Differential geometry Lecture 8: Lie bracket of vector fields, integral curves, flows

David Lindemann

University of Hamburg Department of Mathematics Analysis and Differential Geometry & RTG 1670

15. May 2020

1 Lie bracket of vector fields

2 Integral curves of vector fields

B Local and global flows of vector fields

Recap of lecture 7:

- defined tangent bundle
- discussed Strong Whitney Embedding Theorem
- defined vector fields on smooth manifolds
- discussed action of vector fields on smooth functions, also in local coordinates
- defined coordinate vector fields
- showed that vector fields can be viewed as **derivations on** $C^{\infty}(M)$
- erratum: forgot to give example of (non-canonical) choice of VB structure on $\bigsqcup_{p \in M} T_p M$

Having defined the tangent bundle of smooth manifolds and its sections, smooth vector fields, we have all necessary tools at hand to give a **global** definition of the differential of smooth maps:

Definition

Let M, N be smooth manifolds, $F : M \rightarrow N$ a smooth map. The **differential of** F is defined as the smooth map

$$dF: TM \to TN, \quad dF|_{\pi^{-1}(p)} = dF_p \quad \forall p \in M.$$

In local coordinates (x^1, \ldots, x^m) of M and (y^1, \ldots, y^n) of N with appropriate domain we have

$$dF\left(\frac{\partial}{\partial x^{i}}\right) = \sum_{j=1}^{n} \frac{\partial F^{j}}{\partial x^{i}} \frac{\partial}{\partial y^{j}}, \quad F^{j} = y^{j} \circ F, \quad \forall 1 \leq i \leq m.$$

The (non-pointwise) Jacobi matrix in given local coordinates is defined similarly by allowing the basepoint to vary and, as a map from chart neighbourhoods in M to $Mat(n \times n, \mathbb{R})$, is also smooth.

Next, some Lie algebra:

Definition

Let V be a real vector space. A Lie bracket on V is a skew-symmetric bilinear map

 $[\cdot, \cdot]: V \times V \to V, \quad (X, Y) \mapsto [X, Y]$

that fulfils the Jacobi identity

[X, [Y, Z]] = [[X, Y], Z] + [Y, [X, Z]]

for all $X, Y, Z \in V$. A vector space V together with a Lie bracket is called **Lie algebra**.

Note: The above Jacobi identity can be written as

$$\sum_{ ext{cyclic}} [X, [Y, Z]] = 0 \quad \forall X, Y, Z \in V,$$

which is easier to remember.

Examples

- \mathbb{R}^3 together with the cross product $[X, Y] := X \times Y$ is a Lie algebra
- End(\mathbb{R}^n) = Mat($n \times n$, \mathbb{R}) with [A, B] := AB BA is a Lie algebra
- for any commutative real algebra A, Der(A) is a possibly infinite dimensional Lie algebra with $[D_1, D_2](a) := D_1(D_2(a)) D_2(D_1(a)) \quad \forall a \in A, D_1, D_2 \in Der(A)$

 $\rightsquigarrow \mathfrak{X}(M)$ is isomorphic as $C^{\infty}(M)$ -module to $Der(C^{\infty}(M))$, points to Lie algebra structure on the real vector space of vector fields

```
Note: dim(\mathfrak{X}(M)) = \infty if dim(M) > 0
```

Proposition A

The bilinear map on vector fields on a smooth manifold M

 $[\cdot, \cdot] : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M), \quad (X, Y) \mapsto [X, Y],$ [X, Y](f) := X(Y(f)) - Y(X(f))

 $\forall X, Y \in \mathfrak{X}(M) \ \forall f \in C^{\infty}(M)$, is a Lie bracket on the vector space $\mathfrak{X}(M)$.

Proof:

• we have
$$X(f) \in C^{\infty}(M)$$
, $Y(f) \in C^{\infty}(M)$, hence $X(Y(f)) - Y(X(f)) \in C^{\infty}(M)$ for all $f \in C^{\infty}(M)$.

• at each $p \in M$ we have

 $[X, Y]_p(f) = X_p(Y(f)) - Y_p(X(f)) \quad \text{[note: skew in } X, Y]$

- hence, $[X, Y]_{\rho} : C^{\infty}(M) \to \mathbb{R}$ is \mathbb{R} -linear
- Leibniz rule: stubbornly write down $[X, Y]_p(fg)$ for $f, g \in C^{\infty}(M)$ arbitrary \checkmark

■ summarizing: [X, Y] is a vector field $\forall X, Y \in \mathfrak{X}(M)$ and $[\cdot, \cdot]$ is indeed a Lie bracket

Recall that partial derivatives $\frac{\partial}{\partial u^i}$ in \mathbb{R}^n commute. Question: Is the same true for general smooth manifolds? Answer: Yes!

