Differential geometry Lecture 4: Tangent spaces (part 2)

David Lindemann

University of Hamburg Department of Mathematics Analysis and Differential Geometry & RTG 1670

1. May 2020

1 Tangent vectors from local coordinates

2 Differentials of smooth maps

3 Immersions, submersions, embeddings, local diffeomorphisms

Recap of lecture 3:

- defined vector space of smooth functions $C^{\infty}(M)$
- defined bump functions (w.r.t. given data)
- recalled tangent vectors & tangent space of \mathbb{R}^n
- defined tangent vectors for general smooth manifolds
- showed that tangent vectors are local objects
- erratum: nope!

How can we write down tangent vectors explicitly? Use **local** coordinates!

Definition

Let $\varphi = (x^1, \ldots, x^n)$ be local coordinates on a smooth manifold M defined on $U \subset M$. Then $\frac{\partial}{\partial x^i}\Big|_p \in T_pM$, $p \in U$, is defined as

$$\frac{\partial}{\partial x^i}\Big|_p(f):=\frac{\partial f}{\partial x^i}(p):=\frac{\partial (f\circ\varphi^{-1})}{\partial u^i}(\varphi(p))\quad\forall f\in C^\infty(M).$$

• we can think of $\frac{\partial}{\partial x^i}\Big|_p$ as partial derivative at p with respect to the chosen local coordinates (x^1, \ldots, x^n)

alternative notations: $\partial_i|_p$, $\partial_{x^i}|_p$

 \leadsto need to check the following:

Lemma

 $\frac{\partial}{\partial x^i}\Big|_p$ is a well-defined tangent vector.

Proof: (next page)

→ need to check linearity and Leibniz rule:

- linearity follows from linearity of partial derivatives in \mathbb{R}^n
- Leibniz rule: for $f, g \in C^{\infty}(M)$ we calculate

$$\begin{aligned} \frac{\partial (f \cdot g)}{\partial x^{i}}(p) \\ &= \frac{\partial ((f \cdot g) \circ \varphi^{-1})}{\partial u^{i}}(\varphi(p)) \\ &= \frac{\partial ((f \circ \varphi^{-1}) \cdot (g \circ \varphi^{-1}))}{\partial u^{i}}(\varphi(p)) \\ &= g(p)\frac{\partial (f \circ \varphi^{-1})}{\partial u^{i}}(\varphi(p)) + f(p)\frac{\partial (g \circ \varphi^{-1})}{\partial u^{i}}(\varphi(p)) \\ &= g(p)\frac{\partial f}{\partial x^{i}}(p) + f(p)\frac{\partial g}{\partial x^{i}}(p) \end{aligned}$$

Example

$$\frac{\partial x^{j}}{\partial x^{i}}(p) = \delta^{j}_{i} \quad \forall 1 \leq i \leq n, \ 1 \leq j \leq n,$$

follows from $(x^j \circ \varphi^{-1})(u^1, \ldots, u^n) = u^j$.

It turns out that **any** tangent vector can be written as a linear combination of the $\frac{\partial}{\partial x^i}\Big|_p$'s in a **unique** way:

Proposition

For all $p \in M$ and any local chart $(\varphi = (x^1, \dots, x^n), U)$ with $p \in U$, the set of tangent vectors $\left\{ \frac{\partial}{\partial x^i} \Big|_p, 1 \le i \le n \right\}$ is **basis** of $T_p M$.

Proof:

Linear independence of the $\frac{\partial}{\partial x^i}\Big|_{p}$:

a assume \exists $(c^1, \dots, c^n) \in \mathbb{R}^n \neq 0$, such that

$$v_0 := \sum_{i=1}^n c^i \left. \frac{\partial}{\partial x^i} \right|_p = 0$$

as a linear map

■ then \exists at least one $1 \le j \le n$, such that $c^j \ne 0$, and we obtain

$$v_0(x^j)=c^j\neq 0$$

which is a contradiction to $v_0 = 0$

$$T_{p}M = \operatorname{span}_{\mathbb{R}}\left\{ \left. \frac{\partial}{\partial x^{i}} \right|_{p}, \ 1 \leq i \leq n \right\}$$
:

- assume wlog φ(U) = B_r(0) [after possibly shrinking U and translating φ via constant vector −φ(p) ∈ ℝⁿ]
- for any g ∈ C[∞](φ(U)) obtain using the fundamental theorem of calculus and

$$g_j(q) := \int\limits_0^1 rac{\partial g}{\partial u^j}(tq) dt \quad orall \ q \in arphi(U), \ 1 \leq j \leq n,$$

the identity

$$g=g(0)+\sum_{j=1}^n g_j u^j$$

• $\forall \ f \in \mathcal{C}^{\infty}(U)$ get via $g := f \circ arphi^{-1}$

$$f = g \circ \varphi = f(p) + \sum_{j=1}^{n} f_j x^j$$

(continuation of proof)

• acting with $\frac{\partial}{\partial x^i}\Big|_p$ on both sides of above eqn. yields

$$f_i(p) = rac{\partial f}{\partial x^i}(p) \quad \forall \ 1 \leq i \leq n$$

• for any $v \in T_p M$ fixed get by using $x^i(p) = 0$ for all $1 \le i \le n$ and the Leibniz rule

....

$$v(f) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(p)v(x^{i})$$

hence

$$\mathbf{v} = \sum_{i=1}^{n} \mathbf{v}(\mathbf{x}^{i}) \left. \frac{\partial}{\partial \mathbf{x}^{i}} \right|_{p},$$

meaning that $\left\{ \left. rac{\partial}{\partial x^i} \right|_p, \ 1 \leq i \leq n
ight\}$ spans $T_p M$ as claimed

Immediate consequence:

Corollary

The **dimensions** of a smooth manifold M and its tangent space T_pM coincide for all $p \in M$.

