Differential geometry Lecture 5: Submanifolds

David Lindemann

University of Hamburg Department of Mathematics Analysis and Differential Geometry & RTG 1670

5. May 2020

1 Local diffeomorphisms and differentials

2 Embedded smooth submanifolds

3 Methods to construct smooth submanifolds

Recap of lecture 4:

- explained how to write down tangent vectors explicitly with the help of local coordinates
- showed that coordinate tangent vectors $\frac{\partial}{\partial x^{t}}\Big|_{p}$ for a basis of $T_{p}M$
- defined differential, Jacobi matrix, and rank of smooth maps
- defined immersions, submersions, embeddings, local diffeomorphisms
- erratum: slight confusion in definition of local diffeomorphisms

Question: How can we check if a smooth map is a local diffeomorphism?

Answer: Need following theorem:

Theorem

Let $F : M \to N$ be a smooth map, dim $(M) = \dim(N) = n$, and $p \in M$. $dF_p : T_pM \to T_{F(p)}N$ is a linear isomorphism **if and only if** \exists open nbh. $U \subset M$ of p, such that

$$F|_U: U \to F(U) \subset N$$

is a diffeomorphism.

Proof:

- choose local charts (φ, U) and (ψ, V) of M, N, covering p, F(p), respectively
- observation 1: dF_p is a linear isomorphism if and only if the Jacobi matrix of F in local coordinates φ , ψ , is invertible

(continued on next page)

• observation 2: \exists open nbh. $U \subset M$ of p, such that $F|_U : U \to F(U)$ is invertible if an only if $\exists U', V' \subset \mathbb{R}^n$ open with $\varphi(p) \in U', \psi(F(p)) \in V'$, such that

$$\psi \circ F \circ \varphi^{-1} : U' \to V'$$

is a diffeomorphism

- "
 " follows from the inverse function theorem from real analysis

This characterises local diffeomorphisms as follows:

Corollary

 $F: M \to N$ is a local diffeomorphism if and only if dF_p is a linear isomorphism for all $p \in M$.

Examples

The projection map

$$\pi: S^n \to \mathbb{R}P^n, \quad (x^1, \ldots, x^n) \mapsto [x^1: \ldots: x^n]$$

is a local diffeomorphism $\forall n \in N$ but never a diffeomorphism.

 There are examples for local diffeomorphism for M non-compact and N compact, e.g.

$$f:\mathbb{R} o S^1\cong \mathbb{R}/\mathbb{Z},\quad t\mapsto [t],$$

where [t] = [t'] if $\exists z \in \mathbb{Z}$, such that t = t' + z.

Recall: Smooth submanifolds of \mathbb{R}^n defined as subsets $S \subset \mathbb{R}^n$ that be locally written as

 $S \cap U = \{f(p) = 0 \mid p \in U\},\$

 $U \subset \mathbb{R}^n$ open, $f : U \to \mathbb{R}^m$ with Jacobi matrix of maximal rank in U. \rightsquigarrow use **embeddings** to generalize this concept to smooth manifold:

Definition

Let N be an n-dim., M be an m-dim. smooth manifold and $F: M \rightarrow N$ a smooth map.

- $F(M) \subset N$ is called an **embedded smooth submanifold** if *F* is an embedding.
- If F is the inclusion map ι : M → N, we will say that M ⊂ N is a smooth submanifold if the inclusion is an embedding.
- If M ⊂ N is a smooth submanifold, the number dim(N) − dim(M) is called the codimension of M in N.

Question: is there a "good" choice of charts on N w.r.t. some submanifold $M \subset N$?

Proposition A

Let $M \subset N$, dim $(M) = m < n = \dim(N)$, be a smooth submanifold and let $p \in M$ be arbitrary. Then there exists a chart ($\varphi = (x^1, \dots, x^n), U$) on N, such that $U \cap M$ is an open neighbourhood of p in M and

$$x^{m+1}(q) = \ldots = x^n(q) = 0$$

for all $q \in U \cap M$. The first *m* entries in φ are a local coordinate system on *M* near *p*.

