# Differential geometry Lecture 6: Vector bundles

# David Lindemann

University of Hamburg Department of Mathematics Analysis and Differential Geometry & RTG 1670

8. May 2020



# **1** Vector fields on $\mathbb{R}^n$

**2** Vector bundles and sections

**3** Constructing vector bundles from transition functions

**4** Additional definitions

# Recap of lecture 5:

- inverse function theorem for smooth manifolds
- characterisation of local diffeomorphisms
- defined (embedded) smooth submanifolds
- showed that locally we can always find adapted coordinates
- discussed rank theorem
- proved that level sets consisting only of regular points are smooth submanifolds
- erratum: not really an error, but forgot to define smooth hypersurfaces

At this point, we know what tangent vectors on smooth manifolds are.

**Question:** How should we define **vector fields** on smooth manifolds?  $\rightsquigarrow$  "smoothly varying tangent vectors" Recall  $\mathbb{R}^n$  case:

#### Definition

- a vector field X on  $\mathbb{R}^n$  is a smooth vector valued function  $X : \mathbb{R}^n \to \mathbb{R}^n$ ,  $p \mapsto X(p) = X_p$
- points (p, X<sub>p</sub>) ∈ ℝ<sup>n</sup> × ℝ<sup>n</sup> "=" tangent vector X<sub>p</sub> with basepoint p

• vector fields act on smooth functions  $f \in C^{\infty}(\mathbb{R}^n)$  via

$$X(f) := df(X), \quad p \mapsto df_p(X_p)$$

■ pointwise: action comes from action of  $X_p \in T_p \mathbb{R}^n \cong \mathbb{R}^n$ on *f* 

#### Examples

- the position vector field  $X : p \mapsto p \ \forall p \in \mathbb{R}^n$
- $X : p \mapsto v$  for  $v \in \mathbb{R}^n$  fixed

• on 
$$\mathbb{R}^2$$
:  $X: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -y \\ x \end{pmatrix}$ 

Additional question: Should the second example be called a "constant vector field" (because each entry is constant)? Answer: Later, needs definition of connections (covariant derivatives).

To make sense of vector fields on general smooth manifold, need the following concept:

# Definition

A vector bundle  $E \to M$  of rank  $k \in \mathbb{N}$  over a smooth manifold M is a smooth manifold E together with a smooth projection map  $\pi : E \to M$ , such that

- the fibre E<sub>p</sub> := π<sup>-1</sup>(p) is an k-dimensional real vector space for all p ∈ M,
- for all  $p \in M \exists$  open neighbourhood  $U \subset M$  of p and a diffeomorphism  $\psi : \pi^{-1}(U) \to U \times \mathbb{R}^k$ , such that  $\psi|_{E_q} : E_q \to q \times \mathbb{R}^k \cong \mathbb{R}^k$  is a linear isomorphism for all  $q \in U$  and the diagram



commutes. The map  $pr_U$  denotes the canonical projection onto the first factor. *(continued on next page)* 

*E* is called the **total space**, *M* is called the **basis**, and the map  $\psi$  is called a **local trivialization** of the vector bundle  $E \rightarrow M$ .

#### Example

 $M \times \mathbb{R}^k \to M$ ,  $\pi(p, v) := p \ \forall p \in M, v \in \mathbb{R}^k$  [for  $k \in \mathbb{N}_0$  fixed]

A generalisation of vector valued functions on  $\mathbb{R}^n$  are sections in vector bundles:

#### Definition

A local section in a vector bundle  $E \rightarrow M$  is a smooth map

 $s:U\to E$ 

 $U \subset M$  open, such that  $\pi \circ s = \mathrm{id}_U$ , that is  $s(p) \in E_p \ \forall p \in U$ . If U = M, s is called a **(global) section**. The set of local sections in  $E \to M$  on  $U \subset M$  is denoted by  $\Gamma(E|_U)$  and the set of global sections by  $\Gamma(E)$ , where  $E|_U$  denotes the vector bundle  $\pi^{-1}(U) \to U$ . The **support** of a section (or, analogously, local section) in a vector bundle  $s \in \Gamma(E)$  is defined to be the set

$$\operatorname{supp}(s) := \overline{\{p \in M \mid s(p) \neq 0\}}.$$

**Note:**  $\Gamma(E)$  is a  $C^{\infty}(M)$ -module,  $\Gamma(E|_U)$  is a  $C^{\infty}(U)$ -module for  $U \subset M$  open.

