Differential geometry

Lecture 7: The tangent bundle

David Lindemann

University of Hamburg
Department of Mathematics
Analysis and Differential Geometry \& RTG 1670
12. May 2020

1 The tangent bundle of a smooth manifold

2 Vector fields

Recap of lecture 6:

■ recalled definition of vector fields on \mathbb{R}^{n}, discussed examples and action on smooth functions

- defined vector bundles over smooth manifolds
- defined (local) sections in vector bundles
- studied transition functions for local trivializations of vector bundles
- explained how to construct a vector bundle from given vector spaces at each point and transition functions
■ defined term trivializable for vector bundles
\rightsquigarrow similarly to proposition from last lecture about how to "glue" pointwise vector spaces $E_{p}, p \in M$, define:

Definition

Let M be an n-dimensional smooth manifold. The tangent bundle

$$
T M:=\bigsqcup_{p \in M} T_{p} M \rightarrow M
$$

of M with projection $\pi(v)=p$ for all $v \in T_{p} M$ is a vector bundle of rank n.

Problem: To show that $T M \rightarrow M$ in fact is a vector bundle, need to define local trivializations and study matrix part of transition functions.
Question: How do we get this data?
Answer: Use atlas and its local coordinates on M !

Proposition A

The tangent bundle TM of any given manifold is, in fact, a vector bundle of rank n.
[Warning: There are choices involved!]

Proof:

- first, define candidates for charts on the total space
- choose countable atlas
$\mathcal{A}=\left\{\left(\varphi_{i}=\left(x_{i}^{1}, \ldots, x_{i}^{n}\right), U_{i}\right) \mid i \in A\right\}$ on M
- π smooth by assumption $\Rightarrow\left\{\pi^{-1}\left(U_{i}\right) \mid i \in A\right\}$ are open covering of TM
■ define candidates for charts as maps between sets

$$
\begin{aligned}
& \psi_{i}: \pi^{-1}\left(U_{i}\right) \rightarrow \varphi_{i}\left(U_{i}\right) \times \mathbb{R}^{n} \\
& \psi_{i}: v \mapsto\left(\varphi_{i}(\pi(v)), v\left(x_{i}^{1}\right), \ldots, v\left(x_{i}^{n}\right)\right)
\end{aligned}
$$

- observe: each ψ_{i} is a bijection
- define basis of topology on TM as

$$
\left\{\psi_{i}^{-1}(V) \mid i \in A, V \subset \varphi_{i}\left(U_{i}\right) \times \mathbb{R}^{n} \text { open }\right\}
$$

■ in this topology, all ψ_{i} are homeomorphisms [note: this the coarsest possible topology on TM so that this holds]
■ $M \& \mathbb{R}^{n}$ Hausdorff $\&$ second countable, \mathcal{A} countable $\Rightarrow T M$ with this topology also Hausdorff \& second countable

■ transition functions of the maps $\psi_{i}, i \in A$, given by

$$
\begin{aligned}
& \psi_{i} \circ \psi_{j}^{-1}: \varphi_{j}\left(U_{i} \cap U_{j}\right) \times \mathbb{R}^{n} \rightarrow \varphi_{i}\left(U_{i} \cap U_{j}\right) \times \mathbb{R}^{n}, \\
& (u, w) \mapsto\left(\left(\varphi_{i} \circ \varphi_{j}^{-1}\right)(u), d\left(\varphi_{i} \circ \varphi_{j}^{-1}\right)_{u}(w)\right)
\end{aligned}
$$

■ \rightsquigarrow above transition functions are smooth, hence $\psi_{i}, i \in A$, form an $2 n$-dimensional smooth atlas on total space TM

- corresponding candidates for local trivializations

$$
\left(\varphi_{i}^{-1} \times \operatorname{id}_{\mathbb{R}^{n}}\right) \circ \psi_{i}
$$

of $T M$ are of the form

$$
\begin{aligned}
& \tau_{i j}: \\
&=\left(\varphi_{i}^{-1} \times \operatorname{id}_{\mathbb{R}^{n}}\right) \circ \psi_{i} \circ\left(\left(\varphi_{j}^{-1} \times \operatorname{id}_{\mathbb{R}^{n}}\right) \circ \psi_{j}\right)^{-1} \\
&=\left(\operatorname{id}_{M}, d\left(\varphi_{i} \circ \varphi_{j}^{-1}\right)\right)
\end{aligned}
$$

