ n. This implies that df

can locally be written as

df =
n∑
i=1

∂f

∂xi
dxi.

In particular it follows for f = xj that the coordinate 1-forms dxj fulfil dxj
(

∂
∂xi

)
≡ δji on the

domain of definition of the local coordinates. This in in accordance with the pointwise version
of this statement Example 1.50.

Lemma 1.135. Let M be a smooth manifold and ϕ = (x1, . . . , xn) be local coordinates defined
on an open set U ⊂M and let p ∈ U be arbitrary but fixed. Then

{dxip | 1 ≤ i ≤ n}

is a basis of T ∗pM . It is precisely the dual basis to the basis
{

∂
∂xi

∣∣∣
p

∣∣∣∣ 1 ≤ i ≤ n
}

of TpM . Any

local 1-form ω ∈ Ω1(U) can be written as

ω =
n∑
i=1

fidx
i (1.15)

with uniquely determined smooth functions fi ∈ C∞(U) for 1 ≤ i ≤ n.

Proof. The first two claims follow from Proposition 1.46 and Exercise 1.50. Next we observe
that for any fi ∈ C∞(U), 1 ≤ i ≤ n, the right hand side of equation (1.15) is a local section of
T ∗M19 by the construction of the smooth manifold structure on the total space T ∗M via charts
of the form (1.13), which in particular implies that dxi is a local 1-form. On the other hand for
a given local 1-form ω, define

ωi := ω

(
∂

∂xi

)
for all 1 ≤ i ≤ n. It now suffices to show that ωi ∈ C∞(U) and, after that, to define fi := ωi.
ωi being a local smooth function follows from observing that by equation (1.14), ωi ◦ ϕ−1 is
precisely the i-th entry in the vector part of ψ̃ ◦ ω ◦ ϕ−1 and thereby by definition a smooth
map. Uniqueness of the fi can be shown as follows. Suppose that locally

ω =
n∑
i=1

fidx
i =

n∑
i=1

f̃idx
i (1.16)

such that for at least one 1 ≤ j ≤ n, fj 6= f̃j . Choose p ∈ U , such that fj(p) 6= f̃j(p). Then(
n∑
i=1

fidx
i

)(
∂

∂xj

∣∣∣∣
p

)
= fj(p) 6= f̃j(p) =

(
n∑
i=1

f̃idx
i

)(
∂

∂xj

∣∣∣∣
p

)

which is a contradiction.
18Cf. Definition 1.93.
19Recall that our definition of sections required them to be smooths maps.
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In order to check whether a fibrewise map ω : M → T ∗M is a 1-form it suffices to check how
it behaves when applied to vector fields and the converse statement also holds true:

Lemma 1.136. Let ω : M → T ∗M , ω : p 7→ T ∗pM , be a fibrewise map. Then ω ∈ Ω1(M) if and
only if for all X ∈ X(M) the function ω(X) : p 7→ ω(X)(p) is smooth.

Proof. Exercise. [Hint: Use Lemma 1.135 and bump functions.]

Example 1.134 and Lemma 1.135 motivate viewing the coordinate 1-forms as dual objects to
coordinate vector fields. Indeed we obtain the following more abstract statement reinforcing this
point of view.

Proposition 1.137. Ω1(M) is isomorphic as a C∞(M)-module to the C∞(M)-module dual to
X(M), i.e.

Ω1(M) ∼= HomC∞(M)(X(M), C∞(M)).

Proof. Let α ∈ Ω1(M). we have seen in the proof of Lemma 1.135 that for any choice of local
coordinates (x1, . . . , xn) on M , α

(
∂
∂xi

)
is a local smooth function. Recall Proposition 1.88 and

choose a locally finite countable partition of unity {bi : Ui → [0, 1] | i ∈ I} subordinate to a
countable atlas {(ϕi = (x1

i , . . . , x
n
i ), Ui) | i ∈ I} of M . Write X(p) =

∑
i∈I

bi(p)X(p), observe that

this sum is finite for all fixed p ∈ M and that biX ∈ X(Ui) for all i ∈ I. We can write biX in
local coordinates as

biX =
n∑
j=1

biX(xji )
∂

∂xji
=:

n∑
j=1

biX
j
i

∂

∂xji

and observe that, since all bi, i ∈ I, are in particular bump functions, biXj
i ∈ C∞(Ui) can be

trivially extended to a smooth function on M and that biX ∈ X(Ui) can be trivially extended to
be a vector field on the whole manifold M for all i ∈ I and all 1 ≤ j ≤ n.

Aα(X) = α(X) =
∑
i∈I

α(biX) =
∑
i∈I

n∑
j=1

biαjX
j
i . (1.17)

The above sum on the right hand side is a locally finite sum of bump functions (defined on the
respective Ui which we trivially extent to M). This means that for all p ∈M fixed there exists
an open neighbourhood U ⊂M of p, such that the set

{(i, j) ∈ I × {1, . . . , n} | biαjXj
i (q) 6= 0 for at least one q ∈ U}

is finite. Hence, the right hand side of (1.17) is indeed a smooth function defined on M since
it is, locally, the sum of finitely many smooth functions. This shows α defines a well-defined
C∞(M)-linear map

Aα : X(M)→ C∞(M), X 7→ α(X), A(X)(p) := αp(Xp) ∀p ∈M.

On the other hand let A : X(M) → C∞(M) be a C∞(M)-linear map. For a given A ∈
HomC∞(M)(X(M), C∞(M)) define a fibre-preserving map

αA : M → T ∗M, αA|p(v) := A(X)(p)

for X ∈ X(M) with Xp = v. We need to show that this definition does not depend on the choice
of X and that αA is in fact a smooth map. Since A(X + Y )(p) = A(X)(p) + A(Y )(p) for all
X,Y ∈ X(M) and all fixed p ∈M it suffices to show that A(X)(p) = 0 for all X ∈ X(M) with
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Xp = 0. Let (x1, . . . , xn) be local coordinates on U ⊂M with p ∈ U so that X with Xp = 0 is
locally of the form

X =
n∑
i=1

Xi ∂

∂xi
,

Xi ∈ C∞(U) for all 1 ≤ i ≤ n. Then Xp = 0 precisely means that Xi(p) = 0 for all 1 ≤ i ≤ n.
Since A(fX)(p) = f(p)A(X)(p) for all f ∈ C∞(M), we can choose a bump function b ∈ C∞(M),
so that supp(b) ⊂ U is compactly embedded and such that there exists a compactly embedded
set V ⊂ U with non-empty interior containing p and b|V ≡ 1. Then for all 1 ≤ i ≤ n, bXi are
also bump functions on U ⊂ M and thus can be smoothly extended to M (note that the Xi

might have “bad” behaviour when approaching ∂U , e.g. do not converge). Furthermore, b ∂
∂xi

can be extended to a globally defined vector field on M for all 1 ≤ i ≤ n by setting

b
∂

∂xi

∣∣∣∣ q = 0

for all q ∈M \U . We will for simplicity write bXi ∈ C∞(M) and b ∂
∂xi
∈ X(M) for all 1 ≤ i ≤ n.

We now calculate

A(X)(p) = b2(p)A(X)(p) = A(b2X)(p) = A

(
n∑
i=1

(bXi)
(
b
∂

∂xi

))
(p)

=
(

n∑
i=1

bXiA

(
b
∂

∂xi

))
(p) =

n∑
i=1

Xi(p)A
(
b
∂

∂xi

)
(p) = 0.

It remains to show that αA is smooth. This follows with the help of Lemma 1.136, the above
result, and a similar construction using a locally finite partition of unity as for the other
direction of the proof. One can further check that AαA = A and αAα = α, that is that the two
constructions are inverse to each other.

Exercise 1.138. Work out the missing details of the “⊃” direction in the proof of Proposition
1.137.

As for vector fields, cf. Definition 1.119, we can define the pullback and pushforward of
1-forms under diffeomorphisms. Be wary of the differences!

Definition 1.139. Let F : M → N be a diffeomorphism and let α ∈ Ω1(M), β ∈ Ω1(N). The
pushforward of α under F is the 1-form F∗α ∈ Ω1(N) given by

(F∗α)q := αF−1(q) ◦ d(F−1)q ∀q ∈ N.

The pullback of β under F is the 1-form F ∗β ∈ Ω1(M) given by

(F ∗β)p := βF (p) ◦ dFp ∀p ∈M.

The above compositions denote compositions of linear maps.

Remark 1.140. The pullback of a 1-form β ∈ Ω1(N) is well-defined for any smooth map
F : M → N .

Next we will study some constructions on how to obtain new vector bundles from given
vector bundles.
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Definition 1.141. Let πE : E → M be a vector bundle of rank k and πF : F → M a vector
bundle of rank ` over an n-dimensional smooth manifold M . The Whitney20 sum of E and
F is the the direct sum of the two vector bundles πE⊕F : E ⊕ F →M with fibres

(E ⊕ F )p = π−1
E⊕F (p) := Ep ⊕ Fp.

The structure of a vector bundle on E ⊕ F =
⊔
p∈M

(Ep ⊕ Fp) is then explained by Proposition

1.73 and the requirement that the following maps are local trivializations of E ⊕ F . Let
{(ψEi , V E

i ) | i ∈ I} and {(ψFi , V F
i ) | i ∈ I} be coverings of local trivializations of E and F ,

respectively, such that Ui := πE(V E
i ) = πF (V F

i ) for all i ∈ I and such that there exists an atlas
A = {(ϕi, Ui) | i ∈ I} of M . We require now require that with

φ−1
i := (ψEi ⊕ ψFi )−1 ◦ (∆M × Rk+`) : Ui × Rk+` ∼= Ui × (Rk × R`)→

⊔
p∈Ui

(Ep ⊕ Fp),

(p, v, w) 7→ (ψEi )−1(p, v)⊕ (ψFi )−1(p, w) ∀p ∈ Ui, v ∈ Rk, w ∈ R`, (1.18)

where ∆M : p 7→ (p, p) ∈M ×M denotes the diagonal embedding and

Rk × R` 3 (v, w) 7→
(
v
w

)
∈ Rk+`

the linear isomorphism, all φi, i ∈ I, are inverses of local trivializations covering E ⊕F . In order
to use Proposition 1.73 we need to check that the transition functions have the required form.
We obtain that for all i, j ∈ I, such that Ui ∩ Uj 6= ∅,

φi ◦ φ−1
j (p, v, w) = (p, τEij (p)v, τFij (p)w),

where τEij and τFij are the transition functions of the local trivializations of E and F , respectively.
Lastly, we simply need to define

τE⊕Fij (p) :=

 τEij (p) 0

0 τFij (p)

 ∈ GL(k + `)

so that we can write φi ◦ φ−1
j (p, ( vw )) =

(
p, τE⊕Fij (p) ( vw )

)
. Now all requirements in Proposition

1.73 are fulfilled and we conclude that E ⊕ F →M is, indeed, a vector bundle of rank k + `.

Exercise 1.142. Show that the vector bundles T (M ×N) and

TM ⊕ TN →M ×N, (vp, wq) 7→ (p, q) ∀vp ∈ TpM ∀wq ∈ TqN,

are isomorphic as vector bundles for any two smooth manifolds M and N .