Lemma

Let M be a smooth manifold and $\varphi = (x^1, \ldots, x^n)$ be a local coordinate system. Then

$$\left[\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right] = 0$$

 $\forall \ 1 \leq i \leq n, \ 1 \leq j \leq n$., i.e. coordinate vector fields **commute**.

Remark: The above lemma can be formulated as

$$\frac{\partial}{\partial x^{i}} \left(\frac{\partial f}{\partial x^{j}} \right) = \frac{\partial}{\partial x^{j}} \left(\frac{\partial f}{\partial x^{i}} \right)$$

for all $f \in C^{\infty}(M)$. **Notation:** $\frac{\partial^2 f}{\partial x^i \partial x^j} := \frac{\partial}{\partial x^i} \left(\frac{\partial f}{\partial x^j} \right)$, analogously for higher derivatives.

Warning: Careful when changing coordinates!

Proof (of the lemma):

• let \hat{f} be a coordinate representative for f in local coordinates (x^1, \ldots, x^n) , so that $\hat{f} = f \circ \varphi^{-1}$

•
$$\rightsquigarrow f = \widehat{f}(x^1, \ldots, x^n)$$

- Q: Do the coordinate vector fields act on f(x¹,...,xⁿ) as expected?
- A: Yes! Obtain

$$\left(\frac{\partial}{\partial x^{i}}(f)\right)(p) = \left(\frac{\partial}{\partial u^{i}}\left(\widehat{f}(u^{1},\ldots,u^{n})\right)\right)(\varphi(p)).$$

• hence, $\frac{\partial}{\partial x^i}(f) = \frac{\partial}{\partial u^i}\left(\widehat{f}\right) \circ \varphi$

[note: actually follows from Lecture 7, i.e. $\frac{\widehat{\partial}}{\partial x^i} = \frac{\partial}{\partial u^i}$] summarizing:

$$\frac{\partial}{\partial x^{i}} \left(\frac{\partial}{\partial x^{j}}(f) \right) = \frac{\partial}{\partial x^{i}} \left(\frac{\partial}{\partial u^{j}} \left(\hat{f} \right) \circ \varphi \right) = \frac{\partial}{\partial u^{i}} \left(\frac{\partial}{\partial u^{j}} \left(\hat{f} \right) \right) \circ \varphi$$
$$= \frac{\partial}{\partial u^{j}} \left(\frac{\partial}{\partial u^{i}} \left(\hat{f} \right) \right) \circ \varphi = \dots = \frac{\partial}{\partial x^{j}} \left(\frac{\partial}{\partial x^{i}}(f) \right) \quad \Box$$

Question: Is the Lie bracket on vector fields $C^{\infty}(M)$ -linear? **Answer:** No!

Lemma

For any smooth manifold M

 $[X, fY] = df(X)Y + f[X, Y] \quad \forall X, Y \in \mathfrak{X}(M), \ \forall f \in C^{\infty}(M).$

Proof: Exercise!

Smooth maps $F : U \subset \mathbb{R}^m \to \mathbb{R}^n$, $U \subset \mathbb{R}^m$ open, can be visualized as their respective graphs. We see that for each vector field $X \in \mathfrak{X}(U)$ the smooth map

 $U \ni p \mapsto (X_p, dF_p(X_p)) \in T_{(p,F(p))}(U imes \mathbb{R}^n)$

describes not a vector field in $U \times \mathbb{R}^n$, but a vector field **along** the graph of F that is **tangential to** the graph of F. If we only look at the second factor [note: first factor is the identity, no new info] we might call $p \mapsto dF_p(X_p) \in T_{F(p)}\mathbb{R}^n$ a vector field along F.

 \rightsquigarrow can be easily generalized for smooth manifolds (next page)

Let $\phi: M \to N$ be a smooth map and let $X \in \mathfrak{X}(M)$. The smooth map

$$M
i p \mapsto (d\phi(X))_{
ho} = d\phi_{
ho}(X_{
ho}) \in T_{\phi(
ho)}N$$

is called a **vector field along** ϕ .