■ all $\tau_{i j}:\left(U_{i} \cap U_{j}\right) \times \mathbb{R}^{n} \rightarrow\left(U_{i} \cap U_{j}\right) \times \mathbb{R}^{n}$ are smooth and of the form $(p, v) \mapsto A(p) v, A: U_{i} \cap U_{j} \rightarrow \operatorname{GL}(n)$
■ hence: $T M$ with the so-defined local trivializations is a vector bundle as claimed

Remark: $\tau_{i j}$ and local trivializations compatible in sense of proposition about constructing vector bundles from local bijections and given smooth transition functions, see Lecture 6.
\rightsquigarrow still abstract description of $T M$, locally we have a simpler picture: (next page)

Remark

Let $\varphi=\left(x^{1}, \ldots, x^{n}\right)$ be a local coordinate system on M covering $p \in M$. Let $v \in T_{p} M$,

$$
v=\left.\sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}}\right|_{p}
$$

be arbitrary. For

$$
\psi=(\varphi \circ \pi, d \varphi)
$$

as in the previous Proposition A we get

$$
\psi(v)=\left(x^{1}(p), \ldots, x^{n}(p), v^{1}, \ldots, v^{n}\right)
$$

meaning that the vector part of $\psi(v)$ consists of the prefactors of v in the basis $\left\{\left.\frac{\partial}{\partial x^{i}}\right|_{p}, 1 \leq i \leq n\right\}$.

Example

Let $M \subset \mathbb{R}^{n}$ be a smooth submanifold of codimension $0<k<n$. locally, write M as graph of a smooth map

$$
g: U \subset \mathbb{R}^{n-k} \rightarrow \mathbb{R}^{k}
$$

Pointwise, $T_{p} M$ is the set of tangent vectors $v \in T_{p} \mathbb{R}^{n}$ that are in the image of $d g_{p}$. The induced chart on M is given by

$$
\varphi: \operatorname{graph}(g) \rightarrow \mathbb{R}^{n-k}, \quad(p, g(p)) \mapsto p
$$

and the inverse of the induced local trivialization ψ of $T M$ is given by

$$
\psi^{-1}: U \times \mathbb{R}^{n-k} \rightarrow T M \mid u, \quad(p, v) \mapsto\left((p, g(p)),\left(v, d g_{p}(v)\right)\right)
$$

Question: Can we imagine the tangent bundle, locally, of any smooth manifold as in the above example?
Answer: Yes! (next page)

Theorem (Strong Whitney Embedding Theorem)

Every smooth manifold of dimension n can be realized as an embedded submanifold of $\mathbb{R}^{2 n}$.

Proof: See Theorem 6.19 in "Introduction to Smooth Manifolds" (John M. Lee), Springer GTM 218.

Recall that TM is called trivializable if it is isomorphic as a vector bundle to $M \times \mathbb{R}^{n}, n=\operatorname{dim}(M)$.

Lemma

$T S^{1}, T S^{3}$, and $T S^{7}$ are trivializable.
Proof: S^{1} :

- view $S^{1}=\{z \bar{z}=1\} \subset \mathbb{C} \cong \mathbb{R}^{2}$
- for $z \in S^{1}$ fixed, iz spans $T_{z} S^{1}$

■ define vector bundle isomorphism

$$
F: S^{1} \times \mathbb{R} \rightarrow T S^{1}, \quad(z, t) \mapsto(z, \text { tiz })
$$

\square hence: total space of $T S^{1} \rightarrow S^{1}$ is diffeomorphic to the cylinder
■ $S^{3} \& S^{7}$: Exercise! [hint: view S^{3} as the unit quaternions and S^{7} as the unit octonions]
Now we have all tools at hand to define vector fields on smooth manifolds.

Definition

Sections in the tangent bundle of a smooth manifold, $\Gamma(T M)$, are called vector fields. For $X \in \Gamma(T M)$ we will denote the value of X at $p \in M$ by X_{p}. For $U \subset M$ open, we will call elements of $\Gamma\left(\left.T M\right|_{U}\right)$ local vector fields, or simply vector fields if the setting does not explicitly use the locality property. We will use the notations

$$
\mathfrak{X}(M):=\Gamma(T M)
$$

and

$$
\mathfrak{X}(U):=\Gamma\left(\left.T M\right|_{U}\right)
$$

for $U \subset M$ open.