A construction similar to the Whitney sum is the tensor product of vector bundles. Recall
that the tensor product of two real vector spaces V1 of dimension n and V2 of dimension m is
a real vector space V1 ⊗ V2 together with a bilinear map ⊗ : V1 × V2 → V1 ⊗ V2, such that for
every real vector space W and every bilinear map F : V1 × V2 →W , there exist a unique linear
map F̃ : V1 ⊗ V2 →W making the diagram

V1 × V2

V1 ⊗ V2 W

F⊗

F̃

20Hassler Whitney (1907 – 1989)
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commute. The dimension of V1 ⊗ V2 is n ·m. If {v1
1, . . . , v

n
1 } and {v1

2, . . . , v
m
2 } are a basis of V1

and V2, respectively, we can construct a choice of basis for V1 ⊗ V2 explicitly. A basis of V1 ⊗ V2
is given by {vi1 ⊗ v

j
2, 1 ≤ i ≤ n, 1 ≤ j ≤ m}, and F̃ for a bilinear map F as above is given by

F̃ : vi1 ⊗ v
j
2 7→ F (vi1, v

j
2)

on the basis vectors. By considering “⊗” itself as a bilinear map from V1 × V2 to W = V1 ⊗ V2,
we define21 v ⊗ w for v =

n∑
i=1

vivi1, w =
m∑
j=1

wjvi2, as

v ⊗ w :=
n∑
i=1

m∑
j=1

viwj · vi1 ⊗ v
j
2.

An element v ∈ V1 ⊗ V2 is called a pure tensor if it can be written as v = v1 ⊗ v2 for some
v1 ∈ V1 and v2 ∈ V2. In order to describe any linear map L : V1 ⊗ V2 → W is suffices to know
how it acts on pure tensors [Exercise: Prove the last statement.]

A very important example that you should keep in mind is the tensor product of a real
vector space V with its dual, that is V ⊗ V ∗.

Exercise 1.143.

(i) Show that the real vector space of endomorphisms End(V ) and V ⊗ V ∗ are isomorphic as
real vector spaces via

V ⊗ V ∗ 3 v ⊗ ω 7→ (u 7→ ω(u)v) ∈ End(V ).

(ii) Show that V ⊗ R ∼= V and V ⊗W ∼= W ⊗ V for all real vector spaces V and W .

For the evaluation map

ev : V × V ∗ → R, (v, ω) 7→ ω(v) ∀v ∈ V, ω ∈ V ∗,

the induced map ẽv : V ⊗ V ∗ → R is called contraction. By saying that we contract v ⊗ ω
we simply mean sending it to ω(v). Further recall that V1 ⊗ (V2 ⊗ V3) and (V1 ⊗ V2)⊗ V3 are
isomorphic. In the following we will deal with objects that, pointwise, are elements of vector
spaces of the form

V ⊗ . . .⊗ V︸ ︷︷ ︸
r times

⊗V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
s times

.

A contraction of an element v1 ⊗ . . . ⊗ vr ⊗ ω1 ⊗ . . . ⊗ ωs ∈ V ⊗ . . . ⊗ V ⊗ V ∗ ⊗ . . . ⊗ V ∗ will
stand for a map of the form

v1⊗ . . .⊗ vr ⊗ω1⊗ . . .⊗ωs 7→ ωβ(vα) · v1⊗ . . . ⊗̂ vα ⊗ . . . vr ⊗ω1⊗ . . . ⊗̂ ωβ ⊗ . . . ωs (1.19)

for 1 ≤ α ≤ r and 1 ≤ β ≤ s fixed, where “̂” means that the element is supposed to be left
out. This is precisely the induced map for the evaluation map in the (α, β)-th entry. If α and β
are not further specified, any statement that contains such a contraction is supposed to hold for
all possibilities of α and β.

We will now generalize the definition of a tensor product of vector spaces to vector bundles.
Pointwise, the two definitions coincide.

21Make sure to understand why this is consistent with the definition of the tensor product.
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Definition 1.144. Let πE : E →M be a vector bundle of rank k and πF : F →M be a vector
bundle of rank ` and, as in Definition 1.141, let ψEi and ψFi , i ∈ I, be local trivializations of E
and F , respectively, and A a fitting atlas of M with charts (ϕi, Ui), i ∈ I. The tensor product
of vector bundles of E and F , πE⊗F : E ⊗ F →M , is the vector bundle given pointwise by

(E ⊗ F )p = π−1
E⊗F (p) := Ep ⊗ Fp,

so that E ⊗ F :=
⊔
p∈M

Ep ⊗ Fp. As in the construction of the Whitney sum of vector bundles, it

suffices by Proposition 1.73 to construct local trivializations φi : π−1(Ui)→ Ui×Rk⊗R` ∼= Ui×Rk`
covering E ⊗ F with smooth vector parts of their transition functions in order to show that
E ⊗ F is in fact a vector bundle. Analogous to equation (1.18) we set

φ−1
i := (ψEi ⊗ ψFi )−1 ◦ (∆M × idRk`) : Ui × Rk` ∼= Ui × (Rk ⊗ R`)→

⊔
p∈Ui

(Ep ⊗ Fp),

(p, v ⊗ w) 7→ (ψEi )−1(p, v)⊗ (ψFi )−1(p, w) ∀p ∈ Ui, v ∈ Rk, w ∈ R`, (1.20)

where ∆M : p 7→ (p, p) ∈M ×M again denotes the diagonal embedding and φ−1
i on non-pure

tensors is defined by linear extension for any p ∈ Ui fixed. For the transition functions of the
vector part in the change of local trivializations of E ⊗ F →M we obtain for all i, j ∈ I, such
that Ui ∩ Uj 6= ∅,

φi ◦ φ−1
j (p, v ⊗ w) = (p, τEij (p)v ⊗ τFij (p)w),

where τEij and τFij are the transition functions of the local trivializations of E and F , respectively.
We check [Exercise!] that the linear extension of

Rk ⊗ R` 3 v ⊗ w 7→ τEij (p)v ⊗ τFij (p)w ∈ Rk ⊗ R`

actually is an invertible linear map and conclude with Proposition 1.73 that E ⊗ F → M is
indeed a vector bundle of rank k`.

Exercise 1.145. The endomorphism bundle of a vector bundle E →M is defined as

End(E) := E ⊗ E∗ →M.

Describe the transition functions of End(E) → M induced by given transition functions on
E →M .

Definition 1.146. Let M be a smooth manifold and let (r, s) ∈ N0×N0 so that r+ s > 0. The
vector bundle

T r,sM := TM ⊗ . . .⊗ TM︸ ︷︷ ︸
r times

⊗T ∗M ⊗ . . .⊗ T ∗M︸ ︷︷ ︸
s times

→M

is called the bundle of (r, s)-tensors of M . In this notation, T 1,0M = TM and T 0,1M = T ∗M .
The (local) sections in the bundle of (r, s)-tensors are called (local) (r, s)-tensor fields, or
simply tensor fields if (r, s) is clear from the context, and are denoted by

Tr,s(M) := Γ(T r,sM).

In local coordinates (x1, . . . , xn) on U ⊂M , tensor fields A ∈ Tr,s(M) are of the form

A =
∑

1≤i1,...,ir≤n
1≤j1,...,jr≤n

Ai1...ir j1...js
∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs , (1.21)

Ai1...ir j1...js ∈ C∞(U) ∀1 ≤ i1, . . . , ir, j1, . . . , js ≤ n.

49



The above local form of tensor fields is commonly called index notation of tensor fields.
This is justified by the fact that locally A is uniquely determined by the local smooth functions
Ai1...ir j1...js on chart neighbourhoods of an atlas of M . Note that the summation in (1.21)
“pairs up” coinciding upper and lower indices. In physics literature, the summation signs are
usually omitted, which is called the Einstein summation convention. We will not be using
that convention a.k.a. notation but instead leave out the ranges of the summations from here
on whenever they are clear from the context. For example, a vector field X ∈ X(M) on an
n-dimensional smooth manifold M will then locally be written as

X =
∑

Xi ∂

∂xi
.

If A ∈ Tr,s(M) with r > 0 and s > 0 we can contract A in the i, j-th index, 1 ≤ i ≤ r,
1 ≤ j ≤ s, which is pointwise in local coordinates defined as in (1.19), and obtain a tensor field
in Tr−1,s−1(M).22

Remark 1.147. Recall Proposition 1.137 and the construction of the tensor product via its
universal property. One can show that Tr,s(M) is as C∞(M) module isomorphic to the C∞(M)-
multilinear maps HomC∞(M)(Ω1(M)×r × X(M)×s, C∞(M)). The proof needs some knowledge
about tensor products of modules, but essentially works as the proof of Proposition 1.137.

Exercise 1.148.
(i) Work out the transformation laws for (r, s)-tensor fields when changing coordinates. As an

example consider linear (global) change of coordinates in Rn, i.e.u
1

...
un

 = B

w
1

...
wn


for (u1, . . . , un) the canonical coordinates and B ∈ GL(n). [Even though it is a bit tedious,
do not skip this exercise!]

(ii) Show that contraction of tensor fields is well-defined, i.e. show that for a tensor field in
local coordinates first contracting and then changing coordinates yields the same expression
as first changing coordinates and then contracting. This in particular means that the
contraction of an endomorphism field in T1,1(M) is a well-defined smooth function on
M .

(iii) Check that the contraction of an endomorphism field A is pointwise in local coordinates
precisely the trace of the endomorphism Ap : TpM → TpM .

We know what it means to transport vector fields and 1-forms via diffeomorphisms from one
smooth manifold to another. For 1-forms we have seen that we can pull them back with respect
to any smooth map, not just diffeomorphisms. These constructions work for general tensor fields
as well by applying them entry-wise. Observe the following:

Remark 1.149. For any a ∈ Tr,s(M), b ∈ TR,0(M), c ∈ T0,S(M),

b⊗ a ∈ Tr+R,s(M), a⊗ c ∈ Tr,s+S(M),

where the tensor product is understood over C∞(M).23 For the above reason we identify
C∞(M) with T0,0(M) so that a (0, 0)-tensor field is simply a smooth function. For f ∈ C∞(M),
we set f ⊗ a := fa for all a ∈ Tr,s(M).

22T0,0(M) := C∞(M), see Remark 1.149.
23This means that (fb)⊗ a = b⊗ (fa) for all f ∈ C∞(M), the construction of the tensor product of modules is

analogous to the construction of tensor products of vector spaces. For a reference see e.g. [].
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Definition 1.150. Let M , N be smooth manifolds and let F : M → N be a diffeomorphism.
The pushforward and pullback of tensor fields under F are the unique R-linear maps

F∗ : Tr,s(M)→ Tr,s(N),
F ∗ : Tr,s(N)→ Tr,s(M),

such that

(i) F∗ : T1,0(M)→ T1,0(N) is the pushforward of vector fields, F ∗ : T1,0(N)→ T1,0(M) is the
pullback of vector fields,

(ii) F∗ : T0,1(M) → T0,1(N) is the pushforward of 1-forms, F ∗ : T0,1(N) → T0,1(M) is the
pullback of 1-forms,

(iii) F∗(b⊗ a) = (F∗b)⊗ (F∗a) and F ∗(b⊗ a) = (F ∗b)⊗ (F ∗a) for all a ∈ Tr,s(M), b ∈ TR,0(M),

(iv) F∗(a⊗ c) = (F∗a)⊗ (F∗c) and F ∗(a⊗ c) = (F ∗a)⊗ (F ∗c) for all a ∈ Tr,s(M), c ∈ T0,S(M).