Probably the most prominent examples of vector fields along maps are **velocity vector fields** of smooth curves:

Definition

Let $I \subset \mathbb{R}$ be an interval (equipped with canonical coordinate t), M a smooth manifold, and $\gamma : I \to M$ a smooth curve. The **velocity vector field** (or simply **velocity**) of γ is the vector field along γ

$$\gamma' := d\gamma\left(rac{\partial}{\partial t}
ight), \quad t\mapsto \gamma'(t),$$

(continued on next page)

(continuation) Note that the **explicit form** of $\gamma'(t)$ depends on the local coordinates $\varphi = (x^1, \dots, x^n)$ on M:

$$\gamma'(t) = \sum_{i=1}^{n} \left. \frac{\partial \gamma^{i}}{\partial t}(t) \left. \frac{\partial}{\partial x^{i}} \right|_{\gamma(t)} \in T_{\gamma(t)} M$$

for all $t \in I$, where $\gamma^i = x^i(\gamma)$ for all $1 \le i \le n$.

Remark: The above relates our definition of tangent vectors in \mathbb{R}^n as equivalence classes of smooth curves to smooth manifolds.

Now, recall the definition of **integral curves** in setting of analysis on $\mathbb{R}^n.$

Question: Can this be generalized to smooth manifolds? **Answer:** Of course!

Let $X \in \mathfrak{X}(M)$ for a smooth manifold M. An **integral curve** of X at $p \in M$ is a smooth curve $\gamma : I \to M$, where $I \subset \mathbb{R}$ is an interval, $0 \in I$, such that $\gamma(0) = p$ and

$$\gamma'(t) = X_{\gamma(t)}$$

for all $t \in I$. An integral curve $\gamma : I \to M$ of X is called **maximal** if there is no interval $I \supseteq I$, such that $\widetilde{I} \setminus I \neq \emptyset$ and there exists an integral curve $\widetilde{\gamma} : \widetilde{I} \to M$ of X with $\widetilde{\gamma}|_I = \gamma$. A vector field X is called **complete** if every maximal integral curve $\gamma : I \to M$ is defined on $I = \mathbb{R}$.

Questions:

- What kind of equation is $\gamma'(t) = X_{\gamma(t)}$?
- How does it look like locally?
- Are local solutions w.r.t. some initial values unique?
- Are maximal solutions w.r.t. some initial values unique?
- Do local solutions depend **smoothly** on initial values?

Recommended reading: [A] "Ordinary Differential Equations" (3rd edition, 1984), V.I. Arnold, Springer Universitext **Answers:**

- $\gamma'(t) = X_{\gamma(t)}$ is a first order ODE.
- Like a first order ODE for a curve in ℝⁿ. For a local coordinate system φ = (x¹,...,xⁿ) on M so that the domain of φ contains γ(0), the equation can be written in has coordinate representation

$$\dot{u}^i = \widehat{X}^i(u^1,\ldots,u^n), \ u^i(0) = x^i(p) \quad \forall 1 \leq i \leq n.$$

- Yes, local solutions coincide if defined on same interval [A, Ch. 2.7]
- Yes [A, Ch. 2.7].
- Yes [A, Ch. 2.7].

Examples

 Let X ∈ 𝔅(ℝ²) in canonical coordinates (u¹, u²) = (x, y) be given by

$$X = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}$$

Its integral curves at any point $(x_0, y_0) \in \mathbb{R}^2$ are of the form

$$\gamma: t \mapsto \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}.$$

■ For
$$X \in \mathfrak{X}(\mathbb{R}^n)$$
, $X = \sum c^i \frac{\partial}{\partial u^i}$, c^i constant for all $1 \le i \le n$, its maximal integral curves are of the form

$$\gamma: t \mapsto p + (tc^1, \ldots, tc^n).$$

In general, it is **very difficult** to answer whether a given vector field **is complete or not**. We have, however, the following results: (next page)

Proposition B

- Vector fields on compact smooth manifolds are complete.
- 2 Vector fields with compact support are complete.

Proof (sketch):

- 1) assume γ : (a, b) → M maximal integral curve of fixed VF X ∈ 𝔅(M) and b < ∞
- \blacksquare show that $\lim_{t \to b} \gamma(t)$ converges to a point $q \in M$
- find integral curve $\widetilde{\gamma}$ at q of X
- show that $\widetilde{\gamma}$ extends γ , get contradiction to $b < \infty$
- same if $a > -\infty$
- **2)** assume $\gamma : (a, b) \to M$ maximal integral curve of fixed VF $X \in \mathfrak{X}(M)$ and $b < \infty$
- proceed as before, except need to additionally show that $\lim_{t \to b} \gamma(t)$ is in $\operatorname{supp}(X)$

■ note: every maximal integral curve at $p \in \overline{M \setminus \text{supp}(X)}$ is a constant curve **Question:** Can we (locally) describe all integral curves of a vector fields "at once"?

