Differential geometry Lecture 9: Infinitesimal generators of one parameter groups of diffeomorphisms and the Lie derivative of vector fields

David Lindemann

University of Hamburg Department of Mathematics Analysis and Differential Geometry & RTG 1670

19. May 2020



■ Infinitesimal generators of one parameter groups of diffeomorphisms

**2** The Lie derivative of vector fields

## Recap of lecture 8:

- defined the differential of smooth maps as a smooth map between tangent bundles
- defined Lie algebras & Lie bracket of vector fields
- showed that partial derivatives commute
- defined integral curves and (local) flows of vector fields
- defined (local) one parameter groups of diffeomorphisms
- showed that (local) flows of vector fields are (local) one parameter groups of diffeomorphisms

We have seen that local flows are local one parameter groups of diffeomorphisms.

**Question:** Is there a meaningful way to reverse the direction in that statement?

Answer: Yes!

## Definition

Let  $\varphi: I \times U \to M$  be a local one parameter group of diffeomorphisms. The **infinitesimal generator of**  $\varphi$  is defined to be the map

$$U \ni p \mapsto \left. \frac{\partial}{\partial t} \right|_{t=0} (\varphi_t(p)) \in T_p M.$$

 $\rightsquigarrow$  does the above equation define a local vector field?

#### Lemma

Infinitesimal generators of local one parameter group of diffeomorphisms  $\varphi : I \times U \to M$  are local vector fields in  $\mathfrak{X}(U)$ . Infinitesimal generators of one parameter groups of diffeomorphisms  $\varphi : \mathbb{R} \times M \to M$  are **complete**.

# Proof: (next page)

- any local one parameter group of diffeomorphisms is smooth as a map
- hence the map  $X : p \mapsto X_p := \frac{\partial}{\partial t} \big|_{t=0} (\varphi_t(p))$  is smooth, meaning that  $X \in \mathfrak{X}(U)$
- in particular for any global one parameter group of diffeomorphisms φ : ℝ × M → M, X ∈ 𝔅(M)
- integral curves at  $p \in M$  of X are given by

 $t\mapsto \varphi_t(p)$ 

and are defined for all  $t \in \mathbb{R}$ 

thus: X is complete.

```
Recall that locally, smooth m-dim. submanifolds of \mathbb{R}^n can be written as the graph of a smooth map f: U \subset \mathbb{R}^m \to \mathbb{R}^{n-m}.
 \rightsquigarrow (\operatorname{id}_{TU}, df) "pushes" a vector field from the domain of definition of f to its graph, and on the other hand we know how to "pull back" vector fields in U \times \mathbb{R}^{n-m} that are tangential to graph(f) to U.
```

**Question:** How can we generalize these concepts in a **coordinate free manner** for smooth manifolds?

**Answer:** (next page)

#### Definition

Let  $F : M \to N$  be a diffeomorphism and let  $X \in \mathfrak{X}(M)$ ,  $Y \in \mathfrak{X}(N)$ . The **pushforward** of X under F is the vector field  $F_*X \in \mathfrak{X}(N)$  given by

$$(F_*X)_q := dF_{F^{-1}(q)}\left(X_{F^{-1}(q)}\right) \quad \forall q \in N.$$

The **pullback** of Y under F is the vector field  $F^*Y \in \mathfrak{X}(M)$  given by

$$(F^*Y)_{p} := d(F^{-1})_{F(p)} (Y_{F(p)}) \quad \forall p \in M.$$

Note that  $d(F^{-1})_{F(p)} = (dF_p)^{-1}$  for all  $p \in M$ .

**Note:** Diffeomorphisms map integral curves  $\gamma$  of vector fields X to integral curves  $F \circ \gamma$  of  $F_*X$ . [Exercise!]