For f ∈ C∞(M), g ∈ C∞(N), we set

F∗(f) := f ◦ F−1, F ∗g := g ◦ F

so that F∗(fa) = F∗(f)F∗(a) and F ∗(gb) = F ∗(g)F ∗(b) for all f ∈ C∞(M), g ∈ C∞(N),
a ∈ Tr,s(M), b ∈ Tr,s(N).

The above definition might look worse than it actually is. If we are given some specific tensor
field, say, an endomorphism field A ∈ T1,1(M) which is in local coordinates on U ⊂M of the
form

A =
∑

Aij
∂

∂xi
⊗ dxj

and a diffeomorphism F : M → N , all we need to do to calculate the local form of F∗A is to
choose fitting local coordinates on (or on a subset of) F (U) ⊂ N , and after possibly shrinking U
calculate F∗

(
∂
∂xi

)
, F∗(dxj), for all 1 ≤ i, j ≤ n. Then we can use the R-linearity of the tensor

product to get a local form of F∗(A).

Remark 1.151. The pullback of (0, s)-tensors on N is well-defined even if F : M → N is not a
diffeomorphism.

Lemma 1.152. Contraction of tensor fields commute with the pushforward and with the
pullback defined above.

Proof. By the R-linearity and Definition 1.150, (i) & (ii), it suffices to show that

F∗(α(X)) = F∗(α)(F∗(X))

and
F ∗(β(Y )) = F ∗(β)(F ∗(Y ))

for all diffeomorphisms F : M → N and all α ∈ Ω1(M), β ∈ Ω1(N), X ∈ X(M), Y ∈ X(N).
This follows directly from Definitions 1.119 & 1.139.

Exercise 1.153.

(i) Show that the pushforward w.r.t. a diffeomorphism F : M → N is inverse to the pullback
w.r.t. the inverse of the diffeomorphism F−1 : N →M , independently of the type of tensor
fields.

51



(ii) Determine all vector fields on S1 that are invariant under the pushforward of all rotations
in the ambient space R2 restricted to S1. X ∈ X(S1) being invariant under F : S1 → S1

means that Xp = (F∗X)p for all p ∈ S1.

Recall the definition of the Lie derivative of vector fields. Geometrically, the Lie derivative is
one way of measuring the infinitesimal change of a vector field along the local flow of another
vector field. We can, analogously, define the Lie derivative of general tensor fields with respect

Definition 1.154. Let M be a smooth manifold, X ∈ X(M) a vector field, and A ∈ Tr,s(M) a
tensor field. Then the Lie derivative of A in direction of X, LXA ∈ Tr,s(M), is defined as

(LXA)p := ∂

∂t

∣∣∣∣
t=0

(ϕ∗tA)p ∀p ∈M,

where ϕ : I × U →M is any local flow of X near p ∈M .

Note that (ϕ∗tA)p is, for p fixed, for all t ∈ I contained in the same vector space TpM ⊗ . . .⊗
TpM ⊗ T ∗pM ⊗ . . .⊗ T ∗pM , thus LXA is well-defined.

Remark 1.155. The above definition is consistent with the identification T0,0(M) = C∞(M).

Proposition 1.156. The Lie derivative of tensor fields is a tensor derivation, i.e. it is
compatible with all possible contractions and fulfils the Leibniz rule

LX(A⊗B) = LXA⊗B +A⊗ LXB

for all vector fields X and all tensor fields A, B, such that A⊗B is defined.

Proof. To show compatibility with contractions it suffices to show that it holds true for an
endomorphism field A ∈ T1,1(M). All other possible cases will follow by induction and the
Leibniz rule. We will prove first that the Leibniz rule is fulfilled. Let p ∈ M be fixed and A,
B, two tensor fields, such that A ⊗ B is defined. First assume that (A ⊗ B)p = Ap ⊗ Bp 6= 0.
Let X ∈ X(M) be arbitrary but fixed and denote by ϕ : I × U →M its local flow near p with
U ⊂M contained in a chart neighbourhood for some local coordinates. We can find an interval
(−ε, ε) ⊂ I for ε > 0 small enough, such that in the local coordinates on U and the induced
coordinates on the fitting (r, s)-tensor bundles ψ and φ, the pullbacks of A and B w.r.t. the
local flow of X are of the form

ψ((ϕ∗tA)p) = (p, a(t)v), φ((ϕ∗tB)p) = (p, b(t)w) ∀t ∈ (−ε, ε).

In the above equation, 0 6= v ∈ RN1 and 0 6= w ∈ RN2 are fixed nonzero vectors and N1, N2,
depend on the type of tensor field that A and B are. The expressions a(t) and b(t) stand for
smooth and uniquely defined maps

a : (−ε, ε)→ GL(N1), b : (−ε, ε)→ GL(N2),

with a(0) = idRN1 and b(0) = idRN2 . Thus, in order to prove the Leibniz property, it suffices to
show that for any finite dimensional real vector spaces V , dim(V ) = N1, and W , dim(W ) = N2,
and any smooth maps a and b as above,

∂

∂t

∣∣∣∣
t=0

((a(t)v)⊗ (b(t)w)) = (a′(0)v)⊗ w + v ⊗ (b′(0)) (1.22)

for all v ∈ V , w ∈W . This follows from the defining universal property of the tensor product
of vector spaces as follows. Let L : V ×W → R be any bilinear map and L̃ : V ⊗W → R the
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corresponding linear map, so that L(a(t)v, b(t)w) = L̃((a(t)v)⊗ (b(t)w)) for all v ∈ V , w ∈W ,
t ∈ (−ε, ε). By taking the t-derivative at t = 0 on both sides we obtain

∂

∂t

∣∣∣∣
t=0

L̃((a(t)v)⊗ (b(t)w)) = L̃((a′(0)v)⊗ w + v ⊗ (b′(0)w)).

Since L and thus L̃ were arbitrary, the above statement hold in particular for all component
functions. This shows (1.22) and, hence, proves the Leibniz property. To obtain the compatibility
with contractions it is enough to consider V = W ∗ and L = ev the evaluation map. Then L̃ is
precisely the contraction.

Next assume that (A⊗B)p = 0 and that there exists a convergent sequence {pn}n∈N with
pn → p as n→∞, such that (A⊗B)pn 6= 0 for all n ∈ N . Then the statement of this proposition
follows with a continuity argument similar to the one used in Proposition 1.127.

Lastly assume that (A⊗B)p = 0 and A⊗B vanishes identically on an open neighbourhood
U ⊂M of p. Then A or B must already vanish identically on U . Without loss of generality we
can assume that U is a chart neighbourhood, choose a fitting bump function b with supp(b) ⊂ U
compactly embedded, so that the locally defined prefactors in the local forms of A and B,
multiplied with said bump function, are globally defined smooth functions. Now we use that bA
and bB vanish identically and in some smaller open neighbourhood V ⊂ U coincide with A and
B, respectively. Thus on V if bA ≡ 0 we obtain LX(A) = LX(bA) = LX(0) = 0 and a similar
identity for B and A⊗B. This finishes the proof.

Corollary 1.157. (LXα)(Y ) = X(α(Y ))− α([X,Y ]) for all X,Y ∈ X(M) and all α ∈ Ω1(M).

Exercise 1.158. Show that LX(df) = d(LXf) for all f ∈ C∞(M), X ∈ X(M).

2 Pseudo-Riemannian metrics, connections, and geodesics

2.1 Pseudo-Riemannian metrics and isometries

We start this section with quickly recalling some facts from linear algebra on (finite dimensional)
vector spaces equipped with a scalar product, that is a symmetric bilinear map with values in R.

Remark 2.1. Let V be a finite-dimensional real vector space. A pseudo-Euclidean scalar
product on V is a nondegenerate symmetric bilinear map

〈·, ·〉 : V × V → R.

Nondegenerate means that there exists no proper linear subspaceW ⊂ V , such that 〈·, ·〉|W×V ≡ 0.
The index of 〈·, ·〉 is defined as the number of its negative eigenvalues when written as a
symmetric dim(V )×dim(V )-matrix. The index does not depend on the choice of basis of V , this
is Sylvester’s law of inertia. If the index of the pseudo-Euclidean scalar product is zero, it is
simply called Euclidean scalar product. A vector space equipped with a (pseudo)-Euclidean
scalar product is called (pseudo)-Euclidean vector space. Prominent examples are Rn
together with the Euclidean scalar product that is given by the dot-product, i.e.

〈v, w〉 =
n∑
i=1

viwi,

and Rn+1 together with the Minkowski scalar product

〈v, w〉 = −vn+1wn+1 +
n∑
i=1

viwi.
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Note that in certain fields of theoretical physics one uses an overall sign in front of the Minkowski
scalar product. The length of a vector v ∈ V with respect to a pseudo-Euclidean scalar product
〈·, ·〉 is defined as

‖v‖ :=
√
|〈v, v〉|.

If 〈·, ·〉 is a pseudo-Euclidean scalar product with negative and positive eigenvalues of the
representation matrix, one says that a vector v is spacelike if 〈v, v〉 > 0, timelike if 〈v, v〉 < 0,
and null if 〈v, v〉 = 0. If 〈·, ·〉 is Euclidean each nonzero vector has positive length. Let
A ∈ GL(V ) describe a change of basis in a pseudo-Euclidean vector space (V, 〈·, ·〉) in the sense
that A maps the new basis to the given one and assume that the representation matrix of 〈·, ·〉
is given by the symmetric matrix B. Then in the new basis, the representation matrix of 〈·, ·〉 is
given by ATBA.24 Two pseudo-Euclidean vector spaces (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ) are called
isometric if there exist a linear isomorphism A : V → W , such that 〈·, ·〉V = 〈A·, A·〉W . A
is then called (linear) isometry. Two finite-dimensional pseudo-Euclidean vector spaces are
isometric if and only if their dimension and index of the scalar product coincide. Note that any
pseudo-Euclidean scalar product might be interpreted as an element in Sym2(V ∗) which denotes
the set of symmetric two-tensors in V ∗ ⊗ V ∗.

Exercise 2.2. Show that for any pseudo-Euclidean vector space (V, 〈·, ·〉), 〈·, ·〉 is completely
determined by its value on the diagonal in V × V , that is on vectors of the form (v, v) ∈ V × V .

One can use Sylvester’s law of inertia to prove the following fact from linear algebra.

Proposition 2.3. Let (V, 〈·, ·〉) be a pseudo-Euclidean vector space of dimension n and let ν
denote the index of 〈·, ·〉. Then (V, 〈·, ·〉) is isometric to (Rn, 〈·, ·〉ν), where

〈v, v〉ν :=
n−ν∑
i=1

(vi)2 −
n∑

i=n−ν+1
(vi)2

.

Recall the definition of orthogonality from linear algebra:

Definition 2.4. Let (V, 〈·, ·〉) be a pseudo-Euclidean vector space and W ⊂ V a pseudo-
Euclidean linear subspace, meaning that 〈·, ·〉|W×W is a pseudo-Euclidean scalar product on W .
Then the orthogonal complement W⊥ ⊂ V of W in V with respect to 〈·, ·〉 is given by

W⊥ := {v ∈ V | 〈v, w〉 = 0 ∀w ∈W}.

