Differential geometry Lecture 3: Tangent spaces (part 1)

David Lindemann

University of Hamburg Department of Mathematics Analysis and Differential Geometry & RTG 1670

27. April 2020

1 The vector space of smooth functions

2 Tangent vectors on \mathbb{R}^n

3 Tangent vectors on smooth manifolds

Recap of lecture 2:

- studied the implicit/inverse function theorem
- defined smooth submanifolds of ℝⁿ, proved that they are smooth manifolds
- the Cartesian product of smooth manifolds is a smooth manifold
- defined what smooth maps between manifolds are
- erratum: The graph of $f = x^2 + y^2 1$ is **not a** hyperboloid, but, up to translation by (0, 0, -1), a paraboloid.

Definition

The vector space of smooth functions $C^{\infty}(M)$ on a smooth manifold M consists of all smooth functions $f: M \to \mathbb{R}$. For $U \subset M$ open, the set

 $C^{\infty}(U) := \{f : U \to \mathbb{R} \text{ smooth}\}$

is also a vector space. Elements of $C^{\infty}(U)$ are called **local** smooth functions (w.r.t. U).

- $C^{\infty}(M)$ is an commutative ring with unit the constant function $f \equiv 1$
- same true for $C^{\infty}(U)$
- the linear map $C^{\infty}(M) \ni f \mapsto f|_U \in C^{\infty}(U)$ is called the restriction map w.r.t. $U \subset M$
- for $M \setminus U$ having nonempty interior, the restriction map is **neither** surjective **nor** injective

Example

Let $(x^1, ..., x^n)$ be local coordinates on $U \subset M$. Then the **coordinate functions** $x^i : U \to \mathbb{R}$, $1 \le i \le n$, are (local) smooth functions.

We will make use of the following special type of functions:

Definition

Let M be a smooth manifold, $U \subset M$ open, and $V \subset U$ compactly embedded with nonempty interior. A **bump** function w.r.t. that given data is a compactly supported smooth function $b \in C^{\infty}(M)$, such that

$$b|_{\overline{V}} \equiv 1$$
, $\operatorname{supp}(b) \subset U$.

- for any permissible data V, U, M as above there exists a bump function w.r.t. that data
- commonly bump functions are defined as any compactly supported smooth functions on *M*, also called test functions

Using bump functions, we can extend local smooth functions to globally defined smooth functions:

Definition

Let $U \subset M$ open and $f \in C^{\infty}(U)$. Let $V \subset U$ be compactly embedded with nonempty interior and $b \in C^{\infty}(M)$ be a bump function w.r.t. V, U, M. Then

$$(bf)(p):=egin{cases} b(p)f(p), & p\in U,\ 0, & p\in M\setminus U \end{cases}$$

is called the **trivial extension** of $b|_U f \in C^{\infty}(U)$ to M and is contained in $C^{\infty}(M)$.

• if $f \in C^{\infty}(U)$, $g \in C^{\infty}(U')$, $U, U' \in M$ open with nonempty intersection, and $f|_{W} = g|_{W}$ for some open $W \subset U \cap U'$, then there exists a bump function $b \in C^{\infty}(M)$ w.r.t. fitting data, such that

$$bf = bg \in C^{\infty}(M)$$

Before defining what tangent vectors should be on smooth manifolds, recall:

Definition

A tangent vector at $p \in \mathbb{R}^n$ is an equivalence class of smooth curves through $p, \gamma : (-\varepsilon, \varepsilon) \to \mathbb{R}^n, \gamma(0) = p$, where

 $[\gamma] = [\widetilde{\gamma}] \quad :\Leftrightarrow \quad \gamma'(0) = \widetilde{\gamma}'(0).$

Tangent vectors at p act on local smooth functions $f \in C^{\infty}(U)$, $U \subset \mathbb{R}^n$ open, $p \in U$, via

$$[\gamma]f := \left. rac{d(f \circ \gamma)}{dt}
ight|_{t=0}$$

which is the **directional derivative** of f at p in direction $\gamma'(0)$.

