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Recap of lecture 7:

defined tangent bundle

discussed Strong Whitney Embedding Theorem

defined vector fields on smooth manifolds

discussed action of vector fields on smooth functions, also
in local coordinates

defined coordinate vector fields

showed that vector fields can be viewed as derivations on
C∞(M)

erratum: forgot to give example of (non-canonical) choice
of VB structure on

⊔
p∈M

TpM
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Lie bracket of vector fields

Having defined the tangent bundle of smooth manifolds and its
sections, smooth vector fields, we have all necessary tools at
hand to give a global definition of the differential of smooth
maps:

Definition

Let M,N be smooth manifolds, F : M → N a smooth map.
The differential of F is defined as the smooth map

dF : TM → TN, dF |π−1(p) = dFp ∀p ∈ M.

In local coordinates (x1, . . . , xm) of M and (y 1, . . . , yn) of N
with appropriate domain we have

dF

(
∂

∂x i

)
=

n∑
j=1

∂F j

∂x i

∂

∂y j
, F j = y j ◦ F , ∀1 ≤ i ≤ m.

The (non-pointwise) Jacobi matrix in given local coordinates is
defined similarly by allowing the basepoint to vary and, as a
map from chart neighbourhoods in M to Mat(n× n,R), is also
smooth.
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Lie bracket of vector fields

Next, some Lie algebra:

Definition

Let V be a real vector space. A Lie bracket on V is a
skew-symmetric bilinear map

[·, ·] : V × V → V , (X ,Y ) 7→ [X ,Y ]

that fulfils the Jacobi identity

[X , [Y ,Z ]] = [[X ,Y ],Z ] + [Y , [X ,Z ]]

for all X ,Y ,Z ∈ V . A vector space V together with a Lie
bracket is called Lie algebra.

Note: The above Jacobi identity can be written as∑
cyclic

[X , [Y ,Z ]] = 0 ∀X ,Y ,Z ∈ V ,

which is easier to remember.
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Lie bracket of vector fields

Examples

R3 together with the cross product [X ,Y ] := X × Y is a
Lie algebra

End(Rn) = Mat(n × n,R) with [A,B] := AB − BA is a
Lie algebra

for any commutative real algebra A, Der(A) is a possibly
infinite dimensional Lie algebra with
[D1,D2](a) := D1(D2(a))− D2(D1(a)) ∀a ∈ A,
D1,D2 ∈ Der(A)

 X(M) is isomorphic as C∞(M)-module to Der(C∞(M)),
points to Lie algebra structure on the real vector space of vector
fields

Note: dim(X(M)) =∞ if dim(M) > 0
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Lie bracket of vector fields

Proposition A

The bilinear map on vector fields on a smooth manifold M

[·, ·] : X(M)× X(M)→ X(M), (X ,Y ) 7→ [X ,Y ],

[X ,Y ](f ) := X (Y (f ))− Y (X (f ))

∀X ,Y ∈ X(M) ∀f ∈ C∞(M), is a Lie bracket on the vector
space X(M).

Proof:

we have X (f ) ∈ C∞(M), Y (f ) ∈ C∞(M), hence
X (Y (f ))− Y (X (f )) ∈ C∞(M) for all f ∈ C∞(M).

at each p ∈ M we have

[X ,Y ]p(f ) = Xp(Y (f ))−Yp(X (f )) [note: skew in X ,Y ]

hence, [X ,Y ]p : C∞(M)→ R is R-linear

Leibniz rule: stubbornly write down [X ,Y ]p(fg) for
f , g ∈ C∞(M) arbitrary X

summarizing: [X ,Y ] is a vector field ∀X ,Y ∈ X(M) and
[·, ·] is indeed a Lie bracket
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Lie bracket of vector fields

Recall that partial derivatives ∂
∂ui

in Rn commute. Question: Is
the same true for general smooth manifolds?
Answer: Yes!

Lemma

Let M be a smooth manifold and ϕ = (x1, . . . , xn) be a local
coordinate system. Then[

∂

∂x i
,
∂

∂x j

]
= 0

∀ 1 ≤ i ≤ n, 1 ≤ j ≤ n., i.e. coordinate vector fields commute.

Remark: The above lemma can be formulated as

∂

∂x i

(
∂f

∂x j

)
=

∂

∂x j

(
∂f

∂x i

)
for all f ∈ C∞(M).

Notation: ∂2f
∂x i∂x j

:= ∂
∂x i

(
∂f
∂x j

)
, analogously for higher deriva-

tives.
Warning: Careful when changing coordinates!
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Lie bracket of vector fields

Proof (of the lemma):

let f̂ be a coordinate representative for f in local
coordinates (x1, . . . , xn), so that f̂ = f ◦ ϕ−1

 f = f̂ (x1, . . . , xn)

Q: Do the coordinate vector fields act on f̂ (x1, . . . , xn) as
expected?