W⊥ is a linear subspace of V of dimension dim(W⊥) = dim(V )− dim(W ) and

W ⊕W⊥ = V.

If W ⊂ V is any linear subspace of V , we will also use the notation W⊥ for its orthogonal
complement. Two arbitrary vectors v, w ∈ V are called orthogonal if 〈v, w〉 = 0, and two linear
subspaces V1, V2 of V are called orthogonal to each other if 〈v1, v2〉 = 0 for all v1 ∈ V1, v2 ∈ V2.
A basis {v1, . . . , vn} of V is called orthogonal basis with respect to 〈·, ·〉 if 〈vi, vj〉 = 0 for all
1 ≤ i, j ≤ n, i 6= j. An orthogonal basis is called orthonormal basis if additionally ‖vi‖ = 1
for all 1 ≤ i ≤ n.

The following exercise recaptures some additional facts from linear algebra.

Exercise 2.5.

(i) Prove that every pseudo-Euclidean vector space admits an orthonormal basis.
24Compare this formula to the pullback of 1-forms.
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(ii) Show that the index ν of a pseudo-Euclidean scalar product coincides with the number of
elements in {i | 〈vi, vi〉 = −1} for any given orthonormal basis {v1, . . . , vn} of (V, 〈·, ·〉).

(iii) For any given pseudo-Euclidean vector space (V, 〈·, ·〉) and W ⊂ V any linear subspace,
prove:

(a) (W⊥)⊥ = W ,
(b) W is a pseudo-Euclidean linear subspace ⇔ W ∩W⊥ = {0} ⇔ V = W ⊕W⊥.

(iv) Linear isometries map orthonormal (orthogonal) bases to orthonormal (orthogonal) bases.
We want to translate the concept of pseudo-Euclidean vector spaces to smooth manifolds.

More precisely we want to specify what it means to specify for each point p in a given manifold
M a pseudo-Euclidean scalar product on TpM , such that this assignment varies smoothly on M .
Definition 2.6. Let M be a smooth manifold. A pseudo-Riemannian metric with index
0 ≤ ν ≤ dim(M) on M is a symmetric (0, 2)-tensor field g ∈ T0,2(M), g : p 7→ gp ∈ Sym2(T ∗pM),
such that for all p ∈ M gp is a pseudo-Euclidean scalar product of index ν on TpM . This in
particular means that

g(X,Y ) = g(Y,X) ∈ C∞(M)
for all vector fields X,Y ∈ X(M). If ν = 0, g is called Riemannian metric. In local coordinates
(x1, . . . , xn) on U ⊂M , g is of the form

g =
n∑

i,j=1
gijdx

i ⊗ dxj ,

where
gij := g

(
∂

∂xi
,
∂

∂xj

)
∈ C∞(U)

for all 1 ≤ i, j ≤ n. The symmetry condition for g is equivalent to requiring that in all local
coordinates gij = gji. This means that (gij), viewed as a n× n-matrix valued smooth map on
the coordinate domain, is at each point a symmetric matrix. If we write in local coordinates
X =

n∑
i=1

Xi ∂
∂xi

, Y =
n∑
i=1

Y i ∂
∂xi

, we obtain the local formula for g(X,Y )

g(X,Y ) =
n∑

i,j=1
gijX

iY j ,

which heuristically corresponds to plugging in X in the left half and Y in the right half of the
tensor terms in g.
Definition 2.7. A smooth manifold M equipped with a (pseudo)-Riemannian metric g is called
(pseudo)-Riemannian manifold.
Remark 2.8. Of particular importance in mathematics and physics are pseudo-Riemannian
manifolds of index 0 and 1, that is Riemannian manifolds and Lorentz manifolds, respec-
tively. The latter are the manifolds that are studied in general relativity, for an introduction see
[O, Ch. 12]. Why would one want to study Riemannian manifolds in their full generality, aside
from an explanation how the standard Riemannian metric on Rn induced by the Euclidean scalar
product at each point transforms? The answer is manifold (this time, the latter is an adjective).
First and foremost because it allows our studied geometrical objects to have curvature. We
will study this topic extensively in Sections ?? and ??. Furthermore, Riemannian metrics give
us a way to study volumes of submanifolds. This is not completely trivial, as it involves the
construction a of so-called volume form from a given Riemannian metric, respectively its
restriction to submanifolds, cf. Section ??. For starters, it allows us to define the arc-length of a
curve.
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Definition 2.9. Let (M, g) be a Riemannian manifold and γ : I →M a smooth curve. Then
the arc-length, or simply length, of γ is defined as

L(γ) =
∫
I

√
g(γ′, γ′)dt.

Note that L(γ) =∞ is allowed.

Now we will study some explicit examples of pseudo-Riemannian manifolds.

Example 2.10.

(i) Any pseudo-Riemannian vector space (V, 〈·, ·〉) is, viewed as a smooth manifold with
gp := 〈·, ·〉 for all p ∈ V 25. If V = Rn equipped with its canonical coordinates and
Euclidean scalar product at each tangent space, the induced Riemannian metric in canonical
coordinates (u1, . . . , un) is given by

g =
n∑
i=1

dui ⊗ dui.

(ii) Any smooth submanifold M ⊂ Rn equipped with

g ∈ T0,2(M), gp = 〈·, ·〉|TpM×TpM

for all p ∈M , that is the restriction of the Euclidean scalar product at origin p ∈ Rn to
the tangent space of M at p.

(iii) More generally, any smooth submanifold of a smooth Riemannian manifold is by restriction
of the metric to the tangent bundle of the smooth submanifold a Riemannian manifold.

(iv) If (M, gM ) and (N, gN ) are pseudo-Riemannian manifolds and gM , gN , have index νM , νN ,
respectively, the product M ×N is a pseudo-Riemannian manifold of index νM + νN . The
metric on M ×N is given by

gM×N := gM + gN , gM×N ((v, w), (v, w)) = gM (v, v) + gN (w,w),

for all (v, w) ∈ TM ⊕ TN ∼= T (M ×N). The metric gM×N is called product metric.

Example 2.10 (iii) motivates the following definition.

Definition 2.11. Let (N, g) be a pseudo-Riemannian manifold and M ⊂ N a smooth submani-
fold. M is called pseudo-Riemannian submanifold of N if

g := g|TM×TM

is a pseudo-Riemannian metric on M . In the above equation, the restriction to TM × TM
means that we restrict the basepoint of g to M ⊂ N and the vectors we are allowed to plug in
to vectors in TM ⊂ TN .

Exercise 2.12.

(i) Show that any smooth manifold can be equipped with a Riemannian metric. [Hint: Use a
countable smooth partition of unity subordinate to a countable atlas on M .]

25Recall that TpV ∼= V for all p ∈ V .
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(ii) Show that not every manifold can be equipped with a pseudo-Riemannian, not Riemannian,
metric. This is to be understood to also exclude the index ν = dim(M). [“Hint”: This
exercise is very difficult.]

(iii) Show that every n ≥ 2-dimensional pseudo-Riemannian manifold N with metric g of index
1 ≤ ν ≤ n− 1 has smooth submanifolds that are not pseudo-Riemannian submanifolds.

The pseudo-Riemannian manifold-analogue to isometries of pseudo-Euclidean vector spaces
is as follows.

Definition 2.13. Let (M, g) and (N,h) be pseudo-Riemannian manifolds and F : M → N a
diffeomorphism. Then F is called an isometry if F ∗h = g or, equivalently, F∗g = h. One checks
that the first condition is equivalent to

gp(Xp, Yp) = hF (p)(dFp(Xp), dFp(Yp))

for all X,Y ∈ X(M) and all p ∈ M , meaning that pointwise dFp is a linear isometry. The
two pseudo-Riemannian manifolds (M, g) and (N,h) are then called isometric. Note that the
isometries F : M →M with respect to g form a group, the isometry group of (M, g), which
is denoted by Isom(M, g).

Example 2.14.

(i) Every orthogonal transformation A ∈ O(n + 1) is, by definition, an isometry of Rn+1

equipped with the standard Riemannian metric given pointwise by the Euclidean scalar
product 〈·, ·〉.

(ii) Since each A ∈ O(n+ 1) restricts to a diffeomorphism of Sn ⊂ Rn+1, it is an isometry of
(Sn, 〈·, ·〉|TSn×TSn). The Riemannian metric 〈·, ·〉|TSn×TSn is sometimes called the round
metric.

(iii) Consider the upper half plane H := {(x, y) ∈ R2 | y > 0} equipped with the Riemannian
Poincaré metric

g = 1
y2 (dx2 + dy2),

called the Poincaré half-plane model. When viewed as a subset of C via H 3 (x, y) 7→
x+ iy ∈ C, one obtains an isometric action26 of

PSL(2,R) = SL(2,R)/∼, A ∼ B :⇔ A = ±B,

on H ⊂ C defined by

µ : PSL(2,R)×H → H,

(
a b
c d

)
· z := az + b

cz + d
.

Exercise 2.15. Prove the statement in Example 2.14 (iii) and show that the group action
µ : PSL(2,R)×H → H is transitive.

A change of coordinates on M induces a, pointwise, change of basis in TM . We obtain the
following result for local forms of pseudo-Riemannian metrics under a change of coordinates.

26This means: A group action µ : PSL(2,R) ×H → H, where for every group element A fixed, the induced
map µ(A, ·) : H → H is an isometry.
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Lemma 2.16. Let (M, g) be a pseudo-Riemannian manifold and ϕ = (x1, . . . , xn), ψ =
(y1, . . . , yn), be local coordinate systems on U ⊂M , respectively V ⊂M , such that U ∩ V 6= ∅.
Denote on U ∩ V

g =
∑
i,j

gijdx
i ⊗ dxj =

∑
i,j

g̃ijdy
i ⊗ dyj . (2.1)

The local coordinate systems ϕ and ψ are related by (x1, . . . , xn) = F (y1, . . . , yn) on U ∩ V ,
where F : ψ(U ∩ V ) → ϕ(U ∩ V ). Then the matrix valued maps (gij) and (g̃ij) in (2.1) are
related by

(g̃ij)|p = dF Tψ(p) · (gij)|ϕ−1(F (ψ(p))) · dFψ(p).

Proof. Follows by considering coordinate representations of (gij) and (g̃ij), writing down the
pullback of (gij) with respect to F , and comparing the prefactors.

The above lemma might look more complicated than it is at first glance. Pointwise, the
statement is precisely the transformation law for pseudo-Euclidean scalar products under a
change of basis.

Recall the following construction from linear algebra.

Definition 2.17. Let V be a real finite-dimensional vector space and A ∈ End(V ) ∼= V ⊗ V ∗,
so that for a basis {v1, . . . , vn} of V

A =
n∑

i,j=1
aijvi ⊗ v∗j .

The trace of A is defined as
tr(A) :=

n∑
i=1

aii.

Exercise 2.18. Check that the definition of the trace in Definition 2.17 is well-defined, meaning
that it gives the same value for all choices of a basis of V .

Example 2.19.

