Differential geometry
summer term 2020

Exercise sheet 6

1. (4 points)

Consider the real vector space \mathbb{R}^{2} equipped with the bilinear forms that are given in the standard basis by

$$
g(v, v)=\binom{v^{1}}{v^{2}}^{T}\left(\begin{array}{cc}
1 & a \\
a & 1
\end{array}\right)\binom{v^{1}}{v^{2}}, a \in \mathbb{R} .
$$

Determine all $a \in \mathbb{R}$, such that g is degenerate. Determine the index of g for all $a \in \mathbb{R}$ for which g is non-degenerate.

2. (8 points)

(a) Let V be a finite dimensional real vector space. We define
$S^{2} V^{*}:=\left\{\alpha \in V^{*} \otimes V^{*} \mid \alpha(v, w)=\alpha(w, v) \forall v, w \in V\right\}\left(\right.$ " S^{2} " means symmetric in the 2 arguments) and $V^{*} \wedge V^{*}:=\left\{\alpha \in V^{*} \otimes V^{*} \mid \alpha(v, w)=-\alpha(w, v) \forall v, w \in V\right\}$. Show that $V^{*} \otimes V^{*}=S^{2} V^{*} \oplus\left(V^{*} \wedge V^{*}\right)$.
(b) Consider \mathbb{R}^{3} as a manifold equipped with the pseudo-Riemannian metric g given in standard coordinates (x, y, z) by

$$
g_{p}(v, w)=v^{T}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) w, \quad \forall p \in \mathbb{R}^{3}, v, w \in T_{p} \mathbb{R}^{3} \cong \mathbb{R}^{3}
$$

The set $H:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}-z^{2}=-1\right\}$ is a smooth submanifold of \mathbb{R}^{3}. Draw a sketch of H and show that $\left(H,\left.g\right|_{T H \times T H}\right)$ is a Riemannian manifold. $\left.g\right|_{T H \times T H}$ denotes the restriction of g to $T H$, so that for $v, w \in T_{p} H,\left.g\right|_{T H \times T H}(v, w)=g_{p}(v, w)$, where we view $T H$ as a subset of $T \mathbb{R}^{3}: T_{p} H=\operatorname{ker} d\left(x^{2}+y^{2}-z^{2}+1\right)_{p} \subset T_{p} \mathbb{R}^{3}$ for all $p \in H$.

3. (4 points)

Let (M, g) be a connected pseudo-Riemannian manifold of dimension $n \geq 1$. We define $\operatorname{index}\left(g_{p}\right)=\max \left\{\operatorname{dim} W \mid W \subset T_{p} M\right.$ linear subspace, such that $\left.g_{p}\right|_{W \times W}$ is negative definite $\}$.
(a) For $p \in M$, we choose local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ and define $B \in \operatorname{Mat}(n \times n)$, $B_{i j}=g_{p}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{p},\left.\frac{\partial}{\partial x^{j}}\right|_{p}\right)$. Show that

$$
\operatorname{index}\left(g_{p}\right)=\mid\{\text { negative eigenvalues of } B \text { counted with multiplicity }\} \mid .
$$

(b) Show that this definition does not depend on the choice of local coordinates around $p \in M$. (Hint: If you have difficulties with this part write down how the matrix B transforms under a change of coordinates.)

4. (4 points)

Consider the manifold $\mathrm{GL}(n) \subset \operatorname{Mat}(n \times n, \mathbb{R})$ together with the $(0,2)$-tensor field $g \in \mathfrak{T}^{0,2}(\mathrm{GL}(n))$ that is given in canonical coordinates by

$$
g_{A}(B, C)=\operatorname{tr}\left(B^{T} C\right) \quad \forall A \in \mathrm{GL}(n), B, C \in T_{A} \mathrm{GL}(n)=\operatorname{Mat}(n \times n, \mathbb{R})
$$

where tr denotes the trace, i.e. $\operatorname{tr}(F)=\sum_{i=1}^{n} F_{i i}$ for all $F \in \operatorname{Mat}(n \times n, \mathbb{R})$. Show that $(\mathrm{GL}(n), g)$ is a Riemannian manifold.

5. (Bonus: 8 points)

Let M be a manifold of dimension $n \geq 1$. Show that M admits a Riemannian metric. (Hint: Assume that $\langle\cdot, \cdot\rangle$ and (\cdot, \cdot) are Euclidean scalar products on \mathbb{R}^{n}. Is $\langle\cdot, \cdot\rangle+(\cdot, \cdot)$ also a Euclidean scalar product? You can also assume without proof that M has a countable atlas, which follows from the 2nd countability property of M. Furthermore, you might want to look into exhaustion by compact sets of non-compact manifolds.)