Proof:

- fix $p \in M \subset N$, choose local coordinates (x^1, \ldots, x^n) on N and (y^1, \ldots, y^m) on M covering p
- *M* being a submanifold means inclusion $\iota : M \to N$ is an embedding, thus $d\iota_p$ is in particular injective

• hence, the Jacobi matrix of ι at p in local coordinates φ , ψ , $\left(\frac{\partial x^{i}}{\partial x^{i}}(\mathbf{p})\right) \in Mat(\mathbf{p} \times \mathbf{m} \mathbb{P})$

 $\left(\frac{\partial x'}{\partial y^j}(p)\right)_{ij}\in \mathrm{Mat}(n imes m,\mathbb{R})$

has maximal rank m

- w.l.o.g. (after possibly re-ordering the xⁱ) assume that first m rows are linearly independent
- implicit function theorem \Rightarrow (x^1, \ldots, x^m) are local coordinates on some open set $V \subset M$
- after possibly shrinking V obtain that $q \in \iota(M)$ iff

$$x^{k}(q) = f^{k}(x^{1}(q), \ldots, x^{m}(q)),$$

 $f^k:(x^1,\ldots,x^m)(V)
ightarrow\mathbb{R}$ uniquely determined $orall\ m+1\leq k\leq n$

• choose $U \subset N$ open, such that (x^1, \ldots, x^n) are defined on U and $U \cap M = V$, define for $m + 1 \le k \le n$

$$F^k := x^k - f^k(x^1, \ldots, x^m)$$

define new coordinate system (φ, U) on N fulfilling statement of this proposition as follows:

$$\varphi = (x^1, \ldots, x^m, F^{m+1}, \ldots, F^n)$$

■ Jacobi matrix of φ at p with respect to the coordinates (x^1, \ldots, x^n) is of the form

$$\begin{pmatrix} \mathrm{id}_{\mathbb{R}^m} & \mathbf{0} \\ \mathbf{A} & \mathrm{id}_{\mathbb{R}^{n-m}} \end{pmatrix}$$

for some $A \in Mat((n - m) \times m, \mathbb{R})$, hence invertible

• hence, φ is a local diffeomorphism and thereby defines a local coordinate system on *N* which, by construction, fulfils

$$\varphi(U \cap M) = \varphi(V) = (x^1, \ldots, x^m, 0, \ldots, 0).$$

as required

Definition

Local coordinates as in Proposition A for a submanifold $M \subset N$ near a given point $p \in M$ are called **adapted coordinates**.

From the proof of Proposition A we obtain:

Corollary

Any smooth manifold M that can be realized as a submanifold of some ambient manifold N is diffeomorphic to M, viewed as a topological subspace of N, equipped with any atlas consisting only of adapted coordinates.

Next: Study methods to obtain examples of smooth submanifolds.

Definition

Let *M* and *N* be smooth manifolds and let $F : M \rightarrow N$ be a smooth map.

- $p \in M$ is called **regular point** of F if $dF_p : T_pM \to T_{F(p)}N$ is surjective
- q ∈ N, such that F⁻¹(q) ⊂ M consists only of regular points, is called regular value of F
- points in M that are not regular points of F are called critical points of F
- points in N such that the pre-image under F in M contains at least one critical point of F are called critical values of F

Remark: $F : M \to N$ can only have regular values if dim $(M) \ge \dim(N)$

A convenient way to construct smooth submanifold is the following:

Proposition B

Let $F: M \to N$ be smooth, dim $(M) = m \ge n = \dim(N)$, and $q \in N$ a regular value of F. Then the level set

$$F^{-1}(q) \subset M$$

is an (m - n)-dimensional smooth submanifold of M. The structure of a smooth manifold on $F^{-1}(q)$ is uniquely determined by requiring that the inclusion is smooth.