(i) tr(idV ) = dim(V ),

(ii) tr(A+B) = tr(A) + tr(B) for all A,B ∈ End(V ),

(iii) tr(AB) = tr(BA) for all A,B ∈ End(V ),

(iv) tr(v ⊗ ω) = ω(v) for all v ∈ V , ω ∈ V ∗.

One can furthermore show the following:

Lemma 2.20. Let (V, 〈·, ·〉) be a finite-dimensional pseudo-Euclidean vector space and A ∈
End(V ). Let {e1, . . . , en} be an orthonormal basis of V with respect to 〈·, ·〉. Then

tr(A) =
n∑
i=1

εi〈ei, Aei〉,

where εi := 〈ei, ei〉 ∈ {−1, 1} for all 1 ≤ i ≤ n.

Proof. Exercise.

One can for pseudo-Euclidean vector spaces further define natural (possibly indefinite) scalar
product on V ⊗r ⊗ (V ∗)⊗s for all r + s > 0.
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Definition 2.21. Let (V, 〈·, ·〉) be a pseudo-Euclidean vector space and {e1, . . . , en} a basis of
V . Let further A ∈ V ⊗r ⊗ (V ∗)⊗s and write

〈·, ·〉 =
n∑

i,j=1
gije

∗
i ⊗ e∗j ,

A =
∑

1≤i1,...,ir≤n
1≤j1,...,jr≤n

Ai1...ir j1...jsei1 ⊗ . . .⊗ eir ⊗ e∗j1 ⊗ . . .⊗ e
∗
js .

Then

〈A,A〉 :=
∑

1≤i1,...,ir≤n
1≤j1,...,jr≤n
1≤I1,...,Ir≤n
1≤J1,...,Jr≤n

Ai1...ir j1...js ·AI1...Ir
J1...Js · gi1I1 · . . . · girIr · gj1J1 · . . . · gjsJs (2.2)

defines a, possibly indefinite, symmetric bilinear form on V ⊗r ⊗ (V ∗)⊗s. In the above formula
the g-terms fulfil, when viewed as a symmetric matrix,

(gij) := (gij)−1.

Remark 2.22. Formula (2.2) should make you ask one thing and realize another. Firstly you
should ask why one would write down something like that. It actually, when generalized to
smooth manifolds and tensor powers of the tangent bundle, is used to define certain geometric
invariants, e.g. the so-called Kretschmann scalar. Secondly, the summation ranges in (2.2)
should convince you that it might sometimes be a good idea to be a little bit imprecise to
increase readability when the ranges are clear from the setting. In the following we will do just
that.

As hinted in the above remark, Definitions 2.17 and 2.21 readily generalize to smooth
manifolds and tensor bundles.

Definition 2.23. Let (M, g) be a pseudo-Riemannian manifold, A ∈ T1,1(M) an endomorphism
field, h ∈ T0,2(M) a symmetric (0, 2)-tensor field, and B ∈ Tr,s(M) for r + s > 0 an arbitrary
tensor field. Then the trace of A is in local coordinates (x1, . . . , xn), so that A =

∑
Aij

∂
∂xi
⊗dxj ,

given by
tr(A) :=

∑
i

Aii.

The above term is invariant under coordinate change, which follows from fibrewise invariance
of the choice of basis in TpM and the fact that the coordinate cotangent vector at each point
are precisely the dual to the coordinate tangent vectors at that point. This means that
trg(A) ∈ C∞(M). The trace of h with respect to g is defined in local coordinates as

trg(h) :=
∑
i,j

hijg
ij .

As for the endomorphism field, trg(h) is invariant under coordinate change, but not
invariant of the pseudo-Riemannian metric g. Furthermore, we define the induced pairing of B
with itself with respect to g in the given local coordinates as

g(B,B) :=
∑

Bi1...ir
j1...js ·BI1...Ir

J1...Js · gi1I1 · . . . · girIr · gj1J1 · . . . · gjsJs ,

where
B =

∑
Bi1...ir

j1...js
∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs
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and (gij) = (gij)−1 at each point when viewed as a symmetric matrix valued map. As for
the trace, value of g(B,B) does not depend on the choice of local coordinates which implies
g(B,B) ∈ C∞(M). Note that one can similarly define a symmetric pairing g in the bundle
T r,sM →M , which is an example of a possibly indefinite bundle metric.

Example 2.24. For any pseudo-Riemannian manifold (M, g) of dimension n we have

trg(g) = g(g, g) ≡ n.

Pseudo-Riemannian metrics allow us to take any (r, s)-tensor field and change it into an
(r′, s′)-tensor field if r+ s = r′ + s′. This process is reversible, and on the level of bundles known
as musical isomorphisms.

Proposition 2.25. Let (M, g) be a pseudo-Riemannian manifold. Then T r,sM → M and
T r
′,s′M →M are isomorphic as vector bundles if r + s = r′ + s′.

Proof. We first proof that T ∗M →M and TM →M are isomorphic. Let

F : TM → T ∗M, v 7→ g(v, ·).

It is clear that g(v, ·) ∈ T ∗pM for all v ∈ TpM . Furthermore, the map F is smooth, fibre-
preserving, and at each point a linear isomorphism. Its inverse is given by

F−1 : T ∗M → TM, ω 7→ g−1(ω, ·),

where we use the pointwise identification (T ∗pM)∗ = TpM and g−1 is given in local coordinates
by

g−1 =
∑

gij
∂

∂xi
⊗ ∂

∂xj
.

In order to show that T r,sM →M and T r′,s′M →M are isomorphic for arbitrary r, s, r′, s′ with
r + s = r′ + s′ one inductively uses entrywise isomorphisms. Note that there are usually choices
involved which vector or covector parts to change into covector and vector parts, respectively.
These choices correspond to which index is lowered or raised. Exceptions are e.g. going from
T 1,1M to T 0,2M . Care is also required when composing such isomorphisms as it might lead
to “swapping” in the tensor powers of the vectors and covectors, where we recall that e.g. in
TM ⊗ TM swapping the fibres is an isomorphism of vector bundles.

The above Proposition 2.25 describes what is also known as lowering/raising indices. This is
due to when one composes these isomorphisms with tensor fields, locally the prefactors’ index
locations change from up to down or the other way round. Check for example what happens to
the used pseudo-Riemannian metric if one raises an index!

Remark 2.26. The isomorphisms of vector bundles T r,sM → T r+1,s−1M are denoted by ]
(read: “sharp”), and the isomorphisms T r,sM → T r−1,s+1M are denoted by [ (read: “flat”).
Hence the name “musical isomorphisms”. One needs to make sure to be aware of which index
is moved up or down if there is a choice! Note that, using the musical isomorphisms, we could
have defined the trace of endomorphism fields A ∈ T1,1(M) on a pseudo-Riemannian manifold
(M, g) as

trg(A) =
∑
ij

(]A)ijgij .

It is crucial to observe that, as for our definition of tr(A) in Definition 2.23, the above term trg(A)
is invariant of the pseudo-Riemannian metric g27. Also note that commonly one suppresses

27Ask yourself why this is true!
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writing down ] and [ and simply writes e.g. Aij instead of (]A)ij since the location of the
indices (i.e. “up” or “down”) determine which of them has been raised or lowered. It is however
of prime importance to always be aware of which metric has been used to lower or raise
indices!

Recall the gradient of smooth functions on Rn. The gradient of f : Rn → R is a vector field
given by

grad(f) :=
n∑
i=1

∂f

∂ui
∂

∂ui
∈ X(Rn).

There is an invariant generalization for that concept to pseudo-Riemannian manifolds using our
above defined musical isomorphisms for which the above formula is precisely the to-be-defined
gradient of f on Rn with respect to the Riemannian metric given by the standard Euclidean
scalar product (in each tangent space TpRn).

Definition 2.27. Let (M, g) be a pseudo-Riemannian manifold and f ∈ C∞(M) a smooth
function. The gradient vector field of f with respect to g, gradg(f) ∈ X(M), is defined as

gradg(f) := g−1(df) ∈ X(M).

In local coordinates (x1, . . . , xn), gradg(f) is of the form
n∑

i,j=1

∂f

∂xi
gij

∂

∂xj
.

Gradient vector fields are of critical importance in the study of pseudo-Riemannian submani-
folds as we find the following description of tangent bundle of pseudo-Riemannian submanifolds.

Lemma 2.28. Let (M, g) be a pseudo-Riemannian manifold, M ⊂ M a pseudo-Riemannian
submanifold of codimension k, and identify TqM = ι∗(TqM) ⊂ TqM for all q ∈ M , where ι is
the inclusion. For p ∈ M fixed let28 f = (f1, . . . , fk) : U → Rk, U ⊂ M open, p ∈ U , be any
smooth map of maximal rank such that

M ∩ U = {f = 0} ⊂M.

Then
TqM = ker(df1

q ) ∩ . . . ∩ ker(dfkq ) ⊂ TqM (2.3)
and

(TqM)⊥ = spanR{gradg(f1)q, . . . , gradg(fk)q} ⊂ TqM (2.4)

for all q ∈M ∩ U . In particular, TqM ⊕ (TqM)⊥ = TqM for all q ∈M ∩ U .

Proof. Fix q ∈M ∩ U and v ∈ TqM . For any smooth curve γ : I →M ⊂M , γ′(t) is tangential
to M for all t ∈ I, which follows by using adapted coordinates. Choose a smooth curve
γ : (−ε, ε)→M ⊂M fulfilling γ′(0) = v. Then for all 1 ≤ i ≤ k,

df i(v) = ∂

∂t

∣∣∣∣
t=0

(f ◦ γ) = df i(v) = ∂

∂t

∣∣∣∣
t=0

(0) = 0.

This shows TqM ⊂ ker(df1
q )∩ . . .∩ker(dfkq ). On the other hand, f being of maximal rank implies

that df1
q , . . . , df

k
q are linearly independent. Hence, the intersection of their kernels fulfils

dim(ker(df1
q ) ∩ . . . ∩ ker(dfkq )) = dim(TqM)− k = dim(TqM).

Hence, (2.3) holds as claimed. For (2.4) one uses that g is pointwise nondegenerate, hence each
nonzero vector in spanR{gradg(f1)q, . . . , gradg(fk)q} is not contained in TqM = ker(df1

q ) ∩ . . . ∩
ker(dfkq ). By TqM ⊕ (TqM)⊥ = TqM and comparing dimensions, (2.4) follows.

28If you are not convinced of the existence of such a function f near any point: Prove its existence!
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The above lemma tells us how to pointwise understand the tangent space of an ambient
manifold of a submanifold as a combination of tangent and normal parts. How can we
formulate this in a coordinate free, global statement? To do so we need to define bundles along
submanifolds.

Lemma 2.29. Let πE : E →M be a vector bundle of rank k and M be a submanifold of M .
Then

πE|M : E|M →M, (E|M )p := π−1
E|M (p) := π−1

E (p) ∀p ∈M, E|M :=
⊔
p∈M

(E|M )p,

is a vector bundle of rank k over M . It is called vector bundle along M .

Proof. In order to proof this statement it suffices to work in local coordinates. Without loss of
generality assume that locally, M is given by an open set in R`, ` ≤ dim(M), and the inclusion
M ⊂M is of the form

ι : (x1, . . . , x`) 7→ (x1, . . . , x`, 0, . . . , 0) ∈ Rdim(M).