Assume that  $X \in \mathfrak{X}(M)$  does not vanish everywhere. Then near any point where X does not vanish we can find local coordinates on M in which X has a particularly simple form:

### **Proposition A**

Let  $X \in \mathfrak{X}(M)$  and  $p \in M$ , such that  $X_p \neq 0$ . Then there exist local coordinates on an open neighbourhood  $U \subset M$  of p, such that X is of the form

$$X_q = \left. \frac{\partial}{\partial x^1} \right|_q$$

for all  $q \in U$ .

#### Proof:

- X is a section in TM, hence in particular continuous
- find open neighbourhood *U* of  $p \in M$  such that  $X_q \neq 0$  $\forall q \in U$
- w.l.o.g.: U is contained in a chart neighbourhood of an atlas on M (continued on next page)

- choose a local coordinate system \$\phi = (y^1, \ldots, y^n)\$ on \$U\$ and let \$(u^1, \ldots, u^n)\$ denote the canonical coordinates on \$\mathbb{R}^n\$
- after possibly shrinking *U* and re-ordering the  $y^i$ 's, can assume w.l.o.g. that  $\phi_*(X) \in \mathfrak{X}(\phi(U))$  is transversal along the inclusion map  $\{u^1 = 0\} \cap \phi(U) \hookrightarrow \mathbb{R}^n$  to  $N := \{u^1 = 0\} \cap \phi(U)$ , meaning that

$$(\phi_*X)_q \not\in T_qN \cong T_q\{u^1=0\} \subset T_q\mathbb{R}^n$$

for all  $q \in N$ 

 after again possibly shrinking U, let Φ : I × φ(U) → ℝ<sup>n</sup> denote a local flow of φ<sub>\*</sub>X

since

$$(\phi_*X)_q = \left. \frac{\partial}{\partial t} \right|_{t=0} \Phi_t(q) \neq 0$$

by the **transversality condition**, we obtain [recall: F local diffeo near  $p \Leftrightarrow dF_p$  invertible] after possibly **shrinking** I that

$$F := \Phi|_{I \times N} : I \times N \to \Phi(I \times N)$$

is a diffeomorphism, where I is the "time" part so that  $\Phi(t,q) := \Phi_t(q)$ , and  $\Phi(I \times N) \subset \mathbb{R}^n$  is open

- denote the canonical coordinates in I by  $u^1$  and in N by  $(u^2, \ldots, u^n)$ , this is **compatible** with the canonical inclusion  $I \times N \subset \mathbb{R}^n$
- hence:

$$dF_{(u^1,u^2,\ldots,u^n)}\left(\left.\frac{\partial}{\partial u^1}\right|_{(u^1,u^2,\ldots,u^n)}\right) = (\phi_*X)_{\Phi(u^1,u^2,\ldots,u^n)}$$

for all  $(u^1, \ldots, u^n) \in I \times N$ 

• define coordinates on  $\phi^{-1}(\phi(U) \cap \Phi(I \times N)) \subset M$  by

$$\psi = (x^1, \dots, x^n) :=$$
  
$$F^{-1} \circ \phi : \phi^{-1}(\phi(U) \cap \Phi(I \times N)) \to F^{-1}(\phi(U) \cap (I \times N)) \subset \mathbb{R}^n$$

obtain for the local formula of X in the local coordinate system ψ and all q ∈ φ<sup>-1</sup>(φ(U) ∩ Φ(I × N))

$$X_q = \left. \frac{\partial}{\partial x^1} \right|_q$$

In local coordinates as the ones constructed in Proposition A, local flows look particularly simple:

#### **Corollary A**

Any local flow of X near p as in Proposition A is, if  $X_p \neq 0$ , in the local coordinate system  $\psi = (x^1, \dots, x^n)$  of the form

$$\psi(\varphi_t(q)) = \psi(q) + te_1,$$

for all  $q \in U$ , where  $e_1$  denotes the first unit vector in  $\mathbb{R}^n$  in canonical coordinates, for |t| small enough. Furthermore

$$d\varphi_t\left(\left.\frac{\partial}{\partial x^i}\right|_q
ight)=\left.\frac{\partial}{\partial x^i}\right|_{\psi^{-1}(\psi(q)+te_1)}$$

for all  $q \in U$  and t small enough, where we understand the differential of  $\varphi_t$  for t fixed.