 \rightsquigarrow in order to prove Proposition B, need additional tools

Definition

Let $F: M \to N$ be a smooth, (φ, U) and (ψ, V) be local charts of M and N, respectively, such that $F(U) \subset V$, and $\dim(M) = m$ and $\dim(N) = n$. The **coordinate representation** of F in the local coordinate systems φ and ψ is defined to be the smooth map

> $\widehat{F}: arphi(U) o \psi(V),$ $\widehat{F}(u^1, \dots, u^m) := (\psi \circ F \circ \varphi^{-1})(u^1, \dots, u^m).$

Using the above definition, we can formulate the so-called **rank theorem**: (next page)

Theorem A

Let *M* be an *m*-dim. and *N* be an *n*-dim. smooth manifold. Let $F : M \to N$ be a smooth map of constant rank *r*. Then for each $p \in M \exists$ local charts (φ, U) of *M* with $p \in U$ and (ψ, V) of *N* with $F(p) \in V$, such that $F(U) \subset V$ and that the coordinate representation of *F* is of the form

$$\widehat{F}(u^1,\ldots,u^r,u^{r+1},\ldots,u^m)=(u^1,\ldots,u^r,0,\ldots,0).$$

Proof: See Thm. 4.12 in *Introduction to Smooth Manifolds* (John M. Lee), or in the real analysis setting with a slightly different formulation Thm. 9.32 in *Principles of Mathematical Analysis* (W. Rudin).

Theorem B

Let M and N be smooth manifolds and $F: M \to N$ smooth and of constant rank r. Each level set $F^{-1}(q) \subset M$, $q \in N$, is a smooth submanifold of codimension r in M.

Proof:

- fix $q \in N$ and $p \in F^{-1}(q)$
- Theorem A → choose charts (φ = (x¹,...,x^m), U) of M, p ∈ U, and (ψ, V) of N, q ∈ V, fulfilling

$$\varphi(p) = 0, \quad \psi(q) = 0,$$

such that the coordinate representation \widehat{F} of F is of the form

$$\widehat{F}: \varphi(U) \to \psi(V),$$

$$\widehat{F}(u^1, \dots, u^r, u^{r+1}, \dots, u^m) = (u^1, \dots, u^r, 0, \dots, 0)$$

• obtain
$$(\psi \circ F)(x^1, ..., x^m) = (x^1, ..., x^r, 0, ..., 0)$$

this shows that

$$F^{-1}(q) \cap U = \{p \in U \mid x^1(p) = \ldots = x'(p) = 0\}$$

- hence, (x^{r+1},...,x^m) are (up to reordering) adapted coordinates on F⁻¹(q) ∩ M
- cover $F^{-1}(q)$ with so constructed coordinates, obtain that $F^{-1}(q) \subset M$ is, in fact, a submanifold of M
- every max. atlas on F⁻¹(q), such that the inclusion is smooth, contains all so constructed adapted coordinates
- hence structure of a smooth manifold on F⁻¹(q), such that the inclusion is smooth, is unique

Need one more result:

Proposition C

Let $F: M \to N$ be smooth. The set of regular points of F is open in M.

Proof: Exercise!

Using Theorem B and Proposition C we can finally prove Proposition C:

Proof (of Proposition C):

• let $F: M \to N$ be smooth, $q \in N$ a regular value of F

Proposition C \rightsquigarrow

 $\operatorname{reg}(F) := \{ p \in M \mid p \text{ regular point of } F \}$

open in M

• by assumption we have $F^{-1}(q) \subset \operatorname{reg}(F)$, hence

 $F|_{\operatorname{reg}(F)}:\operatorname{reg}(F)\to N$

is a submersion and, hence, of constant rank equal to $\dim(N)$

- Theorem B \rightsquigarrow $F^{-1}(q) \subset \operatorname{reg}(F)$ is a smooth submanifold
- the composition of the inclusions F⁻¹(q) ⊂ reg(F) and reg(F) ⊂ M is still the inclusion, in particular still a smooth embedding
- hence $F^{-1}(q) \subset M$ is a smooth submanifold
- reg(F) ⊂ M open and Theorem B imply dim(F⁻¹(q)) = m − n
- structure of a smooth manifold on F⁻¹(q) uniquely determined by requiring that the inclusion in M is smooth by Theorem B

END OF LECTURE 5

Next lecture:

vector bundles