The rest of the proof consists of applying the vector bundle chart lemma to the restriction of, after
possibly shrinking U , the transition functions of E →M in local coordinates to U ⊂ Rdim(M)

and observing that the vector parts are, still, smooth.

The above lemma might seem more complicated than it actually is. It means that locally, we
make the base space smaller in dimension but keep all possible vectors attached to that smaller
set. The most important example for us is restricting the tangent and cotangent bundle of an
ambient manifold to a submanifold. In this setting, we see that vector fields along the inclusion
map are just sections of the tangent bundle of the ambient manifold along the submanifold.
Lemmas 2.28 and 2.29 motivate the following definition.

Definition 2.30. Let (M, g) be a pseudo-Riemannian manifold and M ⊂ M a pseudo-
Riemannian submanifold of codimension k. Then the normal bundle of M , TM⊥ → M , is
defined as

TM⊥ :=
⊔
p∈M

(TpM)⊥,

with projection induced by the tangent bundle of M along M , TM |M →M . In particular we
have

TM |M = TM ⊕ TM⊥,

and the above direct sum is orthogonal with respect to g.

In Definition 2.30 above we have split up TM |M into TM ⊕ TM⊥, so in particular we have
at each point p ∈M

TpM |M = TpM = TpM ⊕ TpM⊥.

This means that pointwise, we have that e.g. TpM is a subvector space of TpM . Is this a special
case of a more general concept for bundles? As you might have guessed already, the answer is
yes.

Definition 2.31. Let πE : E → M be a vector bundle. Another vector bundle πF : F → M
is called subbundle of E → M if for all p ∈ M , Fp is a linear subspace of Ep, the canonical
injection

F ↪→ E,

given fibrewise by the inclusion Fp ⊂ Ep, is an embedding, πF = πE |F , and for all local
trivializations φ of E the restrictions φ|F are local trivializations of F . This means that the
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bundle structure of F →M and the smooth manifold structure of the total space F are induced
by the bundle structure of E → M and the smooth manifold structure of the total space E,
respectively.

In the sense of Definition 2.31 TM and TM⊥ of a pseudo-Riemannian submanifold M ⊂M
are both subbundles of TM |M .

Exercise 2.32. Give a rigorous proof of the above statement. [Hint: You will probably learn
exactly the same and at the same time gain more geometrical insight if you prove this statement
for surfaces in R3, while at the same time not having to fight with too many indices.]

The most prominent examples of gradient vector fields and their relation to the normal
bundle that are usually used for introductory purposes are level sets of quadratic polynomials
which fulfil a certain nondegeneracy condition.

Example 2.33.
(i) Let f : Rn+1 → R, f(u1, . . . , un) =

∑
i

(ui)2 and consider the ambient space Rn+1 equipped

with its standard Riemannian metric, denoted simply by 〈·, ·〉. Then

Sn = {f = 1} ⊂ Rn+1

is a Riemannian submanifold of (Rn+1, 〈·, ·〉) with induced Riemannian metric

g := 〈·, ·〉|TSn×TSn .

The normal bundle of Sn realized as a submanifold of (Rn+1, 〈·, ·〉, TSn⊥, is spanned by
the position vector field ξ ∈ X(Rn+1) along Sn,

ξ : p 7→ p ∀p ∈ Rn+1,

where we have as usual identified TpRn+1 with Rn+1 for all p ∈ Rn+1. The tangent bundle
of TSn, viewed as a subbundle of TRn+1|Sn , is thus fibrewise given by

TpS
n = ker(〈ξp, ·〉) ⊂ TpRn+1.

This means that a vector field X along Sn is tangential to Sn if and only if 〈ξ,X〉 ≡ 0.
Note that the function f used to define Sn fulfils f = 〈ξ, ξ〉.

(ii) Next consider Rn+1 but now equipped with a pseudo-Riemannian metric given in canonical
coordinates by

〈·, ·〉ν :=
n−ν∑
i=1

dui ⊗ dui −
n∑

i=n−ν+1
dui ⊗ dui.

Let ξ ∈ X(Rn+1) denote the position vector field and define f : Rn+1 → R, f := 〈ξ, ξ〉.
Then the level sets {f = −1}29 are called hyperboloids,

Hn
ν :=

〈ξ, ξ〉 =
n−ν+1∑
i=1

(ui)2 −
n+1∑

i=n−ν+2
(ui)2 = −1

 ⊂ Rn+1.

Hyperboloids in (Rn+1, 〈·, ·〉ν) are n-dimensional pseudo-Riemannian manifolds with induced
pseudo-Riemannian metric of index ν − 1. As for Sn,

TpH
n
ν = ker(〈ξp, ·〉ν) ⊂ TpRn+1

29Be aware of the sign!
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and
TpH

n
ν
⊥ = Rξp,

where Rξp is another commonly used notation for the linear span of one vector, that is
spanR{ξp}. In the case n = 3, ν = 1, H3

1 is known as two-sheeted hyperboloid, and for
n = 3, ν = 2, H3

2 is the one-sheeted hyperboloid.

Exercise 2.34. Prove the claims in Example 2.33.

In Example 2.33 we used the term that a vector field spans a vector bundle. Conceptually,
this belongs in the setting of frames of vector bundles, which generalize the concept of a basis of
a vector space.

Definition 2.35. Let E →M be a vector bundle of rank k. Then a (local) frame of E over
U ⊂M , U open, is a set of k (local) sections

{si ∈ Γ(E|U ), 1 ≤ i ≤ k},

such that for all p ∈ U fixed, the vectors si(p) ∈ Ep, 1 ≤ i ≤ k, are linearly independent.
Equivalently,

spanR{si(p) ∈ Ep | 1 ≤ i ≤ k} = Ep

for all p ∈ U .

Exercise 2.36. Show that every local section s ∈ Γ(E|U ) in a vector bundle E can be written
as a C∞(U)-linear combination of the elements of a local frame of E →M over U . Check that
these prefactors in C∞(U) are uniquely determined for any given local section.

Local frames are very useful in order to check if subsets of a certain form of given vector
bundles are subbundles.

Lemma 2.37. Let E → M be a vector bundle of rank k and suppose that for ` ≤ k we are
given a linear subspace Fp ⊂ Ep of constant dimension ` for all p ∈M . Then

⊔
p∈M

Fp →M is,

with all data necessary induced by E → M , a subbundle of E → M if and only if for every
p ∈M we can find a local frame {s1, . . . , sk} of E|U → U , U ⊂M an open neighbourhood of p,
such that for all q ∈ U , {s1(q), . . . , s`(q)} is a basis of Fq.

Proof. [L1, Lem. 10.32]

Subbundles might look very complicated at first glance, but at least locally we can use the
above lemma to always describe them as follows.

Lemma 2.38. Let F →M be a subbundle of rank ` of a vector bundles E →M of rank k > `.
For any p ∈ M we can find an open neighbourhood U ⊂ M of p and a local trivialization of
E →M over U , φ : E|U → U × Rk, such that

φ(ι(F |U )) = U × {(v1, . . . , v`, 0, . . . , 0) | (v1, . . . , v`) ∈ R`} ⊂ U × Rk.

In the above equation, ι : F ↪→ E denotes the inclusion map.

Proof. We use Lemma 2.37. Choose a local frame {s1, . . . , sk} of E → M over U ⊂ M , such
that {s1, . . . , s`} is a local frame of F →M over U . The inverse of the smooth map

η : U × Rk → E|U , (p, v1, . . . , vk) 7→
k∑
i=1

visi(p)
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is smooth and a local trivialization of E →M over U . This follows from the implicit function
theorem. We obtain

η−1(ι(F |U )) = U × {(v1, . . . , v`, 0, . . . , 0) | (v1, . . . , v`) ∈ R`},

so setting φ = η−1 finishes the proof.

Lemma 2.38 means that locally up to vector bundle isomorphisms, subbundles of vector
bundles look like the inclusion in the first ` factors of the vector parts in U × R` → U into
U × R` → U .

In the special case of the tangent bundle of an n-dimensional smooth manifold, a local frame
of TM →M over U ⊂M open is a set of n vector fields

{Xi, 1 ≤ i ≤ n}, Xi ∈ X(U) ∀1 ≤ i ≤ n

such that for all p ∈ U , {(Xi)p, 1 ≤ i ≤ n} is a set of linearly independent vectors. This in
particular means that

spanR{(Xi)p, 1 ≤ i ≤ n} = TpU ∀p ∈ U,

and by Exercise 2.36 we can for each local vector field X ∈ X(U) find a uniquely determined set
of local functions fi ∈ C∞(U), 1 ≤ i ≤ n such that X =

n∑
i=1

fiXi.

Next we will use the language of local frames and subbundles to split up the (0, 2)-tensor
bundle T 0,2M → M over a smooth manifold into symmetric and antisymmetric parts. This
construction and similar constructions are important to properly understand our upcoming study
of curvature and the exterior differential on k-form analogues for smooth manifolds. Recall the
following fact from linear algebra.

Lemma 2.39. Let V be a finite-dimensional real vector space with basis {v1, . . . , vn}. Then

V ⊗ V ∼= Sym2(V )⊕ Λ2V,

where Sym2(V ) := spanR{vi⊗vj +vj⊗vi, 1 ≤ i, j ≤ n} and Λ2V := spanR{vi⊗vj−vj⊗vi, 1 ≤
i, j ≤ n}.

When viewed as matrices, the direct sum in Lemma 2.39 corresponds to writing a square
matrix as its symmetric and antisymmetric parts, which are uniquely determined. One writes

vivj := 1
2(vi ⊗ vj + vj ⊗ vi), vi ∧ vj := vi ⊗ vj − vj ⊗ vi,

and has vi ⊗ vj = vivj + 1
2vi ∧ vj for all 1 ≤ i, j ≤ n. In particular vivi = vi ⊗ vi. This concept

translates to local frames of vector bundles. We obtain the following.

Definition 2.40. Let M be a smooth manifold and (x1, . . . , xn) be local cooordinates on U ⊂M .
The bundle of symmetric (0, 2)-tensors on M is the subbundle

Sym2(T ∗M) ⊂ T 0,2M

with local frame over U given by
{
dxidxj = 1

2(dxi ⊗ dxj + dxj ⊗ dxi), 1 ≤ i, j ≤ n
}

. Sections
of Sym2(T ∗M) are precisely symmetric (0, 2)-tensor fields, which in particular includes all
possible pseudo-Riemannian metrics on M . On the other hand we have the anti-symmetric
(0, 2)-tensors on M ,

Λ2T ∗M ⊂ T 0,2M,

which have local frame
{
dxi ∧ dxj = dxi ⊗ dxj − dxj ⊗ dxi, 1 ≤ i, j ≤ n

}
. Sections in Λ2T ∗M →

M are called 2-forms and are denoted by Ω2(M). Local sections in Λ2T ∗M →M over U ⊂M ,
U open, are denoted by Ω2(U).
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With Definition 2.40, a pseudo-Riemannian metric g on M can be written locally as

g =
∑
i,j

gijdx
i ⊗ dxj =

∑
i,j

gijdx
idxj .

Make sure you understand why the second equivalence in the above equation holds true! Also
be aware that the rightmost sum in the above equation has a certain error potential when going
from tensor to matrix notation. For example, the pseudo-Riemannian metric dxdy on R2 with
canonical coordinates (x, y) is in matrix notation given by

dx dy “ = ”
(

0 1
2

1
2 0

)
.