Next we want to relate the Lie algebra structure on vector fields to their local flows. In order to do so, we need the following:

## Definition

Let  $\phi: M \to N$  be a smooth map. Two vector fields  $X \in \mathfrak{X}(M)$  and  $\overline{X} \in \mathfrak{X}(N)$  are called  $\phi$ -related if  $d\phi(X) = \overline{X}_{\phi}$ . One then writes  $X \sim_{\phi} \overline{X}$ . Equivalent definition:  $X \sim_{\phi} \overline{X}$  if  $X(f \circ \phi) = Y(f) \circ \phi$  for all  $f \in C^{\infty}(N)$ .

 $\phi$ -related is preserved under the Lie bracket:

## Lemma A

Let 
$$\phi: M \to N$$
 be smooth,  $X, Y \in \mathfrak{X}(M)$  and  $\overline{X}, \overline{Y} \in \mathfrak{X}(N)$ ,  
such that  $X \sim_{\phi} \overline{X}$  and  $Y \sim_{\phi} \overline{Y}$ . Then  $[X, Y] \sim_{\phi} [\overline{X}, \overline{Y}]$ .

# Proof:

$$\begin{split} & [X, Y](f \circ \phi) = X(Y(f \circ \phi)) - Y(X(f \circ \phi)) \\ & = X(\overline{Y}(f) \circ \phi) - Y(\overline{X}(f) \circ \phi) = (\overline{X}(\overline{Y}(f)) - \overline{Y}(\overline{X}(f))) \circ \phi \end{split}$$

for all  $f \in C^{\infty}(N)$ .

## **Corollary B**

For **diffeomorphisms**  $F : M \to N$ ,

$$F_*[X, Y] = [F_*X, F_*Y]$$

for all  $X, Y \in \mathfrak{X}(M)$  and

$$F^*[\overline{X},\overline{Y}] = [F^*\overline{X},F^*\overline{Y}]$$

for all  $\overline{X}, \overline{Y} \in \mathfrak{X}(N)$ .

We further have the following fact which is essential for studying submanifolds:

#### Remark

In the case that  $\phi$  is an embedding and dim $(M) < \dim(N)$ , the previous lemma implies that (locally and globally)  $[\overline{X}, \overline{Y}] \circ \phi$  does **not** depend on the (local) extensions of  $\overline{X} \circ \phi$  and  $\overline{Y} \circ \phi$  to vector fields on in N open neighbourhoods of points in  $\phi(M)$ .

The Lie bracket of vector fields and their flows are related as follows:

## Proposition B

Let  $X, Y \in \mathfrak{X}(M)$  and for  $p \in M$  arbitrary but fixed let  $\varphi : I \times U \to M$  be a local flow of X near p. Then

$$[X,Y]_{\rho} = \left. \frac{\partial}{\partial t} \right|_{t=0} (\varphi_t^* Y)_{\rho}.$$

**Proof:** (next page)

- observe:  $\frac{\partial}{\partial t}|_{t=0} (\varphi_t^* Y)_p$  is actually a well-defined expression
- follows from  $(\varphi_t^* Y)_p \in T_p M$  for all  $t \in I$  and the fact that  $T_p M$  is a **real vector space**
- in the following:  $d\varphi_t = \text{differential of } \varphi_t \text{ for } t \in I \text{ fixed}.$
- first case:  $X_p \neq 0$
- Prop. A & Cor. B  $\rightsquigarrow$  w.l.o.g. assume that we have chosen **local coordinates**  $(x^1, \ldots, x^n)$  on  $U \subset M$  with  $p \in M$ , such that  $X_q = \frac{\partial}{\partial x^1}\Big|_q$  for all  $q \in U$
- recall: φ is a local one parameter group of diffeomorphisms, hence φ<sub>-t</sub> = φ<sub>t</sub><sup>-1</sup> whenever defined
- implies that for |t| small enough we have

