

Department Mathematik Analysis und Differentialgeometrie David Lindemann Danu Thung

Differential geometry

summer term 2020

Exercise sheet 9

— submission deadline: 3.7.2020 —

1. (8 points)

Let (M, g) be a pseudo-Riemannian manifold and ∇ its Levi-Civita connection. For a function $F \in C^{\infty}(M)$, the gradient $\operatorname{grad}_{g}(F) \in \mathfrak{X}(M)$ of F with respect to g is defined to be the unique vector field, such that

$$dF(X) = g(\operatorname{grad}_a(F), X) \ \forall X \in \mathfrak{X}(M).$$

Let $f \in C^{\infty}(M)$, f(p) > 0 for all $p \in M$. Consider the pseudo-Riemannian manifold (M, \tilde{g}) with $\tilde{g} = fg$ and Levi-Civita connection $\tilde{\nabla}$ (\tilde{g} is called a conformal rescaling of g). Show that

$$\widetilde{\nabla}_X Y - \nabla_X Y = \frac{1}{2} \left(d\ln(f)(X)Y + d\ln(f)(Y)X - g(X,Y) \operatorname{grad}_g(\ln f) \right) \ \forall X, Y \in \mathfrak{X}(M),$$

where $\operatorname{grad}_g(\ln(f))$ is calculated with respect to g. Conclude that for a constant rescaling $f = \operatorname{const.}, g$ and \tilde{g} induce the same Levi-Civita connection. (*Hint: Do not use Christoffel symbols to solve this exercise.*)

2. (4 points)

Let (M, g) be a pseudo-Riemannian manifold and ∇ its Levi-Civita connection. Show that the covariant Hessian of a smooth function $f \in C^{\infty}(M)$, $H^f := \nabla^2 f \in \mathfrak{T}^{0,2}(M)$, w.r.t. ∇ is symmetric and that

$$H^f(X,Y) = g(\nabla_X(\operatorname{grad}_q(f)),Y)$$

for all $X, Y \in \mathfrak{X}(M)$.

3. (4 points)

Let ∇ be a connection in $TM \to M$ and Γ_{ij}^k its Christoffel symbols in local coordinates (x^1, \ldots, x^n) . Find a formula for the analogue of the Christoffel symbols of the induced connection ∇ in $T^*M \to M$ with respect to the local frame given by the local coordinate 1-forms.