Make absolutely sure to understand this.
Now suppose that you are given a smooth manifold M and a symmetric (0, 2)-tensor field

g ∈ T0,2(M). At each point p ∈M , you can associate to gp a natural number called its index as
follows.

Definition 2.41. The index of a symmetric (0, 2)-tensor field g ∈ T0,2(M) at p ∈M is defined
as

ν(p) := number of negative eigenvalues of gp,

where gp is viewed as symmetric matrix in local coordinates, i.e.

gp =
∑
ij

gij(p)dxi ⊗ dxj .

Exercise 2.42. Show that the index in Definition 2.41 is actually well defined, that is does not
depend on the choice of local coordinates.

How can we use the definition of the pointwise index of a symmetric (0, 2)-tensor field to
test if it is a pseudo-Riemannian metric? The answer is as follows.

Proposition 2.43. Let M be a connected smooth manifold and g ∈ T0,2(M) a symmetric
(0, 2)-tensor field that is nondegenerate30 at all points p ∈M . Then g is a pseudo-Riemannian
metric.

Proof. It suffices to show that the index ν : M → N0 is continuous, where N0 is equipped with
the discrete topology. This follows from finish this!!!

Next suppose that we are given just a smooth manifold and want to construct a pseudo-
Riemannian metric. While this problem is usually difficult if the index of our metric is supposed
to be positive (and not equal to the dimension of our manifold), for the Riemannian case, that
is for vanishing index, we have the following nice result.

Proposition 2.44. Let M be a smooth manifold. Then there exists a Riemannian metric g on
M .

Proof. This is Exercise 2.12 (i). We remark here that if g is a Riemannian metric and h is a
symmetric (0, 2)-tensor with compact support, then for ε > 0 small enough g + h will still be a
Riemannian metric. This means that our constructed metric is far from unique.

Remark 2.45. Riemannian metrics induce pointwise norm (for later with geodesic balls), points
to relation to metric topology

30“nondegenerate” = at given point nondegenerate symmetric bilinear form
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Example 2.46. counterexample to existence of Lorentz metric later! needs euler char, check
bookmark

Definition 2.47. k-forms and corresponding bundle, exterior algebra structure, d-complex,
cartans magic formula as exercise, induced volume form

Let us return to isometries of pseudo-Riemannian manifolds, cf. Definition 2.13. We already
noted that they form a group, so it is reasonable to ask the following. It is clear that the identity
is always an isometry, so how can we perturb it infinitesimally while preserving the isometry
property? To answer that question we will use our knowledge of the Lie derivative and local
flows of vector fields.

Proposition 2.48. Let (M, g) be a pseudo-Riemannian manifold and let X ∈ X(M). Suppose
that for every local flow ϕ : I × U → M of X, ϕt ∈ Isom(M, g) for all t ∈ I. Then LXg = 0.
The converse statement also holds true.

Proof. asdf

Definition 2.49. Vector fields as in Proposition 2.48, that is LXg = 0 for X ∈ X(M), (M, g)
pseudo-Riemannian manifolds, are called Killing31 vector fields.

Proposition 2.48 in particular means that Killing vector fields generate local one parameter
groups of isometries. Killing vector fields, as a linear subspace of all vector fields, have the
following structure algebraic property.

Lemma 2.50. Let (M, g) be a pseudo-Riemannian manifold. Killing vector fields form a Lie
subalgebra of (X(M), [·, ·]), meaning that for any Killing vector fields X,Y ∈ X(M), [X,Y ] is
also a Killing vector field.

Proof. Exercise. [Hint: Use the Jacobi identity L[X,Y ]Z = LX(LY Z) − LY (LXZ) for all
X,Y, Z ∈ X(M).]

In fact, one can show more if M is Riemannian, but the proof of the following is beyond the
scope of this course.

Theorem 2.51. Let (M, g) be a Riemannian manifold of dimension n. The the Lie algebra of
Killing vector fields is finite dimensional of dimension at most 1

2n(n+ 1).

Proof. [KN, Thm 3.3], in the corresponding chapter the structure of the isometry group as a
Lie group acting on M is also treated.

Let us look at some explicit examples of Killing vector fields.

Example 2.52.

(i) Let A be an (n+ 1)× (n+ 1) skew real matrix, that is AT = −A. Then eAt ∈ O(n+ 1) for
all t ∈ R. Then the vector field X ∈ X(Sn) given by

Xp = ∂

∂t

∣∣∣∣
t=0

(
eAtp

)
∈ TpSn

is a Killing vector field of the standard round metric on Sn, that is the restriction
of the pointwise Euclidean scalar product in the ambient manifold Rn+1. Note that
eA· : R× Sn → Rn+1, (t, v) 7→ eAtv is the global flow of X.

31Wilhelm Karl Joseph Killing (1847 – 1923)
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(ii) Consider (Rn, 〈·, ·〉ν) for any 0 ≤ ν ≤ n as in Example 2.33 and fix (c1, . . . , cn) ∈ Rn. Then
X ∈ X(Rn), X =

∑
i
ci ∂
∂ui

, is a Killing vector field.

(iii) Let (M, g) and (N,h) be pseudo-Riemannian manifolds, X a Killing vector field on (M, g),
and Y a Killing vector field on (N,h). Then X+Y is a Killing vector field on (M×N, g⊕h).

Now suppose that we are given a pseudo-Riemannian manifold and and do not know which
vector fields are Killing vector fields. How do we approach this problem, at least locally?

Lemma 2.53. Let (M, g) be a pseudo-Riemannian manifold. Then X ∈ X(M) is a Killing
vector field if and and only if it fulfils

n∑
k=1

(
Xk ∂gij

∂xk
+ ∂Xk

∂xi
gjk + ∂Xk

∂xj
gik

)
= 0 ∀1 ≤ i, j ≤ n

for all local coordinates (x1, . . . , xn) on M .

Proof. Exercise.

Remark 2.54. Killing vector fields on induced volume form

Remark 2.55. We have seen the formal definition of isometries between pseudo-Riemannian
manifolds and how to describe infinitesimal isometries of a given pseudo-Riemannian manifold. It
is, however, in general a very difficult task to verify or disprove that two given pseudo-Riemannian
manifolds are isometric. For a reasonable approach to this kind of problem we will need the
definitions of the different curvatures of a pseudo-Riemannian manifold, but in order to introduce
these we will need to study so-called connections in vector bundles, which is what we will do
next.

2.2 Connections in vector bundles

The subject of this chapter, connections in vector bundles, is motivated as follows. Suppose
that we are given a connected smooth manifold M . We know how to “connect” two points,
namely by specifying a smooth curve starting at one and ending at the other. Next, suppose
that we are given two tangent vectors v, w ∈ TM that are contained in different fibres. How do
we connect v and w or, more generally, their fibres? Since the total space TM of the tangent
bundle is a smooth manifold as well we can of course connect v and w, viewed as points in TM ,
via a smooth curve. But this does in a sense allow for too much freedom of choice, as we want
a in some sense canonical way to connect Tπ(v)M with Tπ(w)M via a linear isomorphism. The
answer to this problem is to construct a so-called connection in TM → M with respect to a
given pseudo-Riemannian metric, such that all of the latter identifications are linear isometries.
Furthermore we require that if we go around an infinitesimal parallelogram in M and consider
the identification of tangent spaces, we should end up with the identity. In the following we will
in detail describe these concepts and how to actually perform calculations with them. First, we
will introduce the most general concept of a connection in a vector bundle and then focus on the
tangent bundle and its various tensor bundles.

Remark 2.56. motivation of problem to “connect” tangent spaces at points locally via parallel
transport in canonical and polar coordinates in R2, with picture!

Definition 2.57. Let E →M be a vector bundle. A connection in E →M is a bilinear map

∇ : X(M)× Γ(E)→ Γ(E), (X, s) 7→ ∇Xs,
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that is C∞(M)-linear32 in the first entry, i.e.

∇fXs = f∇Xs ∀f ∈ C∞(M), X ∈ X(M), s ∈ Γ(E),

and fulfils the Leibniz rule

∇X(fs) = X(f)s+ f∇Xs ∀f ∈ C∞(M), X ∈ X(M), s ∈ Γ(E).

The last condition can be written as ∇(fs) = s⊗ df + f∇s. Note that a connection in E →M
can be canonically extended to local sections.

The defining conditions of a connection hint at their interpretation as certain types of
derivatives. In comparison with the Lie derivative (for E = TM), we see that it differs
from a connection by the tensoriality property in the first argument. Recall that in general
LfXY 6= fLXY for vector fields X,Y ∈ X(M). This fact points even to preferring a connection
over the Lie derivative for the concept of a derivative of sections since a derivative should ideally
only depend on the direction in which we are differentiating and the local behaviour of the
section we are taking the derivative of, and not of the local behaviour of our direction as part of
a vector field. Next,we need to ask ourselves how to actually calculate with a connection. The
answer lies in the use of local frames.

Definition 2.58. Let ∇ be a connection in E →M of rank ` and {s1, . . . , s`} be a local frame
over U ⊂ M open, such that there exist local coordinates (x1, . . . , xn) on U ⊂ M . This can
always be achieved after possibly shrinking U . Let further dim(M) = n. Define

∇si := ωi, ωi(X) = ∇Xsi ∀X ∈ X(M),

for 1 ≤ i ≤ `. Then each ωi is an E-valued one form33, that is ωiΓ(E|U ⊗ T ∗M |U ) for all
1 ≤ i ≤ `. Thus we have

ωi =
n∑
j=1

ωij ⊗ dxj

for all 1 ≤ i ≤ `, where ωij ∈ Γ(E|U ) for all 1 ≤ i ≤ `, 1 ≤ j ≤ n. We can further write

ωij =
∑̀
k=1

ωkijsk,

with ωkij ∈ C∞(U) for all 1 ≤ i ≤ `, 1 ≤ j ≤ n, 1 ≤ k ≤ `. Recall that for any local section

s ∈ Γ(E|U ) we can write s =
k∑
i=1

f isi with f i, 1 ≤ i ≤ k, uniquely determined for s. With

X ∈ X(U), X =
n∑
i=1

Xi ∂
∂xi

we obtain the general formula

∇Xs =
∑̀
i=1

si ⊗ df i +
n∑
j=1

∑̀
i,k=1

f iωkijsk ⊗ dxj . (2.5)

On the other hand we might write

∇si = ωi =
∑̀
k=1

sk ⊗ ωki

for all 1 ≤ i ≤ k, where ωki ∈ Ω1(U) for all 1 ≤ i, k ≤ `. The ωki are called connection 1-forms
and determine the connection ∇ in E|U completely. We might view (ωki ) as an (`× `)-matrix
valued map where each entry is a local 1-form on M .

32a.k.a. “tensorial”
33That means: Plug in a (local) vector field, get a (local) section in E.
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Remark 2.59. Warning: Connections, and with them the corresponding connection one forms,
do not transform like tensors if E is some tensor power of TM . The reason for that is that a
connection itself is not tensorial in the second argument, so changing frames will lead to the new
connection one forms to depend on the partial derivatives of the corresponding transformation.
The transformation behaviour will be studied in detail for connections in TM →M .

