Exercise sheet 11

- submission deadline: 17.8.2020 -

1. (4 points)

Let M be an n-dimensional manifold, $n \geq 1$. Fix a point $p \in M$ and consider the set of abstract curvature tensors $\left\{F: T_{p} M \times T_{p} M \times T_{p} M \rightarrow T_{p} M \mid F\right.$ is an abstract curvature tensor $\} \subset T_{p}^{1,3} M$. Show that they form a real vector space and determine its dimension in dependence of n.

2. (4 points)

Let ∇ be a connection in a vector bundle $E \rightarrow M$. For an E-valued 2-form $\alpha \in \Omega^{2}(M, E)$, that is a section $\alpha \in \Gamma\left(E \otimes T^{0,2} M\right), \alpha:(X, Y) \mapsto \alpha(X, Y) \in \Gamma(E)$, such that $\alpha(X, Y)=-\alpha(Y, X)$ for all $X, Y \in \mathfrak{X}(M)$, we define

$$
d^{\nabla} \alpha(X, Y, Z):=\sum_{\text {cyclic }}\left(\nabla_{X}(\alpha(Y, Z))-\alpha([X, Y], Z)\right) \quad \forall X, Y, Z \in \mathfrak{X}(M) .
$$

(i) Show that $d^{\nabla} \alpha \in \Omega^{3}(M, E)$, that is an E-valued 3-form. This means that $d^{\nabla} \alpha(X, Y, Z)=-d^{\nabla} \alpha(Y, X, Z), d^{\nabla} \alpha(X, Y, Z)=-d^{\nabla} \alpha(X, Z, Y)$, and $d^{\nabla} \alpha(X, Y, Z)=-d^{\nabla} \alpha(Z, Y, X)$ for all $X, Y, Z \in \mathfrak{X}(M)$.
(ii) Recall that a connection in $T M \rightarrow M$ induces a connection in $\operatorname{End}(T M) \rightarrow M$. The curvature tensor ${ }^{1}$ of $\nabla, R:=(X, Y) \mapsto \nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}$ for all $X, Y \in \mathfrak{X}(M)$, can be viewed as a $\operatorname{End}(T M)$-valued 2 -form $R \in \Omega^{2}(M, \operatorname{End}(E))$. R fulfils

$$
\sum_{\text {cyclic }} \nabla_{X}(R(Y, Z))=0
$$

for all $X, Y, Z \in \mathfrak{X}(M)$ with $[X, Y]=[Y, Z]=[Z, X]=0$. Show that this implies $d^{\nabla} R=0$.

3. (4 points)

Consider a curve $\gamma: I \subset \mathbb{R} \rightarrow \mathbb{R}^{2}, I \subset \mathbb{R}$ an open interval. Assume that $\gamma=\left(\gamma_{1}, \gamma_{2}\right)^{T}$ is also an embedding, which implies that $\gamma(I) \subset\left(\mathbb{R}^{2},\langle\cdot, \cdot\rangle\right)$ is a Riemannian submanifold $(\langle\cdot, \cdot\rangle$ denotes the standard Riemannian metric on $\left.\mathbb{R}^{2}\right)$. Check that the vector field $\xi=\left(-\dot{\gamma}_{2}, \dot{\gamma}_{1}\right)$ along γ is orthogonal to $\dot{\gamma}$. Show that the Weingarten map S^{ξ} is of the form $S_{\gamma(t)}^{\xi}=f(\gamma(t)) \cdot \operatorname{Id}_{\left.T \gamma(I) \subset T \mathbb{R}^{2}\right|_{\gamma(I)}}$, where $f \circ \gamma$ is a smooth function on I, and determine $f \circ \gamma$. Conclude that $S_{\gamma(t)}^{\xi} \neq 0$ if and only if $\dot{\gamma}(t)$ and $\ddot{\gamma}(t)$ are linearly independent. (Hint: If you are not sure where to start, try rewriting the equation $0=\bar{\nabla}_{\dot{\gamma}}(\langle\dot{\gamma}, \xi\rangle)$, where $\bar{\nabla}$ denotes the flat connection on \mathbb{R}^{2}.)