Answer: Yes, leads to the following definition:

Definition

A local one parameter group of diffeomorphisms on a smooth manifold M is a smooth map

 $\varphi: I \times U \to M, \quad (t,p) \mapsto \varphi_t(p),$

such that $I \subset \mathbb{R}$ is an interval containing $0 \in \mathbb{R}$, $U \subset M$ is open, $\varphi_0 = \operatorname{id}_U$, $\varphi_t : M \to M$ is a diffeomorphism for all $t \in I$, and

 $\varphi_{s+t}(p) = \varphi_s(\varphi_t(p))$

for all $p \in U$ and all $s, t \in I$ with $(s + t) \in I$ and $\varphi_t(p) \in U$. A **one parameter group of diffeomorphisms** is a local one parameter group of diffeomorphisms with $I = \mathbb{R}$ and U = M.

 \rightsquigarrow how is this connected to integral curves of vector fields?

A local flow of a vector field $X \in \mathfrak{X}(M)$ is a smooth map

 $\varphi: I \times U \to M, \quad (t,p) \mapsto \varphi_t(p),$

for some interval $I \subset \mathbb{R}$ containing $0 \in \mathbb{R}$ and an open set $U \subset M$, such that $\varphi_0 = \mathrm{id}_U$ and for every $p \in U$ fixed, the smooth curve

 $t\mapsto \varphi_t(p)$

is an integral curve of X. This just means that

$$\frac{\partial}{\partial t}(\varphi_t(p)) = X_{\varphi_t(p)}$$

We say that a local flow of X is defined near a point $p \in M$ if $p \in U$. A local flow of X is called **(global)** flow of X if $I = \mathbb{R}$ and U = M.

Question: Does every vector field admit a local flow near every point?

Answer: Yes!

Lemma

Every vector field on M admits a local flow near any given point $p \in M$.

Proof:

- fix $X \in \mathfrak{X}(M)$ and $p \in M$
- choose bump function $b: M \to \mathbb{R}$, such that on some open neighbourhood $U \subset M$ of $p, b|_U \equiv 1$
- the maximal integral curves at p of bX are each defined on R by Proposition B and depend smoothly on initial condition p ∈ M
- \blacksquare already shows: vector fields with compact support admit a global flow φ
- fix $\varepsilon > 0$ and choose an open subset $V \subset U$, such that V is an open neighbourhood of p and for all $q \in V$ and all $t \in (-\varepsilon, \varepsilon), \varphi_t(q) \in U$

(continued on next page)

(continuation of proof)

- geometrically: the set V is not moved out of U by the flow of bX for $|t| < \varepsilon$
- X and bX coincide on U, hence their integral curves at all $q \in V$ for $I = (-\varepsilon, \varepsilon)$ also coincide
- hence, the flow φ of *bX* restricted to $(-\varepsilon, \varepsilon) \times V$ is a local flow of *X*

Now we know that local flows of vector fields always exist near any given point. Furthermore, the following holds true:

Proposition C

Local flows of vector fields are local one parameter groups of diffeomorphisms.

Proof: (next page)

(continuation of proof)

• suffices to show that for a given vector field X with two integral curves $\gamma : (a, b) \to M$ at $p = \gamma(0)$ and $\widetilde{\gamma} : (\widetilde{a}, \widetilde{b}) \to M$ with $\gamma(s) = \widetilde{\gamma}(0)$ for some $s \in (a, b)$ we have

$$\gamma(s+t)=\widetilde{\gamma}(t)$$

for all t, such that $(s + t) \in (a, b)$ and $t \in (\widetilde{a}, \widetilde{b})$

- read: " $\widetilde{\gamma}$ extends γ "
- follows from the fact that t → γ(s + t) is an integral curve of X (for s small enough) and uniqueness of local solutions:

$$(\gamma(s+\cdot))'(t) \stackrel{ ext{chain rule}}{=} \gamma'(s+t) = X_{\gamma(s+t)} = X_{(\gamma(s+\cdot))(t)}.$$

• hence, for ϕ a local flow of X we obtain

$$\phi_t(\phi_s(p)) = \phi_t(\gamma(s)) = \widetilde{\gamma}(t) = \gamma(s+t) = \phi_{s+t}(p)$$

Immediate consequence:

Corollary

Assume that $X \in \mathfrak{X}(M)$ is complete. Then its flow is a one parameter group of diffeomorphisms.

END OF LECTURE 8

Next lecture:

- reverse direction of Proposition C
- pullbacks, pushforwards, rectifications
- Lie derivative of vector fields
- (maybe start with cotangent bundle)