- the set of tangent vectors at $p \in \mathbb{R}^n$ is a real vector space and called **tangent space of** \mathbb{R}^n at p
- the disjoint union of all tangent spaces at p is called the tangent space of ℝⁿ, it is (as a set) isomorphic to ℝⁿ × ℝⁿ ("base-points & vectors")

We also know when tangent vectors are tangential to a smooth submanifold of $\ensuremath{\mathbb{R}}^n$:

Remark

A tangent vector $[\gamma]$ at p is called tangential to a smooth m < n-dimensional submanifold M of \mathbb{R}^n if for any locally defining function $F : M \cap U \to \mathbb{R}^n$

 $dF_{P}\cdot\gamma'(0)\in\mathbb{R}^{m} imes\{0\}.$

or, equivalently, if \exists open nbh. $U \subset \mathbb{R}^n$ of p, such that

$$df_p\cdot\gamma'(0)=0$$

for a smooth map $f: U \to \mathbb{R}^{n-m}$ with Jacobi matrix of maximal rank with $M \cap U = \{x \in U \mid f(x) = 0\}$.

Problem 1: How can we generalize tangent vectors (and the tangent space) of \mathbb{R}^n to general smooth manifolds? **Problem 2:** What is a good choice for the topology of the tangent space? What additional structure does it have? \rightsquigarrow use how tangent vectors act on functions:

Definition

Let M be a smooth manifold. A **tangent vector** v at $p \in M$ is a linear map

$$v: C^{\infty}(M) \to \mathbb{R},$$

that fulfils the Leibniz rule

v(fg) = g(p)v(f) + f(p)v(g).

The tangent space at $p \in M$

 $T_{p}M := \{v : C^{\infty}(M) \to \mathbb{R} \mid v \text{ tangent vector at } p\}$

is the real vector space of all tangent vectors v at $p \in M$.

One calls tangent vectors **local** (or **local objects**) because of the following result:

Proposition

Let $f, g \in C^{\infty}(M)$ and assume $\exists U \subset M$ open, such that $f|_U = g|_U$. Then for all $p \in U$ and all $v \in T_pM$

v(f)=v(g).

Furthermore, if f is locally constant near $p \in M$, then

 $v(f) = 0 \quad \forall v \in T_p M.$

Sketch of proof:

• by *linearity* of $v \in T_{\rho}M$: for first point suffices to show that

$$v(f) = 0$$

for all f locally vanishing on $U \subset M$ open near p

(continued on next page)

Sketch of proof (continuation):

 choose V open and compactly embedded in U with nonempty interior, p ∈ V, and bump function b ∈ C[∞](M) w.r.t. V, U, M, get with Leibniz rule

$$0 = v(0) = v(bf) = f(p)v(b) + b(p)v(f) = 0 + v(f)$$

second point: use first point to get v(f) = v(c) if $f|_U \equiv c \in \mathbb{R}$, get

$$v(f) = v(c) = cv(1) = cv(1 \cdot 1) = c(1 \cdot v(1) + 1 \cdot v(1)) = 2cv(1) = 2v(f),$$

hence $v(f) = 0$

Remark

The latter proposition in particular implies that we can identify $T_p U$ and $T_p M$ for all $U \subset M$ open with $p \in M$. More precisely, $v \in T_p M$ defines $\tilde{v} \in T_p U$ via any trivial extension $bf \in C^{\infty}(M)$ of $f \in C^{\infty}(U)$ and

 $\widetilde{v}(f) := v(bf),$

which does not depend on the trivial extension as long b is w.r.t. V, U, M with p in the interior of V. On the other hand, $w \in T_p U$ defines $\tilde{w} \in T_p M$ via

 $\widetilde{w}(f) := w(f|_U).$

These two constructions are **inverse** to each other.

 \rightsquigarrow one can define tangent vectors $v \in T_p M$ as linear maps from the germ of smooth functions \mathcal{F}_p at $p \in M$ to \mathbb{R} ,

$$\mathbf{v}: \mathcal{F}_{\mathbf{p}} \to \mathbb{R}$$

so that v fulfils the Leibniz rule w.r.t. the product on $\mathcal{F}_{p}.$ \mathcal{F}_{p} is given by

$$\mathfrak{F}_p := \{f \in C^{\infty}(U) \mid U \text{ open nbh. of } p \in M\}/_{\sim},$$

where $f \sim g$ if \exists open nbh. U of p contained in domains of f and g, such that $f|_U = g|_U$.

END OF LECTURE 3

Next lecture:

 tangent spaces [second part], in particular how to actually write down and calculate with tangent vectors