Similar to transition function for charts in an atlas there are transition functions for the local trivializations of vector bundles:

# Definition

Let  $\psi : \pi^{-1}(U) \to U \times \mathbb{R}^k$  and  $\phi : \pi^{-1}(V) \to V \times \mathbb{R}^k$  be two local trivializations of a vector bundle  $E \to M$  with  $U \cap V \neq \emptyset$ . Then the smooth map

$$(\psi \circ \phi^{-1}) : (U \cap V) imes \mathbb{R}^k o (U \cap V) imes \mathbb{R}^k$$

is called transition function. For  $p \in M$  fixed,  $(\psi \circ \phi^{-1})(p, \cdot)$  is called transition function at p.

#### Lemma

Transition functions of vector bundles are of the form

$$\psi \circ \phi^{-1} : (\pmb{p}, \pmb{v}) \mapsto (\pmb{p}, \pmb{A}(\pmb{p})\pmb{v}), \quad \pmb{A}(\pmb{p}) \in \mathrm{GL}(\pmb{k}),$$

for all  $p \in U \cap V$ ,  $v \in \mathbb{R}^n$ . The map

$$A: U \cap V \to \operatorname{GL}(k), \quad p \mapsto A(p),$$

is **smooth**.

# Proof:

following diagram commutes:

- hence:  $\psi \circ \phi^{-1}$  sends (p, v) to (p, A(p, v)) for some smooth function  $A : U \cap V \times \mathbb{R}^k \to \mathbb{R}^k$
- $\blacksquare$  smoothness follows from  $\phi$  and  $\psi$  being diffeos
- still need to show that for p fixed,  $A(p, \cdot) : \mathbb{R}^k \to \mathbb{R}^k$  is an invertible linear map
- above follows from the fact that fibre-wise  $\phi$  and  $\psi$  are linear isomorphisms

Now suppose we are given not a vector bundle, but at each point p in a manifold M a vector space of fixed dimension  $E_p$ , local trivialisations as maps between sets (pointwise linear), and their "transition functions" behave like transition functions of a vector bundle.

**Question:** Can we use the above data to find a **vector bundle structure** on the disjoint union

$$E:=\bigsqcup_{p\in M}E_p$$
 ?

Answer: Yes!

#### Proposition

Let *M* be a smooth manifold and assume that for every  $p \in M$ ,  $E_p$  is a real vector space of **fixed dimension** *k*. Define a set

$$E := \bigsqcup_{p \in M} E_p$$

and a map  $\pi: E \to M$ ,  $\pi(v) = p \ \forall v \in E_p$  and all  $p \in M$ . Assume that  $\{U_i, i \in I\}$  is an **open cover** of M and

$$\phi_i:\pi^{-1}(U_i)\to U_i\times\mathbb{R}^k$$

is a **bijection**  $\forall i \in I$  such that  $\phi_i : E_p \to \{p\} \times \mathbb{R}^k \cong \mathbb{R}^k$  is a **linear isomorphism**  $\forall p \in M$ . Further assume that  $\forall i, j \in I$  with  $U_i \cap U_j \neq \emptyset \exists$  a **smooth map**  $\tau_{ij} : U_i \cap U_j \to \operatorname{GL}(k)$ , such that  $\phi_i \circ \phi_i^{-1} : (U_i \cap U_j) \times \mathbb{R}^k \to (U_i \cap U_j) \times \mathbb{R}^k$  is of the form

 $\phi_i \circ \phi_j^{-1}(\boldsymbol{p}, \boldsymbol{v}) = (\boldsymbol{p}, \tau_{ij}(\boldsymbol{p})\boldsymbol{v}).$ 

Then there exists a **unique topology** and **maximal atlas** on E, such that  $\pi : E \to M$  is a **vector bundle of rank** k and the  $\phi_i$ ,  $i \in I$ , are local trivializations.

# Proof:

- wlog assume that we can find an atlas {(\(\varphi\_i\), U\_i\) | i ∈ I} on M
- can always be achieved by **shrinking** the  $U_i$  if necessary and, on possible new overlaps  $U_i \cap U_j$ , set  $\tau_{ij} \equiv id_{\mathbb{R}^k}$
- $\rightsquigarrow$  can explicitly construct an atlas on the total space E:

• define for  $i \in I$ 

$$\psi_i: \pi^{-1}(U_i) o \varphi_i(U_i) imes \mathbb{R}^k, \quad \mathbf{v} \mapsto (\varphi_i imes \operatorname{id}_{\mathbb{R}^k})(\phi_i(\mathbf{v})).$$

