

Department Mathematik Analysis und Differentialgeometrie David Lindemann Danu Thung

Differential geometry

summer term 2020

Exercise sheet 8

— submission deadline: 26.6.2020 —

1. (4 points)

Let ∇ be a connection in the tangent bundle of a manifold M, dim $M \ge 1$. Show that the torsion tensor of the connection ∇ , $T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$, is, in fact, a tensor field. Show that T = 0 if and only if the Christoffel symbols of ∇ have the property that $\Gamma_{ij}^k = \Gamma_{ji}^k$ for all $1 \le i, j, k \le \dim M$.

2. (4 points)

Let M be a manifold and let ∇ and $\overline{\nabla}$ be two connection in $TM \to M$. We define $A(X,Y) := \nabla_X Y - \overline{\nabla}_X Y$ for all $X, Y \in \mathfrak{X}(M)$. Show that

- (a) A is a tensor field,
- (b) A is symmetric, that is A(X, Y) = A(Y, X) for all $X, Y \in \mathfrak{X}(M)$, if and only if the torsion tensors of ∇ and $\overline{\nabla}$ coincide.

3. (4 points)

Prove or disprove: For a connection ∇ in $TM \to M$, the induced connection in $T^{0,2}M \to M$ restricts to a connection in the subbundles

- a) $\operatorname{Sym}^2(T^*M) \to M$,
- b) $\Lambda^2 T^* M \to M$.

4. (4 points)

Let (M, g) be a pseudo-Riemannian manifold of dimension $n \ge 1$. Show that the Koszul formula is equivalent to

$$2\Gamma_{ij}^{k} = \sum_{l=1}^{n} (\partial_{i}g_{jl} + \partial_{j}g_{il} - \partial_{l}g_{ij})g^{lk} \text{ for all } 1 \le i, j, k \le n$$

for all local coordinates (x^1, \cdots, x^n) of M.