Remark

For a smooth manifold M and $U \subset M$ open, the two vector spaces $T_{p} U$ and $T_{p} M$ are canonically isomorphic via restriction of charts for all $p \in U$.

If so-defined vector fields look a bit alien at first glance, it helps to look at them through the lens of local coordinates:

Remark

In local coordinates $\left(\varphi=\left(x^{1}, \ldots, x^{n}\right), U\right)$ on a smooth manifold M with induced coordinates $\psi=(\varphi \circ \pi, d \varphi)$ on $\left.T M\right|_{u} \subset T M$, (local) vector fields X have coordinate representations of the form

$$
\widehat{X}: \varphi(U) \rightarrow U \times \mathbb{R}^{n}, \quad \widehat{X}=\left(\operatorname{id} u, d \varphi\left(X_{\varphi^{-1}}\right)\right)
$$

\widehat{X} smooth. This means that locally up to the explicit notation of the base point, vector fields on smooth manifolds are vector fields on an open subset of \mathbb{R}^{n}.

Remark

Vector fields, similar to tangent vectors, act on $C^{\infty}(M)$ by

$$
X(f)(p):=X_{p}(f)=d f\left(X_{p}\right)
$$

Thus we may write $X(f)=d f(X) \in C^{\infty}(M)$. On the other hand, a map of the form $X: M \rightarrow T M, p \mapsto X_{p} \in T_{p} M$, is a vector field if $X(f): p \mapsto d f_{p}\left(X_{p}\right)$ is smooth for all $f \in C^{\infty}(M)$.

The above is compatible with writing X and f in coordinate representations:

Lemma

The coordinate representation of $X(f)$ is the same as the action of the vector part of the coordinate representation of X on the coordinate representation of f.

Proof: (next page)
(continuation of proof)
Write $\widehat{f}=f \circ \varphi^{-1}$, vector part of $\widehat{X}=d \varphi\left(X_{\varphi^{-1}}\right)$. We obtain

$$
\begin{aligned}
& X(f) \circ \varphi^{-1}=d f(X) \circ \varphi^{-1} \\
& =\left(d\left(f \circ \varphi^{-1}\right) \circ d \varphi\right)\left(X_{\varphi^{-1}}\right)=d\left(f \circ \varphi^{-1}\right)\left(d \varphi\left(X_{\varphi^{-1}}\right)\right) .
\end{aligned}
$$

Question: Is there an analogue to the basis of $T_{p} M$ consisting of coordinate vectors at $p,\left.\frac{\partial}{\partial x^{i}}\right|_{p}$, for local vector fields?
Answer: Yes!

Definition

Let $\left(\varphi=\left(x^{1}, \ldots, x^{n}\right), U\right)$ be a chart on a smooth manifold M. The corresponding coordinate vector fields are defined as

$$
\frac{\partial}{\partial x^{i}} \in \mathfrak{X}(U), \quad \frac{\partial}{\partial x^{i}}:\left.p \mapsto \frac{\partial}{\partial x^{i}}\right|_{p} .
$$

The vector space of vector fields is infinite dimensional, hence we need to be careful when talking about a basis as in a basis of that vector space. We have however the following result, namely that the coordinate vector fields form a local frame of $T M \rightarrow M$:

Proposition B

Let $\left(\varphi=\left(x^{1}, \ldots, x^{n}\right), U\right)$ be a chart on a smooth manifold M and $X \in \mathfrak{X}(U)$. With $X^{i}:=X\left(x_{i}\right) \in C^{\infty}(U)$ we have

$$
X=\sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}
$$

On the other hand for any choice of smooth functions $f^{i} \in C^{\infty}(U), 1 \leq i \leq n$,

$$
\sum_{i=1}^{n} f^{i} \frac{\partial}{\partial x^{i}} \in \mathfrak{X}(U)
$$

Proof: (next page)