The benefit of writing down a connection locally using its connection 1-form is the easy-
to-formulate transformation behaviour when changing the local frame of E (not the local
coordinates on M). Changing the frame without changing the coordinates on the base space is
not too important for our purposes, but nevertheless a nice exercise. Observe in particular that
the transformation is not tensorial, that is not simply the pullback in the frame part.

Exercise 2.60. Let ∇ be a connection in a vector bundle E →M of rank `. Let {s1, . . . , s`}
and {s̃1, . . . , s̃`} be local frames of E over a chart neighbourhood U ⊂M , equipped with local
coordinates (x1, . . . , xn), that are related by the (`× `)-matrix valued smooth map

A : U → GL(`), (s1, . . . , s`) ·A = s̃1, . . . , s̃`.

Let (ωki ) denote the matrix of connection 1-forms with respect to the local frame {s1, . . . , s`}
and (ω̃ki ) the matrix of connection 1-forms with respect to the local frame {s̃1, . . . , s̃`}. Show
that the two matrices of connection 1-forms are related by

(ω̃ki ) = A−1dA+A−1(ωki )A.

In the above equation, dA denotes the differential of the map A : U → GL(`), where we identify
TGL(`) ∼= GL(`)× End(R`)34.

Connections, just like tangent vectors, are local objects in the following sense.

Lemma 2.61. Let ∇ be a connection in a vector bundle E →M of rank `. Let U ⊂M be open
and suppose that for two vector fields X,Y ∈ X(M) and two sections in E →M , s, s̃, we have

X|U = Y |U , s|U = s̃|U .

Then ∇Xs and ∇Y s̃ coincide on U .

Proof. Note that ∇Xs|U = ∇Y s|U , which follows by the tensoriality property in the first
argument of any connection. It thus suffices to show that ∇Xs|U = ∇X s̃|U . Using Definition
2.58 we write, after possibly shrinking U , s and s̃ in a local frame {s1, . . . , s`} of E|U ,

s|U =
∑̀
i=1

f isi, s̃|U =
∑̀
i=1

f̃ isi,

with fi, f̃i ∈ C∞(U). Now equation (2.5) and f i = f̃ i for all 1 ≤ i ≤ n by assumption that s
and s̃ coincide on U imply that ∇Xs|U = ∇X s̃|U holds true.

If one prefers to work without coordinates or frames, one can proceed as follows. By the
linearity in the second argument, ∇Xs and ∇X s̃ coincide in U if and only if ∇X(s− s̃)|U ≡ 0.
Hence, it suffices to prove ∇Xs|U = 0 if s|U = 0. Fix p ∈ U and choose a bump function
b ∈ C∞(M) and an open neighbourhood of p, V ⊂ U , that is precompact in U , such that b|V ≡ 1
and supp(b) ⊂ U . Then by the Leibniz rule

0 = ∇X0|p = ∇X(bs)|p = X(b)s|p + b(p)∇Xs|p = ∇Xs|p.

34Recall that GL(`) is open in the real (`× `)-matrices.
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Lemma 2.61 means that (∇Xs)(p) for any p ∈ M depends only on Xp ∈ TpM and the
restriction of s to an arbitrary small open neighbourhood of p in M .

Before continuing, we remark that there is a connection we are probably already aware of,
although not under that name.

Example 2.62. Consider Rn with canonical coordinates (u1, . . . , un) and induced global frame{
∂
∂u1 , . . . ,

∂
∂un

}
of TRn → Rn. Vector fields on Rn can be, as we described before introducing

vector fields on smooth manifolds, viewed as smooth vector valued functions. So a reasonable
approach for a connection, defined in our choice of coordinates, is

∇XY :=
∑
i

X(Y i) ∂

∂ui
∈ X(Rn)

for all vector fields X =
∑
i
Xi ∂

∂ui
and Y =

∑
i
Y i ∂

∂ui
. This means that, in canonical coordinates,

we differentiate Y entrywise in X-direction. One verifies that the so-defined ∇ in fact is a
connection in TRn → Rn. This construction is, however, not coordinate-independent, meaning
that in different coordinates, ∇XY will not be the entrywise differentiation of Y in X-direction.
Note that all connection 1-forms of the above connection identically vanish.

As described in the above example, we need to investigate how a connection in TM , written
in a choice of local coordinates, behaves under a change of coordinates. This problem is equivalent
to understanding how the connection 1-forms transform under a change of coordinates and
induces change in local frame of TM . To do so we will introduce so-called Christoffel symbols,
which are commonly used to describe connections and, hence, connection 1-forms in the tangent
bundle of a smooth manifold. The difference to a connection in a general bundle is that a choice
of coordinates on M automatically gives us a local frame in TM .

Definition 2.63. Let ∇ be a connection in TM →M and (x1, . . . , xn) be local coordinates on
U ⊂M . Then in the induced local frame of TM ,

∇ ∂

∂xi

∂
∂xj

=
n∑
k=1

Γkij ∂
∂xk

,

where Γkij ∈ C∞(M), 1 ≤ i, j, k ≤ n. The terms Γkij are called Christoffel35 symbols of the
connection ∇ with respect to the chosen local coordinates (x1, . . . , xn). The Christoffel symbols
specify the connection ∇ in TM |U → U uniquely, meaning in particular that two connections in
TM →M coincide if they have the same Christoffel symbols for all local coordinates on M . In
comparison with the most general case, the Christoffel symbols are for the special case of the
tangent bundle with induced local frame precisely the terms ωkij in equation (2.5).

Note that, if one wants to be very precise it is at this point not clear if every manifold admits
a connection in its tangent bundle. This is either a not so easy exercise or a good excuse to
consult [L1, Prop. 4.5]. The answer is yes, every manifolds admits a connection in its tangent
bundle, and the space of connections is, in a sense, very big.

Similar to Exercise 2.60, but with the difference that we now also change the local coordinates
on the base manifold, we obtain the following transformation ruse for Christoffel symbols.

Lemma 2.64. Let M be an n-dimensional smooth manifold, ∇ a connection in TM →M . Let
further ϕ = (x1, . . . , xn) and ψ = (yn, . . . , yn) local coordinate systems on an open set U ⊂M
so that

F (y1, . . . , yn) = (x1, . . . , xn)
35Elwin Bruno Christoffel (1829 – 1900)
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for a smooth map F : ψ(U)→ ϕ(U), and let Γkij denote the Christoffel symbols of ∇ with respect
to ϕ and Γ̃kij denote the Christoffel symbols of ∇ with respect to ψ. Then the following identity
holds:

Γkij =

Proof. Direct calculation using ∂
∂xi

=
∑
j

∂F i

∂yj
∂
∂yj

and the corresponding inverse formula.

Suppose that we are given a connection ∇ in TM →M . Then ∇ induces a connection in all
tensor powers T r,sM →M of the tangent bundle by requiring compatibility with contractions.

Lemma 2.65. Let ∇ be a connection in TM → M . Then ∇ induces a connection in each
tensor bundle36 T r,sM →M , r ≥ 0, s ≥ 0, such that

(i) the induced connection in T 1,0M ∼= TM →M coincides with ∇,

(ii) ∇f = df for all f ∈ T0,0(M) = C∞(M),

(iii) the induced connection is a tensor derivation in the second argument, meaning that

∇(A⊗B) = (∇A)⊗B +A⊗ (∇B)

whenever the tensor field A⊗B is defined,

(iv) the induced connections commute with all possible contraction, meaning that for any
contraction C : Tr,s(M)→ Tr−1,s−1(M) we have

∇(C(A)) = C(∇(A))

for all tensor fields A ∈ Tr,s(M).

The so-defined connections in each tensor bundle T r,sM →M are uniquely determined by the
above properties.

Proof. We proceed as follows. First we define a candidate for a connection, then we show that it
fulfils all of the above properties, and finally prove uniqueness. In order to define any connection
in T r,sM →M it suffices to specify what it does on sections that can be, locally, written as pure
tensor products of r local vector fields and s local 1-forms. For T 1,0M →M , we simply take ∇ to
be our initial connection, which thereby automatically fulfils (i) and for f ∈ T0,0(M) = C∞(M)
we set ∇f = df , thereby fulfilling (ii). Now we define ∇ in T 0,1M →M in such a way, that (iii)
and (iv) will be satisfied. Set for any local 1-form ω ∈ Ω1(U), U ⊂M open,

(∇Xω)(Y ) := X(ω(Y ))− ω(∇XY )

for all local vector fields X,Y ∈ X(U). After checking [Exercise!] that this defines a connection
in T 0,1M →M , we proceed as initially mentioned and obtain a connection in T r,sM →M for
all r ≥ 0, s ≥ 0 by requiring (ii) to hold on pure and, hence by linear extension, on all tensor
fields. After checking that this really does define a connection [Again, exercise!] it remains to
check that (iv) holds. This can be done inductively using (iii) after checking that it holds for
the only possible contraction in T 1,1M →M , which on pure tensor fields is of the form

C(X ⊗ ω) = ω(X)
36Conventionally denoted by the same symbol ∇.
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for all X ∈ X(M), ω ∈ Ω1(M), and analogously for local sections. We find for all X,Y ∈ X(M)
and all ω ∈ Ω1(M)

∇Y (C(X ⊗ ω)) = ∇Y (ω(X)) = Y (ω(X))

which by definition of ∇ in T 0,1M →M and our imposed condition (iii) coincides with

Y (ω(X)) = (∇Y ω)(X) + ω(∇YX) = C(X ⊗ (∇Y ω) + (∇YX)⊗ ω = C(∇Y (X ⊗ ω)).

It remains to show uniqueness. Suppose there is an other connection ∇̃ fulfilling all requirements
of this lemma. By linearity in the second argument it suffices to show that ∇ and ∇̃ coincides
on locally pure tensor fields. By (i) and (iii) it further suffices to show that ∇ and ∇̃ coincide in
T 0,1M = T ∗M →M . This follows from (i), (ii), and (iv) by direct calculation of the left- and
right-hand of ∇̃(C(A)) = C(∇̃(A)) for A = X ⊗ ω where X is any local vector field and ω is
any local 1-form.

Observe that Lemma 2.65 is, formally, very similar to Proposition 1.156 about the Lie
derivative of tensor fields.

Exercise 2.66. Let ∇ be a connection in TM → M and Γkij its Christoffel symbols in local
coordinates (x1, . . . , xn). Find a formula for the Christoffel symbols of the induced connection
∇ in T ∗M →M with respect to the local frame obtained from the local coordinate 1-forms.

Remark 2.67. Differentiation of tensor fields with respect to a connection induced by a
connection in the tangent bundle is sometimes called covariant differentiation. ∇XA is then
called covariant derivative of A in direction X. When talking about covariant derivatives
make sure to always specify the corresponding connection.

A central usage of connections is a preferred way to “transport”, that is smoothly change,
vectors along a curve in the base manifold. In order to properly introduce this concept, we need
to study how to in a covariant manner differentiate vector fields, or more generally tensor fields,
along curves. This is to be read in the way that we want to give a meaning to expressions of the
form

∇′γA

where γ : I →M is a smooth curve in a manifold and A is a tensor field that is only defined
along γ(I) ⊂M . Recall in particular the definition of vector fields along curves, cf. Definition
1.101.
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