

Department Mathematik Analysis und Differentialgeometrie David Lindemann Danu Thung

Differential geometry

summer term 2020

Exercise sheet 11

- submission deadline: 17.8.2020 -

1. (4 points)

Let M be an n-dimensional manifold, $n \ge 1$. Fix a point $p \in M$ and consider the set of abstract curvature tensors

 $\{F: T_pM \times T_pM \times T_pM \to T_pM \mid F \text{ is an abstract curvature tensor}\} \subset T_p^{1,3}M$. Show that they form a real vector space and determine its dimension in dependence of n.

2. (4 points)

Let ∇ be a connection in a vector bundle $E \to M$. For an *E*-valued 2-form $\alpha \in \Omega^2(M, E)$, that is a section $\alpha \in \Gamma(E \otimes T^{0,2}M), \alpha : (X, Y) \mapsto \alpha(X, Y) \in \Gamma(E)$, such that $\alpha(X, Y) = -\alpha(Y, X)$ for all $X, Y \in \mathfrak{X}(M)$, we define

$$d^{\nabla}\alpha(X,Y,Z) := \sum_{\text{cyclic}} (\nabla_X(\alpha(Y,Z)) - \alpha([X,Y],Z)) \quad \forall X,Y,Z \in \mathfrak{X}(M).$$

- (i) Show that $d^{\nabla} \alpha \in \Omega^3(M, E)$, that is an *E*-valued 3-form. This means that $d^{\nabla} \alpha(X, Y, Z) = -d^{\nabla} \alpha(Y, X, Z), d^{\nabla} \alpha(X, Y, Z) = -d^{\nabla} \alpha(X, Z, Y)$, and $d^{\nabla} \alpha(X, Y, Z) = -d^{\nabla} \alpha(Z, Y, X)$ for all $X, Y, Z \in \mathfrak{X}(M)$.
- (ii) Recall that a connection in $TM \to M$ induces a connection in $\text{End}(TM) \to M$. The curvature tensor¹ of ∇ , $R := (X, Y) \mapsto \nabla_X \nabla_Y \nabla_Y \nabla_X \nabla_{[X,Y]}$ for all $X, Y \in \mathfrak{X}(M)$, can be viewed as a End(TM)-valued 2-form $R \in \Omega^2(M, \text{End}(E))$. R fulfils

$$\sum_{\text{cyclic}} \nabla_X(R(Y,Z)) = 0$$

for all $X, Y, Z \in \mathfrak{X}(M)$ with [X, Y] = [Y, Z] = [Z, X] = 0. Show that this implies $d^{\nabla} R = 0$.

3. (4 points)

Consider a curve $\gamma: I \subset \mathbb{R} \to \mathbb{R}^2$, $I \subset \mathbb{R}$ an open interval. Assume that $\gamma = (\gamma_1, \gamma_2)^T$ is also an embedding, which implies that $\gamma(I) \subset (\mathbb{R}^2, \langle \cdot, \cdot \rangle)$ is a Riemannian submanifold $(\langle \cdot, \cdot \rangle$ denotes the standard Riemannian metric on \mathbb{R}^2). Check that the vector field $\xi = (-\dot{\gamma}_2, \dot{\gamma}_1)$ along γ is orthogonal to $\dot{\gamma}$. Show that the Weingarten map S^{ξ} is of the form $S_{\gamma(t)}^{\xi} = f(\gamma(t)) \cdot \mathrm{Id}_{T\gamma(I) \subset T\mathbb{R}^2|_{\gamma(I)}}$, where $f \circ \gamma$ is a smooth function on I, and determine $f \circ \gamma$. Conclude that $S_{\gamma(t)}^{\xi} \neq 0$ if and only if $\dot{\gamma}(t)$ and $\ddot{\gamma}(t)$ are linearly independent. (Hint: If you are not sure where to start, try rewriting the equation $0 = \overline{\nabla}_{\dot{\gamma}}(\langle \dot{\gamma}, \xi \rangle)$, where $\overline{\nabla}$ denotes the flat connection on \mathbb{R}^2 .)

¹Note: We do **not** require R to be the Riemann curvature tensor of some metric.

4. (4 points)

Recall the definition of the hyperboloids H^n_{ν} as pseudo-Riemannian submanifolds of index $\nu - 1$ in $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle_{\nu})$. Show that the position vector field $\xi \in \mathfrak{X}(\mathbb{R}^{n+1})$ is a unit normal along H^n_{ν} and prove that the corresponding Weingarten map is given by $S^{\xi} = -\mathrm{id}_{TH^n_{\nu}}$.

5. (12 (4+8) points)

(a) Similarly to H^n_{ν} we define for $r > 0, n \ge 2$, and $1 \le \nu \le n$

$$H_{\nu}^{n}(r) := \left\{ \left\langle \xi, \xi \right\rangle = \sum_{i=1}^{n-\nu+1} \left(u^{i} \right)^{2} - \sum_{i=n-\nu+2}^{n+1} \left(u^{i} \right)^{2} = -r^{2} \right\} \subset \mathbb{R}^{n+1}.$$

viewed as pseudo-Riemannian submanifolds of $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle_{\nu})$. Show that $H_1^n(r)$ has constant sectional curvature $K = -\frac{1}{r^2}$.

(b) Prove that $H_1^n(r)$ is geodesically complete.

6. (12 points)

Let $U \subset \mathbb{R}^2$ be open and connected, and $F: U \to \mathbb{R}$ a smooth map. Consider the graph of F, $M := \{(x, y, F(x, y)) \in U \times \mathbb{R} \mid (x, y) \in U\}$, as a submanifold of $U \times \mathbb{R}$. We denote by $\langle \cdot, \cdot \rangle$ the standard scalar product on \mathbb{R}^3 .