- first equation follows from $X_{p}=\left.\sum_{i=1}^{n} X_{p}\left(x^{i}\right) \frac{\partial}{\partial x^{i}}\right|_{p}$ for all $p \in U$
- second equation follows from the fact that all $\frac{\partial}{\partial x^{\prime}}$ are local vector fields on U and the general fact that local sections over U (in any vector) bundle are a $C^{\infty}(U)$-module, i.e. $f s \in \Gamma\left(\left.E\right|_{U}\right)$ for all $s \in \Gamma\left(\left.E\right|_{U}\right), f \in C^{\infty}(U)$

Examples

- $\frac{\partial}{\partial x}+r \frac{\partial}{\partial y}, r \in \mathbb{R}$, projected to $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$
- $b X \in \mathfrak{X}(M)$ for any $X \in \mathfrak{X}(U)$ and $b \in C^{\infty}(M)$ a bump function with support in $U, U \subset M$ open
■ \exists a vector field $X \in \mathfrak{X}\left(S^{2}\right)$ that vanishes at exactly one point, but no vector field that vanishes at no point

Remark

Proposition B means that locally, $X(f)$ for $X \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$ is of the form

$$
X(f)=\sum_{i=1}^{n} X^{i} \frac{\partial f}{\partial x^{i}}
$$

One can also describe vector fields via their action on smooth functions:

Definition

Let A be an algebra over a field K. A derivation of a A is a K-linear map $D: A \rightarrow A$ that fulfils the Leibniz rule

$$
D(a b)=D(a) b+a D(b)
$$

for all $a, b \in A$. The set of all derivations of A is denoted by $\operatorname{Der}(A)$. If A is commutative, $\operatorname{Der}(A)$ is an A module.

Proposition C

Let M be a smooth manifold. Then vector fields on M are precisely the derivations of $C^{\infty}(M)$, meaning that $\mathfrak{X}(M)$ and $\operatorname{Der}\left(C^{\infty}(M)\right)$ are isomorphic as $C^{\infty}(M)$ modules.

Proof:

- the map

$$
\iota: \mathfrak{X}(M) \rightarrow \operatorname{Der}\left(C^{\infty}(M)\right), \quad X \mapsto(f \mapsto X(f))
$$

is a $C^{\infty}(M)$ module map

- injectivity of ι follows from $X=0$ if and only if $X(f)=0$ for all $f \in C^{\infty}(M)$
- for surjectivity define for a given derivation D a vector field X^{D} via

$$
D \mapsto X^{D}, \quad X_{p}^{D}(f)=D(f)(p) \quad \forall p \in M, f \in C^{\infty}(M)
$$

- X^{D} is in fact a smooth vector field, and $D \mapsto X^{D}$ is the inverse of ι

Assume we have two local coordinate systems with intersecting domains and write some vector field in the induced local frames. Question: How do we need to transform one local form to obtain the other local form? Answer:

Lemma

Let M be a smooth manifold and let $\left(\varphi=\left(x^{1}, \ldots, x^{n}\right), U\right)$, $\left(\psi=\left(y^{1}, \ldots, y^{n}\right), V\right)$ be charts on M such that $U \cap V \neq \emptyset$. For $X \in \mathfrak{X}(M)$ fixed, we have on $U \cap V$ the following forms of X in local coordinates:

$$
X=\sum_{i=1}^{n} X\left(x^{i}\right) \frac{\partial}{\partial x^{i}}, \quad X=\sum_{i=1}^{n} X\left(y^{i}\right) \frac{\partial}{\partial y^{i}}
$$

We understand $d\left(\psi \circ \varphi^{-1}\right): \varphi(U \cap V) \rightarrow \mathrm{GL}(n)$ as a matrix-valued function with $d\left(\psi \circ \varphi^{-1}\right)_{U}=$ Jacobi matrix of $\psi \circ \varphi^{-1}$ at u and obtain for all $u \in U \cap V$

$$
\left.d\left(\psi \circ \varphi^{-1}\right)_{u} \cdot\left(\begin{array}{c}
X\left(x^{1}\right) \\
\vdots \\
X\left(x^{n}\right)
\end{array}\right)\right|_{\varphi^{-1}(u)}=\left.\left(\begin{array}{c}
X\left(y^{1}\right) \\
\vdots \\
X\left(y^{n}\right)
\end{array}\right)\right|_{\psi^{-1}(u)}
$$

END OF LECTURE 7

Next lecture:

- vector fields as a Lie algebra

■ integral curves