A: Yes! Obtain(
∂

∂x i
(f )

)
(p) =

(
∂

∂ui

(
f̂ (u1, . . . , un)

))
(ϕ(p)).

hence, ∂
∂x i

(f ) = ∂
∂ui

(
f̂
)
◦ ϕ

[ note: actually follows from Lecture 7, i.e. ∂̂
∂x i

= ∂
∂ui

]

summarizing:

∂

∂x i

(
∂

∂x j
(f )

)
=

∂

∂x i

(
∂

∂uj

(
f̂
)
◦ ϕ
)

=
∂

∂ui

(
∂

∂uj

(
f̂
))
◦ ϕ

=
∂

∂uj

(
∂

∂ui

(
f̂
))
◦ ϕ = ... =

∂

∂x j

(
∂

∂x i
(f )

)
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Lie bracket of vector fields

Question: Is the Lie bracket on vector fields C∞(M)-linear?
Answer: No!

Lemma

For any smooth manifold M

[X , fY ] = df (X )Y + f [X ,Y ] ∀X ,Y ∈ X(M), ∀f ∈ C∞(M).

Proof: Exercise!

Smooth maps F : U ⊂ Rm → Rn, U ⊂ Rm open, can be
visualized as their respective graphs. We see that for each vector
field X ∈ X(U) the smooth map

U 3 p 7→ (Xp, dFp(Xp)) ∈ T(p,F (p))(U × Rn)

describes not a vector field in U × Rn, but a vector field along
the graph of F that is tangential to the graph of F . If we only
look at the second factor [note: first factor is the identity, no
new info] we might call p 7→ dFp(Xp) ∈ TF (p)Rn a vector field
along F .
 can be easily generalized for smooth manifolds (next page)
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Lie bracket of vector fields

Definition

Let φ : M → N be a smooth map and let X ∈ X(M). The
smooth map

M 3 p 7→ (dφ(X ))p = dφp(Xp) ∈ Tφ(p)N

is called a vector field along φ.

Probably the most prominent examples of vector fields along
maps are velocity vector fields of smooth curves:

Definition

Let I ⊂ R be an interval (equipped with canonical coordinate
t), M a smooth manifold, and γ : I → M a smooth curve. The
velocity vector field (or simply velocity) of γ is the vector
field along γ

γ′ := dγ

(
∂

∂t

)
, t 7→ γ′(t).

(continued on next page)
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Lie bracket of vector fields

Definition

(continuation)
Note that the explicit form of γ′(t) depends on the local
coordinates ϕ = (x1, . . . , xn) on M:

γ′(t) =
n∑

i=1

∂γ i

∂t
(t)

∂

∂x i

∣∣∣∣
γ(t)

∈ Tγ(t)M

for all t ∈ I , where γ i = x i (γ) for all 1 ≤ i ≤ n.

Remark: The above relates our definition of tangent vectors in
Rn as equivalence classes of smooth curves to smooth manifolds.

Now, recall the definition of integral curves in setting of anal-
ysis on Rn.
Question: Can this be generalized to smooth manifolds?
Answer: Of course!
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Integral curves of vector fields

Definition

Let X ∈ X(M) for a smooth manifold M. An integral curve of
X at p ∈ M is a smooth curve γ : I → M, where I ⊂ R is an
interval, 0 ∈ I , such that γ(0) = p and

γ′(t) = Xγ(t)

for all t ∈ I . An integral curve γ : I → M of X is called
maximal if there is no interval Ĩ ⊃ I , such that Ĩ \ I 6= ∅ and

there exists an integral curve γ̃ : Ĩ → M of X with γ̃|I = γ. A
vector field X is called complete if every maximal integral
curve γ : I → M is defined on I = R.

Questions:

What kind of equation is γ′(t) = Xγ(t)?

How does it look like locally?

Are local solutions w.r.t. some initial values unique?

Are maximal solutions w.r.t. some initial values unique?

Do local solutions depend smoothly on initial values?
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Integral curves of vector fields

Recommended reading: [A] “Ordinary Differential Equations”
(3rd edition, 1984), V.I. Arnold, Springer Universitext
Answers:

γ′(t) = Xγ(t) is a first order ODE.

Like a first order ODE for a curve in Rn. For a local
coordinate system ϕ = (x1, . . . , xn) on M so that the
domain of ϕ contains γ(0), the equation can be written in
has coordinate representation

u̇i = X̂ i (u1, . . . , un), ui (0) = x i (p) ∀1 ≤ i ≤ n.

Yes, local solutions coincide if defined on same interval [A,
Ch. 2.7]

Yes [A, Ch. 2.7].

Yes [A, Ch. 2.7].
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Integral curves of vector fields

Examples

Let X ∈ X(R2) in canonical coordinates (u1, u2) = (x , y)
be given by

X = −y ∂

∂x
+ x

∂

∂y
.

Its integral curves at any point (x0, y0) ∈ R2 are of the
form

γ : t 7→
(

cos(t) − sin(t)
sin(t) cos(t)

)(
x0

y0

)
.