$$(\varphi_t^* Y)_{\rho} = d(\varphi_t^{-1})_{\varphi_t(\rho)} \left( Y_{\varphi_t(\rho)} \right) = (d\varphi_{-t})_{\varphi_t(\rho)} \left( Y_{\varphi_t(\rho)} \right)$$

observe that Corollary A shows

• in the local coordinates  $(x^1, \ldots, x^n)$ , Y is of the form

$$Y_q = \sum_{i=1}^n Y^i(q) \left. rac{\partial}{\partial x^i} \right|_q$$

for all  $q \in U$ 

this implies

$$(\varphi_t^* Y)_p = \sum_{i=1}^n Y^i(\varphi_t(p)) \left. \frac{\partial}{\partial x^i} \right|_p$$

hence:

$$\frac{\partial}{\partial t}\Big|_{t=0} (\varphi_t^* Y)_p = \sum_{i=1}^n dY^i \left( \left. \frac{\partial}{\partial x^1} \right|_p \right) \left. \frac{\partial}{\partial x^i} \right|_p$$

which coincides with  $[X,Y]_{
ho} = \left[rac{\partial}{\partial x^i},Y
ight]_{
ho}$ 

• next case:  $X_p = 0$ 

• if  $X_q = 0$  for all q in an open neighbourhood U of p, the local flow of X restricted to U will be the identity for all  $t \in I$ 

hence,

$$\left. \frac{\partial}{\partial t} \right|_{t=0} (\varphi_t^* Y)_p = 0$$

• furthermore for any  $f \in C^{\infty}(M)$  observe that X(f) vanishes on U and thus

$$[X, Y]_{p}(f) = X_{p}(Y(f)) - Y_{p}(X(f)) = 0$$

- last case: X<sub>p</sub> = 0 and X does not vanish identically on some open neighbourhood of p
- let  $U \subset M$  be a **compactly embedded** open neighbourhood of p and choose a sequence  $\{p_n\}_{n \in \mathbb{N}}$ ,  $\lim_{n \to \infty} p_n = p$ , such that  $X_{p_n} \neq 0$  and  $p_n \neq p$  for all  $n \in \mathbb{N}$
- then

$$[X,Y]_{\rho_n} = \left. \frac{\partial}{\partial t} \right|_{t=0} (\varphi_t^* Y)_{\rho_n}$$

for all  $n \in \mathbb{N}$ 

• continuity in the base point of both sides of the above expression  $\rightsquigarrow$  by taking limits  $n \rightarrow \infty$  on both sides conclude that  $[X, Y]_p = \frac{\partial}{\partial t}\Big|_{t=0} (\varphi_t^* Y)_p$  as claimed

As announced, we can now define the Lie derivative of vector fields which is **one way** of measuring infinitesimal changes in vector fields in the direction of an other vector field:

#### Definition

The **Lie derivative** of a vector field  $Y \in \mathfrak{X}(M)$  in direction of  $X \in \mathfrak{X}(M)$  is defined as

 $\mathcal{L}_X(Y) := [X, Y] \in \mathfrak{X}(M).$ 

## Examples

- $\mathcal{L}_X(X) = 0$
- $\mathcal{L}_{\frac{\partial}{\partial x^{i}}}\left(\frac{\partial}{\partial x^{j}}\right) = 0$  for any local coordinates  $(x^{1}, \dots, x^{n})$ ■  $X, Y \in \mathfrak{X}(\mathbb{R}^{n})$ ,

$$X = \sum_{i} c^{i} \frac{\partial}{\partial u^{i}}, \quad Y = \sum_{i} Y^{i} \frac{\partial}{\partial u^{i}},$$

 $c = (c^1, \dots, c^n)$  a constant vector, then

$$[X,Y] = \sum_{i} dY^{i}(c) \frac{\partial}{\partial u^{i}}$$

# **END OF LECTURE 9**

#### Next lecture:

- the cotangent bundle
- one forms
- tensor fields