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1. (4 points)
Let M be an n-dimensional manifold, n ≥ 1. Fix a point p ∈M and consider the set of
abstract curvature tensors
{F : TpM × TpM × TpM → TpM | F is an abstract curvature tensor} ⊂ T 1,3

p M . Show that
they form a real vector space and determine its dimension in dependence of n.

2. (4 points)
Let ∇ be a connection in a vector bundle E →M . For an E-valued 2-form α ∈ Ω2(M,E),
that is a section α ∈ Γ(E ⊗ T 0,2M), α : (X, Y ) 7→ α(X, Y ) ∈ Γ(E), such that
α(X, Y ) = −α(Y,X) for all X, Y ∈ X(M), we define

d∇α(X, Y, Z) :=
∑
cyclic

(∇X(α(Y, Z))− α([X, Y ], Z)) ∀X, Y, Z ∈ X(M).

(i) Show that d∇α ∈ Ω3(M,E), that is an E-valued 3-form. This means that
d∇α(X, Y, Z) = −d∇α(Y,X,Z), d∇α(X, Y, Z) = −d∇α(X,Z, Y ), and
d∇α(X, Y, Z) = −d∇α(Z, Y,X) for all X, Y, Z ∈ X(M).

(ii) Recall that a connection in TM →M induces a connection in End(TM)→M . The
curvature tensor1 of ∇, R := (X, Y ) 7→ ∇X∇Y −∇Y∇X −∇[X,Y ] for all X, Y ∈ X(M),
can be viewed as a End(TM)-valued 2-form R ∈ Ω2(M,End(E)). R fulfils∑

cyclic

∇X(R(Y, Z)) = 0

for all X, Y, Z ∈ X(M) with [X, Y ] = [Y, Z] = [Z,X] = 0. Show that this implies
d∇R = 0.

3. (4 points)
Consider a curve γ : I ⊂ R→ R2, I ⊂ R an open interval. Assume that γ = (γ1, γ2)

T is also
an embedding, which implies that γ(I) ⊂ (R2, 〈·, ·〉) is a Riemannian submanifold (〈·, ·〉
denotes the standard Riemannian metric on R2). Check that the vector field ξ = (−γ̇2, γ̇1)
along γ is orthogonal to γ̇. Show that the Weingarten map Sξ is of the form
Sξγ(t) = f(γ(t)) · IdTγ(I)⊂TR2|γ(I) , where f ◦ γ is a smooth function on I, and determine f ◦ γ.

Conclude that Sξγ(t) 6= 0 if and only if γ̇(t) and γ̈(t) are linearly independent. (Hint: If you

are not sure where to start, try rewriting the equation 0 = ∇γ̇(〈γ̇, ξ〉), where ∇ denotes the
flat connection on R2.)

1Note: We do not require R to be the Riemann curvature tensor of some metric.



4. (4 points)
Recall the definition of the hyperboloids Hn

ν as pseudo-Riemannian submanifolds of index
ν − 1 in (Rn+1, 〈·, ·〉ν). Show that the position vector field ξ ∈ X(Rn+1) is a unit normal along
Hn
ν and prove that the corresponding Weingarten map is given by Sξ = −idTHn

ν
.

5. (12 (4+8) points)

(a) Similarly to Hn
ν we define for r > 0, n ≥ 2, and 1 ≤ ν ≤ n

Hn
ν (r) :=

{
〈ξ, ξ〉 =

n−ν+1∑
i=1

(ui)
2 −

n+1∑
i=n−ν+2

(ui)
2

= −r2
}
⊂ Rn+1,

viewed as pseudo-Riemannian submanifolds of (Rn+1, 〈·, ·〉ν). Show that Hn
1 (r) has

constant sectional curvature K = − 1
r2

.

(b) Prove that Hn
1 (r) is geodesically complete.

6. (12 points)
Let U ⊂ R2 be open and connected, and F : U → R a smooth map. Consider the graph of F ,
M := {(x, y, F (x, y)) ∈ U × R | (x, y) ∈ U}, as a submanifold of U × R. We denote by 〈·, ·〉
the standard scalar product on R3.