- (a) Show that $(M, \langle \cdot, \cdot \rangle|_{TM \times TM})$ and, hence, $(U, g = (\mathrm{Id}_{U} \times F)^* \langle \cdot, \cdot \rangle|_{TM \times TM})$ is a Riemannian manifold.
- (b) Show that the sectional curvature $K(\Pi)$ of (U, g) depends only on the base point p of the tangent plane $\Pi \subset T_pU$, i.e. $K \in C^{\infty}(U)$.
- (c) For a normal field $\xi: U \to T\mathbb{R}^3$, $p \mapsto \xi_p \in (T_{(p,F(p))}M)^{\perp}$, of your choice describe the Weingarten map S^{ξ} of (U, g) explicitly.
- (d) Find and prove a formula for K in terms of F and its first and second partial derivatives.
- (e) Show that $K(p) > 0 \ \forall p \in U$ if and only if F is either a strictly convex map or a strictly concave map. F is called strictly convex (concave) if its Hessian H^F with respect to the standard flat connection of $U \subset \mathbb{R}^2$ is positive definite (negative definite) at each $p \in U$.

7. (12 (2+2+2+6) points)

Let $I \subset \mathbb{R}$ be an open interval. For a smooth curve $\gamma : I \to \mathbb{R}^3$ we define the arc-length of γ from $\gamma(t_0)$ to $\gamma(t)$ to be

$$L(t) = \int_{t_0}^t \sqrt{\langle \dot{\gamma}(s), \dot{\gamma}(s) \rangle} ds, \ t_0, t \in I, \ t \ge t_0.$$

- (a) Let $\gamma(t) = (r \cos t, r \sin t, t), r > 0$. Calculate L(t) for t_0 fixed.
- (b) For a > 0, b < 0 consider $\gamma(t) = (ae^{bt} \cos t, ae^{bt} \sin t, 1)$. Show that for any $t_0 \in \mathbb{R}$ the limit $\lim_{t \to \infty} L(t)$ is finite.

(c) Under the additional assumption that $\gamma: I \to \mathbb{R}^3$ is an embedding, show that the second fundamental form of the Riemannian submanifold $\gamma(I) \subset (\mathbb{R}^3, \langle \cdot, \cdot \rangle)$ is given by

$$II(\dot{\gamma}, \dot{\gamma}) = \ddot{\gamma} - \frac{\partial \ln\left(\frac{\partial L}{\partial t}\right)}{\partial t}\dot{\gamma}.$$

(d) As above, assume that $\gamma = (\gamma^1, \gamma^2, \gamma^3)^T$ is an embedding. Furthermore assume that $\dot{\gamma}_1(t) \neq 0 \ \forall t \in I$. Show that the two vector fields X_{γ}, Y_{γ} along $\gamma(I)$,

$$X_{\gamma} = (-\dot{\gamma}_2, \dot{\gamma}_1, 0)^T, \ Y_{\gamma} = (-\dot{\gamma}_3, 0, \dot{\gamma}_1)^T, \ X, Y \in \Gamma_{\gamma}(T\mathbb{R}^3),$$

are orthogonal to $\dot{\gamma}$. Calculate $\overline{\nabla}_{\dot{\gamma}}^{\text{nor}} X_{\gamma}$ and $\overline{\nabla}_{\dot{\gamma}}^{\text{nor}} Y_{\gamma}$ ($\overline{\nabla}$ denotes the flat connection in \mathbb{R}^3).

(Hints: If you have trouble with the tangential and normal parts in the calculations of (c) and (d), recall how to project a vector v in the n-dimensional Euclidean space $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ orthogonally onto the line of another non-zero vector w: $\operatorname{pr}_{\mathbb{R}w}(v) = \frac{\langle v, w \rangle}{\langle w, w \rangle} w$.)

8. (4 points)

Let (M, g) be a 2-dimensional isometrically embedded Riemannian submanifold of $(\mathbb{R}^3, \langle \cdot, \cdot \rangle)$, such that the image of M under the embedding is oriented. Since dim M = 2, the sectional curvature K can be viewed as a function on M, i.e. $K \in C^{\infty}(M)$. For an isometric embedding $F: M \to \mathbb{R}^3$, let $\xi: F(M) \to T\mathbb{R}^3$ be a unit vector field on F(M), such that $\xi_q \perp T_q F(M)$ for all $q \in F(M)$. The principal curvatures $k_1, k_2 \in C(F(M))$ of the the surface $F(M) \subset \mathbb{R}^3$ are defined as the eigenvalues of the corresponding shape tensor S^{ξ} . Show that $k_1(F(p))k_2(F(p)) = K(p)$ for all $p \in M$. Conclude that the product of the principal curvatures does neither depend on the chosen unit normal field ξ nor on the chosen isometric embedding F.

9. (8 points)

Let $f \in C^{\infty}(\mathbb{R}^3)$, such that $c \in \mathbb{R}$ is a regular value of f. Consider $M := f^{-1}(c)$ as a Riemannian submanifold of $(\mathbb{R}^3, \langle \cdot, \cdot \rangle)$.

- (a) Find and prove formulae in terms of f and its derivatives for the second fundamental form, the shape tensor, and the sectional curvature of $(M, \langle \cdot, \cdot \rangle|_{TM \times TM})$ with respect to the unit normal field $\xi = \frac{\operatorname{grad}(f)}{\sqrt{\langle \operatorname{grad}(f), \operatorname{grad}(f) \rangle}}$ along M.
- (b) For A, B, C > 0, let $f = Ax^2 + By^2 + Cz^2$, c = 1, and define M as in (a). Calculate the sectional curvature K of M.