[^0]
4. (4 points)

Recall the definition of the hyperboloids H_{ν}^{n} as pseudo-Riemannian submanifolds of index $\nu-1$ in $\left(\mathbb{R}^{n+1},\langle\cdot, \cdot\rangle_{\nu}\right)$. Show that the position vector field $\xi \in \mathfrak{X}\left(\mathbb{R}^{n+1}\right)$ is a unit normal along H_{ν}^{n} and prove that the corresponding Weingarten map is given by $S^{\xi}=-\mathrm{id}_{T H_{\nu}^{n}}$.

5. (12 $(4+8)$ points)

(a) Similarly to H_{ν}^{n} we define for $r>0, n \geq 2$, and $1 \leq \nu \leq n$

$$
H_{\nu}^{n}(r):=\left\{\langle\xi, \xi\rangle=\sum_{i=1}^{n-\nu+1}\left(u^{i}\right)^{2}-\sum_{i=n-\nu+2}^{n+1}\left(u^{i}\right)^{2}=-r^{2}\right\} \subset \mathbb{R}^{n+1}
$$

viewed as pseudo-Riemannian submanifolds of $\left(\mathbb{R}^{n+1},\langle\cdot, \cdot\rangle_{\nu}\right)$. Show that $H_{1}^{n}(r)$ has constant sectional curvature $K=-\frac{1}{r^{2}}$.
(b) Prove that $H_{1}^{n}(r)$ is geodesically complete.

6. (12 points)

Let $U \subset \mathbb{R}^{2}$ be open and connected, and $F: U \rightarrow \mathbb{R}$ a smooth map. Consider the graph of F, $M:=\{(x, y, F(x, y)) \in U \times \mathbb{R} \mid(x, y) \in U\}$, as a submanifold of $U \times \mathbb{R}$. We denote by $\langle\cdot, \cdot\rangle$ the standard scalar product on \mathbb{R}^{3}.
(a) Show that $\left(M,\left.\langle\cdot, \cdot\rangle\right|_{T M \times T M}\right)$ and, hence, $\left(U, g=\left.\left(\mathrm{Id}_{\mathrm{U}} \times \mathrm{F}\right)^{*}\langle\cdot, \cdot\rangle\right|_{T M \times T M}\right)$ is a Riemannian manifold.
(b) Show that the sectional curvature $K(\Pi)$ of (U, g) depends only on the base point p of the tangent plane $\Pi \subset T_{p} U$, i.e. $K \in C^{\infty}(U)$.
(c) For a normal field $\xi: U \rightarrow T \mathbb{R}^{3}, p \mapsto \xi_{p} \in\left(T_{(p, F(p))} M\right)^{\perp}$, of your choice describe the Weingarten map S^{ξ} of (U, g) explicitly.
(d) Find and prove a formula for K in terms of F and its first and second partial derivatives.
(e) Show that $K(p)>0 \forall p \in U$ if and only if F is either a strictly convex map or a strictly concave map. F is called strictly convex (concave) if its Hessian H^{F} with respect to the standard flat connection of $U \subset \mathbb{R}^{2}$ is positive definite (negative definite) at each $p \in U$.

7. (12 ($2+2+2+6$) points)

Let $I \subset \mathbb{R}$ be an open interval. For a smooth curve $\gamma: I \rightarrow \mathbb{R}^{3}$ we define the arc-length of γ from $\gamma\left(t_{0}\right)$ to $\gamma(t)$ to be

$$
L(t)=\int_{t_{0}}^{t} \sqrt{\langle\dot{\gamma}(s), \dot{\gamma}(s)\rangle} d s, t_{0}, t \in I, t \geq t_{0}
$$