• for  $\{(\psi_i, \pi^{-1}(U_i)) \mid i \in I\}$  to be a smooth atlas on E, need to show that the transition functions (as in transition functions of a smooth atlas) are smooth

check:

$$\psi_i(\pi^{-1}(U_i)\cap\pi^{-1}(U_j))=arphi_i(U_i\cap U_j) imes\mathbb{R}^k$$

for all  $i, j \in I$ 

#### calculate:

$$\begin{split} \psi_i \circ \psi_j^{-1} &= (\varphi_i \times \mathrm{id}_{\mathbb{R}^k}) \circ (\phi_i \circ \phi_j^{-1}) \circ (\varphi_j^{-1} \times \mathrm{id}_{\mathbb{R}^k}) \\ &: \varphi_j(U_i \cap U_j) \times \mathbb{R}^k \to \varphi_i(U_i \cap U_j) \times \mathbb{R}^k. \end{split}$$

- by assumption  $\tau_{ij}(p)$  is invertible and depends smoothly on  $p \in U_i \cap U_j$
- $\rightsquigarrow \phi_i \circ \phi_j^{-1}$  is a diffeomorphism for all  $i, j \in I$  such that  $U_i \cap U_j \neq \emptyset$
- since  $\{(\varphi_i, U_i), i \in I\}$  is smooth atlas on M, each  $\varphi_i \times \operatorname{id}_{\mathbb{R}^k}$  is a diffeo
- hence:  $\psi_i \circ \psi_j^{-1} : \varphi_j(U_i \cap U_j) \times \mathbb{R}^k \to \varphi_i(U_i \cap U_j) \times \mathbb{R}^k$  is also a diffeo for all  $i, j \in I$ , such that  $U_i \cap U_j \neq \emptyset$
- defining the open sets on E as the preimages of open sets under  $\psi_i$ ,  $i \in I$ , get that it is **second countable** and **Hausdorff** by assumption that M and  $\mathbb{R}^k$  are smooth manifolds

- equipped with the so-defined topology,
  B := {(ψ<sub>i</sub>, π<sup>-1</sup>(U<sub>i</sub>)) | i ∈ I} is a smooth atlas on the total space E
- $\rightsquigarrow$  all maps  $\phi_i$ ,  $i \in I$ , are automatically smooth
- furthermore, since φ<sub>i</sub>: E<sub>p</sub> → {p} × ℝ<sup>k</sup> is a linear isomorphism by assumption, φ<sub>i</sub>, i ∈ I, form a covering of local trivializations turning E → M into a vector bundle of rank k
- **uniqueness** of the smooth manifold structure on *E* now follows from the assumption that all  $\phi_i$  are diffeomorphisms onto their image and, thus, every smooth atlas on *E* with that property must, by construction, be a refinement of  $\mathcal{B}$  and thus be contained in the same maximal smooth atlas as  $\mathcal{B}$

**Question:** What should a homomorphism of vector bundles fulfil? **Answer:** 

#### Definition

Let  $\pi_E : E \to M$  and  $\pi_F : F \to M$  be vector bundles over smooth manifolds M. Then a **smooth vector bundle homomorphism**<sup>*a*</sup> is a smooth map between the total spaces

$$f: E \rightarrow F$$
,

such that the diagram



commutes and f is fibrewise linear. The last condition means that for each  $p \in M$ ,  $f|_{E_p} : E_p \to F_p$  is a linear map.

<sup>&</sup>lt;sup>a</sup>a.k.a. "smooth vector bundle map"

This enables us to define when two vector bundles are **isomorphic**:

#### Definition

Two vector bundles  $\pi_1 : E_1 \to M$  and  $\pi_2 : E_2 \to M$  are isomorphic if there exists a diffeomorphism  $F : E_1 \to E_2$  that is a smooth vector bundle map, so that

$$F|_{E_{1p}}: E_{1p} \to E_{2p}$$

is a linear isomorphism for all  $p \in M$ .

The "best case scenario" (as in "easiest to deal with") is the following:

#### Definition

A vector bundle of rank  $k, E \to M$ , is called **trivializable** if it is isomorphic to  $M \times \mathbb{R}^k \to M$  equipped with the canonical projection onto M.

If a vector bundle is trivializable we have the following result:

#### Lemma

```
Assume that E \to M is trivializable. Then there exists a nowhere vanishing global section s \in \Gamma(E).
```

Proof: Exercise.

# **END OF LECTURE 6**

# Next lecture:

# tangent bundle

vector fields on smooth manifolds