(a) Show that (M, 〈·, ·〉|TM×TM) and, hence, (U, g = (IdU × F)∗〈·, ·〉|TM×TM) is a Riemannian
manifold.

(b) Show that the sectional curvature K(Π) of (U, g) depends only on the base point p of the
tangent plane Π ⊂ TpU , i.e. K ∈ C∞(U).

(c) For a normal field ξ : U → TR3, p 7→ ξp ∈ (T(p,F (p))M)⊥, of your choice describe the
Weingarten map Sξ of (U, g) explicitly.

(d) Find and prove a formula for K in terms of F and its first and second partial derivatives.

(e) Show that K(p) > 0 ∀p ∈ U if and only if F is either a strictly convex map or a strictly
concave map. F is called strictly convex (concave) if its Hessian HF with respect to the
standard flat connection of U ⊂ R2 is positive definite (negative definite) at each p ∈ U .

7. (12 (2+2+2+6) points)
Let I ⊂ R be an open interval. For a smooth curve γ : I → R3 we define the arc-length of γ
from γ(t0) to γ(t) to be

L(t) =

t∫
t0

√
〈γ̇(s), γ̇(s)〉ds, t0, t ∈ I, t ≥ t0.

(a) Let γ(t) = (r cos t, r sin t, t), r > 0. Calculate L(t) for t0 fixed.

(b) For a > 0, b < 0 consider γ(t) = (aebt cos t, aebt sin t, 1). Show that for any t0 ∈ R the
limit lim

t→∞
L(t) is finite.



(c) Under the additional assumption that γ : I → R3 is an embedding, show that the
second fundamental form of the Riemannian submanifold γ(I) ⊂ (R3, 〈·, ·〉) is given by

II(γ̇, γ̇) = γ̈ −
∂ ln

(
∂L
∂t

)
∂t

γ̇.

(d) As above, assume that γ = (γ1, γ2, γ3)T is an embedding. Furthermore assume that
γ̇1(t) 6= 0 ∀t ∈ I. Show that the two vector fields Xγ, Yγ along γ(I),

Xγ = (−γ̇2, γ̇1, 0)T , Yγ = (−γ̇3, 0, γ̇1)T , X, Y ∈ Γγ(TR3),

are orthogonal to γ̇. Calculate ∇nor

γ̇ Xγ and ∇nor

γ̇ Yγ (∇ denotes the flat connection in R3).

(Hints: If you have trouble with the tangential and normal parts in the calculations of (c) and
(d), recall how to project a vector v in the n-dimensional Euclidean space (Rn, 〈·, ·〉)
orthogonally onto the line of another non-zero vector w: prRw(v) = 〈v,w〉

〈w,w〉w.)

8. (4 points)
Let (M, g) be a 2-dimensional isometrically embedded Riemannian submanifold of (R3, 〈·, ·〉),
such that the image of M under the embedding is oriented. Since dimM = 2, the sectional
curvature K can be viewed as a function on M , i.e. K ∈ C∞(M). For an isometric
embedding F : M → R3, let ξ : F (M)→ TR3 be a unit vector field on F (M), such that
ξq ⊥ TqF (M) for all q ∈ F (M). The principal curvatures k1, k2 ∈ C(F (M)) of the the surface
F (M) ⊂ R3 are defined as the eigenvalues of the corresponding shape tensor Sξ. Show that
k1(F (p))k2(F (p)) = K(p) for all p ∈M . Conclude that the product of the principal
curvatures does neither depend on the chosen unit normal field ξ nor on the chosen isometric
embedding F .

9. (8 points)
Let f ∈ C∞(R3), such that c ∈ R is a regular value of f . Consider M := f−1(c) as a
Riemannian submanifold of (R3, 〈·, ·〉).

(a) Find and prove formulae in terms of f and its derivatives for the second fundamental
form, the shape tensor, and the sectional curvature of (M, 〈·, ·〉|TM×TM) with respect to

the unit normal field ξ = grad(f)√
〈grad(f),grad(f)〉

along M .

(b) For A,B,C > 0, let f = Ax2 +By2 + Cz2, c = 1, and define M as in (a). Calculate the
sectional curvature K of M .


