Exercise sheet 5

1. (8 points)

Consider the 2-torus $T^{2}=\mathbb{R}^{2} / \sim$ as it was defined in the first exercise sheet. Denote by $\rho: \mathbb{R}^{2} \rightarrow T^{2}$ the projection map $p \mapsto[p]$. For a fixed paramater $s \in \mathbb{R}$, let $\bar{X} \in \mathfrak{X}\left(\mathbb{R}^{2}\right)$, given in canonical coordinates (x, y) by $\bar{X}=\frac{\partial}{\partial x}+s \frac{\partial}{\partial y}$. Consider $X \in \mathfrak{X}\left(T^{2}\right)$ defined by $X=d \rho(\bar{X})$. The flow of X is given by

$$
\varphi_{t}([p])=\left[p+t\binom{1}{s}\right]
$$

and it is defined for all $t \in \mathbb{R}$. Show that for any fixed $[p] \in T^{2}$
(a) $s \in \mathbb{Q}$ implies that $t \mapsto \varphi_{t}([p])$ is periodic,
(b) $s \in \mathbb{R} \backslash \mathbb{Q}$ implies that $t \mapsto \varphi_{t}([p])$ is not periodic,
(c) $s \in \mathbb{R} \backslash \mathbb{Q}$ implies that the image of the flow $\varphi_{\mathbb{R}}([p]) \subset T^{2}$ is dense for all $[p] \in T^{2}$, that is $\overline{\varphi_{\mathbb{R}}}([p])=T^{2}$. In this case this means that for all $q \in T^{2}$ and all open neighbourhoods $U \subset T^{2}$ of q there exists a $t^{\prime} \in \mathbb{R}$, such that $\varphi_{t^{\prime}}([p]) \in U$ (recall that U is open in T^{2} if $\rho^{-1}(U) \subset \mathbb{R}^{2}$ is open).
2. (4 points)

Consider for $n \geq 1$ fixed the n-dimensional open unit ball around the origin $B_{1}(0) \subset \mathbb{R}^{n}$. For a given $v \in \mathbb{R}^{n}$ consider the vector field $X \in \mathfrak{X}\left(B_{1}(0)\right)$ given in canonical coordinates $\left(u^{1}, \cdots, u^{n}\right)$ by $X=\sum_{i=1}^{n} v^{i} \frac{\partial}{\partial u^{i}}$. Determine the flow $\varphi_{(\cdot)}(p):\left(-\varepsilon_{p}, \varepsilon_{p}\right) \rightarrow B_{1}(0)$ of X for p arbitrary but fixed and $\varepsilon_{p}>0$ small enough. Show that
(a) $v \neq 0$ implies $\inf _{p \in B_{1}(0)}\left\{\sup _{s \in \mathbb{R} \geq 0}\left\{s>0 \mid \varphi(\cdot)(p):[0, s) \rightarrow B_{1}(0)\right.\right.$ is defined $\left.\}\right\}=0$,
(b) $v=0$ implies $\varphi_{(\cdot)}(p):\left(-\varepsilon_{p}, \varepsilon_{p}\right) \rightarrow B_{1}(0)$ can be extended to \mathbb{R} for all $p \in B_{1}(0)$.

3. (4 points)

Let $M=\mathbb{R}^{2}$ and $\alpha \in \mathcal{T}^{(1,2)}(M), \alpha=y^{2} \frac{\partial}{\partial x} \otimes d x \wedge d y$, where $d x \wedge d y:=d x \otimes d y-d y \otimes d x$. Let $X \in \mathfrak{X}\left(\mathbb{R}^{2}\right), X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$. Calculate $\mathcal{L}_{X} \alpha$.