Question: How do the tangent vectors of the form $\sum_{i} c^{i} \frac{\partial}{\partial x^{i}}\Big|_{p}$ behave under a change of coordinates?

 \rightsquigarrow to answer this, we need differentials of smooth maps

Definition

Let M be a smooth manifold of dimension m and N be a smooth manifold of dimension n.

• The differential at a point $p \in M$ of a smooth function $f \in C^{\infty}(M)$ is defined as the linear map

$$df_{p}: T_{p}M \to \mathbb{R}, \quad v \mapsto v(f).$$

In a given local coordinate system $\varphi = (x^1, \dots, x^m)$ on M that covers p, df_p is of the form

$$df_p: \left. \frac{\partial}{\partial x^i} \right|_p \mapsto \frac{\partial f}{\partial x^i}(p).$$

(continued on next page)

Definition (continuation)

The differential at a point $p \in M$ of a smooth map $F: M \to N$ in given local coordinate systems $\varphi = (x^1, \ldots, x^m)$ on M and $\psi = (y^1, \ldots, y^n)$ on N covering $p \in M$ and $F(p) \in N$, respectively, is defined as the linear map

$$dF_p: T_pM \to T_{F(p)}N, \quad \frac{\partial}{\partial x^i}\Big|_p \mapsto \sum_{j=1}^n \frac{\partial F^j}{\partial x^i}(p) \left. \frac{\partial}{\partial y^j} \right|_{F(p)},$$

where we have used the notation $F^{j} := y^{j} \circ F$. The **rank** of *F* is the rank of the linear map $dF_{p} : T_{p}M \to T_{F(p)}N$, which coincides with the rank of the **Jacobi matrix** of *F* at *p* in the local coordinate systems φ , ψ ,

$$\left(\frac{\partial F^{j}}{\partial x^{i}}(p)\right)_{ji} \in \operatorname{Mat}(n \times m, \mathbb{R}).$$

[j = row, i = column]

Similar to real analysis, differentials fulfils a chain rule:

Lemma

Let M, N, P be smooth manifolds and $F : M \to N$, $G : N \to P$, smooth maps. Then

$$d(G \circ F)_{P} = dG_{F(P)} \circ dF_{P}$$

for all $p \in M$.

Proof: For any $v \in T_{P}M$ and $f \in C^{\infty}(P)$ we have

$$d(G \circ F)_{\rho}(v)(f) = v(f \circ G \circ F)$$

= $dF_{\rho}(v)(f \circ G) = dG_{F(\rho)}(dF_{\rho}(v))(f).$

Example

For any local coordinate system $\varphi = (x^1, \dots, x^n)$ on Mcovering $p \in M$, $d\varphi_p : T_pM \to T_{\varphi(p)}\mathbb{R}^n \cong \mathbb{R}^n$ is of the form

$$d arphi_p = (dx^1, \dots, dx^n)_p = (dx^1_p, \dots, dx^n_p),$$

 $dx^j_p \left(\left. rac{\partial}{\partial x^i} \right|_p
ight) = \delta^j_i.$

Viewed as $n \times n$ -matrix [by identifying $d\varphi_p$ with its Jacobi matrix], $d\varphi_p = \mathbb{1}_n$.

Lemma

For two local coordinate systems $\varphi = (x^1, \dots, x^n)$ and $\psi = (y^1, \dots, y^n)$ with overlapping domain on M we obtain for all p contained in the overlap the identity

$$\left. \frac{\partial}{\partial x^i} \right|_p = \sum_{j=1}^n \frac{\partial y^j}{\partial x^i}(p) \left. \frac{\partial}{\partial y^j} \right|_p.$$

Proof:

For any $f \in C^{\infty}(M)$, $1 \leq i \leq n$, p in the overlap we calculate

$$\begin{split} \frac{\partial f}{\partial x^{i}}(p) &= \frac{\partial (f \circ \varphi^{-1})}{\partial u^{i}}(\varphi(p)) = \frac{\partial (f \circ \psi^{-1} \circ \psi \circ \varphi^{-1})}{\partial u^{i}}(\varphi(p)) \\ &= \sum_{j=1}^{n} \frac{\partial (f \circ \psi^{-1})}{\partial u^{j}}(\psi(p)) \frac{\partial (u^{j} \circ \psi \circ \varphi^{-1})}{\partial u^{i}}(\varphi(p)) \\ &= \sum_{j=1}^{n} \frac{\partial f}{\partial y^{j}}(p) \frac{\partial y^{j}}{\partial x^{i}}(p). \end{split}$$

Properties of differentials are used to classify smooth maps as follows:

Definition

- A smooth map between smooth manifolds $F : M \to N$ is called an **immersion** if $dF_p : T_pM \to T_{F(p)}N$ is injective for all $p \in M$.
- $F: M \to N$ is called a **submersion** if $dF_p: T_pM \to T_{F(p)}N$ is surjective for all $p \in M$.
- An immersion F : M → N is called an embedding if F is injective and an homeomorphism onto its image F(M) ⊂ N equipped with the subspace topology.
- A smooth map F : M → N between smooth manifolds of the same dimension is called a **local diffeomorphism** if for all p ∈ M there exists an open neighbourhood of p, U ⊂ M, such that F|_U : U → N is a diffeomorphism onto its image.

END OF LECTURE 4

Next lecture:

- smooth manifold analogue to inverse function theorem
- more examples of smooth maps
- submanifolds of smooth manifolds