summer term 2020

Differential geometry

Exercise sheet 4

1. (4 points)

(a) Let $M=\mathbb{R}^{2} \backslash\left\{(z, 0) \mid z \in \mathbb{R}_{\leq 0}\right\}$ and $X \in \mathfrak{X}(M)$. Assume that in Cartesian coordinates $(x, y), X$ is given by $X=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}$. Find the formula for X in polar coordinates.
(b) Let $M=\mathbb{R}^{n}, n \geq 2$, and let $N \subset M$ be an ($n-1$)-dimensional submanifold, such that $(M \backslash N) \subset M$ is an n-dimensional submanifold. Let $Y \in \mathfrak{X}(M \backslash N)$ be an arbitrary vector field.
i) Can you always find a vector field $X \in \mathfrak{X}(M)$, such that $\left.X\right|_{M \backslash N}=Y$?
ii) Let $X_{1}, X_{2} \in \mathfrak{X}(M)$, such that $\left.X_{1}\right|_{M \backslash N}=\left.X_{2}\right|_{M \backslash N}$. Show that this implies $X_{1}=X_{2}$.
2. (4 points)
(a) Let M be a smooth manifold and $X, Y \in \mathfrak{X}(M)$. Find a formula for $[X, Y]$ in local coordinates.
(b) Show that for fixed $0 \neq X \in \mathfrak{X}(M)$, the map $[X, \cdot]: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M), Y \mapsto[X, Y]$, is a vector space homomorphism, but it is not a $C^{\infty}(M)$-module homomorphism [heuristically speaking: "R-linear but not $C^{\infty}(M)$-linear"].
(c) Prove or disprove the following: There exists a manifold M of dimension $n \geq 1$, such that for all $0 \neq X \in \mathfrak{X}(M)$, the $\operatorname{map}[X, \cdot]: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ is surjective.
3. (4 points)

Let $A \in \operatorname{GL}(n)$ be fixed. Since $\mathrm{GL}(n) \subset \operatorname{Mat}(n \times n, \mathbb{R}) \cong \mathbb{R}^{n^{2}}$ is open we can identify $T \mathrm{GL}(n)=\mathrm{GL}(n) \times \operatorname{Mat}(n \times n, \mathbb{R})$. We define $X \in \mathfrak{X}(\mathrm{GL}(n))$ by $X_{B}=(B, A B)$, where $B \in \operatorname{GL}(n)$ and $A B \in \operatorname{Mat}(n \times n, \mathbb{R})$. With this identification, a curve $\gamma: I \rightarrow \operatorname{GL}(n)$ is an integral curve of X if $A \gamma(t)=\gamma^{\prime}(t)$ for all $t \in I$. Find the general solution of this equation for all $A \in \mathrm{GL}(n)$ and show that each local solution γ can be extended to $\gamma: \mathbb{R} \rightarrow \mathrm{GL}(n)$.

4. (4 points)

Let $S^{3} \subset \mathbb{H} \cong \mathbb{R}^{4}$ be the 3 -sphere, viewed as the set of unit quaternions. Show that $T S^{3}$ is trivializable.