(a) Let $\gamma(t)=(r \cos t, r \sin t, t), r>0$. Calculate $L(t)$ for t_{0} fixed.
(b) For $a>0, b<0$ consider $\gamma(t)=\left(a e^{b t} \cos t, a e^{b t} \sin t, 1\right)$. Show that for any $t_{0} \in \mathbb{R}$ the limit $\lim _{t \rightarrow \infty} L(t)$ is finite.
(c) Under the additional assumption that $\gamma: I \rightarrow \mathbb{R}^{3}$ is an embedding, show that the second fundamental form of the Riemannian submanifold $\gamma(I) \subset\left(\mathbb{R}^{3},\langle\cdot, \cdot\rangle\right)$ is given by

$$
I I(\dot{\gamma}, \dot{\gamma})=\ddot{\gamma}-\frac{\partial \ln \left(\frac{\partial L}{\partial t}\right)}{\partial t} \dot{\gamma}
$$

(d) As above, assume that $\gamma=\left(\gamma^{1}, \gamma^{2}, \gamma^{3}\right)^{T}$ is an embedding. Furthermore assume that $\dot{\gamma}_{1}(t) \neq 0 \forall t \in I$. Show that the two vector fields X_{γ}, Y_{γ} along $\gamma(I)$,

$$
X_{\gamma}=\left(-\dot{\gamma}_{2}, \dot{\gamma}_{1}, 0\right)^{T}, \quad Y_{\gamma}=\left(-\dot{\gamma}_{3}, 0, \dot{\gamma}_{1}\right)^{T}, X, Y \in \Gamma_{\gamma}\left(T \mathbb{R}^{3}\right)
$$

are orthogonal to $\dot{\gamma}$. Calculate $\bar{\nabla}_{\dot{\gamma}}^{\text {nor }} X_{\gamma}$ and $\bar{\nabla}_{\dot{\gamma}}^{\text {nor }} Y_{\gamma}\left(\bar{\nabla}\right.$ denotes the flat connection in $\left.\mathbb{R}^{3}\right)$.
(Hints: If you have trouble with the tangential and normal parts in the calculations of (c) and (d), recall how to project a vector v in the n-dimensional Euclidean space $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle\right)$ orthogonally onto the line of another non-zero vector w : $\operatorname{pr}_{\mathbb{R} w}(v)=\frac{\langle v, w\rangle}{\langle w, w\rangle} w$.)

8. (4 points)

Let (M, g) be a 2-dimensional isometrically embedded Riemannian submanifold of $\left(\mathbb{R}^{3},\langle\cdot, \cdot\rangle\right)$, such that the image of M under the embedding is oriented. Since $\operatorname{dim} M=2$, the sectional curvature K can be viewed as a function on M, i.e. $K \in C^{\infty}(M)$. For an isometric embedding $F: M \rightarrow \mathbb{R}^{3}$, let $\xi: F(M) \rightarrow T \mathbb{R}^{3}$ be a unit vector field on $F(M)$, such that $\xi_{q} \perp T_{q} F(M)$ for all $q \in F(M)$. The principal curvatures $k_{1}, k_{2} \in C(F(M))$ of the the surface $F(M) \subset \mathbb{R}^{3}$ are defined as the eigenvalues of the corresponding shape tensor S^{ξ}. Show that $k_{1}(F(p)) k_{2}(F(p))=K(p)$ for all $p \in M$. Conclude that the product of the principal curvatures does neither depend on the chosen unit normal field ξ nor on the chosen isometric embedding F.

9. (8 points)

Let $f \in C^{\infty}\left(\mathbb{R}^{3}\right)$, such that $c \in \mathbb{R}$ is a regular value of f. Consider $M:=f^{-1}(c)$ as a Riemannian submanifold of $\left(\mathbb{R}^{3},\langle\cdot, \cdot\rangle\right)$.
(a) Find and prove formulae in terms of f and its derivatives for the second fundamental form, the shape tensor, and the sectional curvature of $\left(M,\left.\langle\cdot, \cdot\rangle\right|_{T M \times T M}\right)$ with respect to the unit normal field $\xi=\frac{\operatorname{grad}(f)}{\sqrt{\langle g r a d}(f), \operatorname{grad}(f)\rangle}$ along M.
(b) For $A, B, C>0$, let $f=A x^{2}+B y^{2}+C z^{2}, c=1$, and define M as in (a). Calculate the sectional curvature K of M.

[^0]: ${ }^{1}$ Note: We do not require R to be the Riemann curvature tensor of some metric.