For X ∈ X(Rn), X =
∑

c i ∂
∂ui

, c i constant for all
1 ≤ i ≤ n, its maximal integral curves are of the form

γ : t 7→ p + (tc1, . . . , tcn).

In general, it is very difficult to answer whether a given vec-
tor field is complete or not. We have, however, the following
results: (next page)
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Integral curves of vector fields

Proposition B

1 Vector fields on compact smooth manifolds are
complete.

2 Vector fields with compact support are complete.

Proof (sketch):

1) assume γ : (a, b)→ M maximal integral curve of fixed
VF X ∈ X(M) and b <∞
show that lim

t→b
γ(t) converges to a point q ∈ M

find integral curve γ̃ at q of X

show that γ̃ extends γ, get contradiction to b <∞
same if a > −∞

2) assume γ : (a, b)→ M maximal integral curve of fixed
VF X ∈ X(M) and b <∞
proceed as before, except need to additionally show that
lim
t→b

γ(t) is in supp(X )

note: every maximal integral curve at p ∈ M \ supp(X ) is
a constant curve
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Local and global flows of vector fields

Question: Can we (locally) describe all integral curves of a vec-
tor fields “at once”?
Answer: Yes, leads to the following definition:

Definition

A local one parameter group of diffeomorphisms on a
smooth manifold M is a smooth map

ϕ : I × U → M, (t, p) 7→ ϕt(p),

such that I ⊂ R is an interval containing 0 ∈ R, U ⊂ M is
open, ϕ0 = idU , ϕt : M → M is a diffeomorphism for all t ∈ I ,
and

ϕs+t(p) = ϕs(ϕt(p))

for all p ∈ U and all s, t ∈ I with (s + t) ∈ I and ϕt(p) ∈ U. A
one parameter group of diffeomorphisms is a local one
parameter group of diffeomorphisms with I = R and U = M.

 how is this connected to integral curves of vector fields?
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Local and global flows of vector fields

Definition

A local flow of a vector field X ∈ X(M) is a smooth map

ϕ : I × U → M, (t, p) 7→ ϕt(p),

for some interval I ⊂ R containing 0 ∈ R and an open set
U ⊂ M, such that ϕ0 = idU and for every p ∈ U fixed, the
smooth curve

t 7→ ϕt(p)

is an integral curve of X . This just means that

∂

∂t
(ϕt(p)) = Xϕt (p).

We say that a local flow of X is defined near a point p ∈ M if
p ∈ U. A local flow of X is called (global) flow of X if I = R
and U = M.

Question: Does every vector field admit a local flow near every
point?
Answer: Yes!
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Local and global flows of vector fields

Lemma

Every vector field on M admits a local flow near any given
point p ∈ M.

Proof:

fix X ∈ X(M) and p ∈ M

choose bump function b : M → R, such that on some
open neighbourhood U ⊂ M of p, b|U ≡ 1

the maximal integral curves at p of bX are each defined
on R by Proposition B and depend smoothly on initial
condition p ∈ M

already shows: vector fields with compact support admit a
global flow ϕ

fix ε > 0 and choose an open subset V ⊂ U, such that V
is an open neighbourhood of p and for all q ∈ V and all
t ∈ (−ε, ε), ϕt(q) ∈ U

(continued on next page)
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Local and global flows of vector fields

(continuation of proof)

geometrically: the set V is not moved out of U by the
flow of bX for |t| < ε

X and bX coincide on U, hence their integral curves at all
q ∈ V for I = (−ε, ε) also coincide

hence, the flow ϕ of bX restricted to (−ε, ε)× V is a
local flow of X

Now we know that local flows of vector fields always exist near
any given point. Furthermore, the following holds true:

Proposition C

Local flows of vector fields are local one parameter groups of
diffeomorphisms.

Proof:
(next page)
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Local and global flows of vector fields

(continuation of proof)

suffices to show that for a given vector field X with two
integral curves γ : (a, b)→ M at p = γ(0) and

γ̃ : (ã, b̃)→ M with γ(s) = γ̃(0) for some s ∈ (a, b) we
have

γ(s + t) = γ̃(t)

for all t, such that (s + t) ∈ (a, b) and t ∈ (ã, b̃)

read: “ γ̃ extends γ ”

follows from the fact that t 7→ γ(s + t) is an integral
curve of X (for s small enough) and uniqueness of local
solutions:

(γ(s + ·))′(t)
chain rule

= γ′(s + t) = Xγ(s+t) = X(γ(s+·))(t).

hence, for φ a local flow of X we obtain

φt(φs(p)) = φt(γ(s)) = γ̃(t) = γ(s + t) = φs+t(p)
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Local and global flows of vector fields

Immediate consequence:

Corollary

Assume that X ∈ X(M) is complete. Then its flow is a one
parameter group of diffeomorphisms.
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END OF LECTURE 8

Next lecture:

reverse direction of Proposition C

pullbacks, pushforwards, rectifications

Lie derivative of vector fields

(maybe start with cotangent bundle)
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