Differential geometry Lecture 2: Smooth maps and the IFT

David Lindemann

University of Hamburg Department of Mathematics Analysis and Differential Geometry & RTG 1670

24. April 2020

2 Products of smooth manifolds

3 Smooth maps

Recap of lecture 1:

- revisited some topology
- defined (maximal) atlases
- defined structure of a smooth manifold
- have seen that a given atlas specifies max. atlas uniquely
- erratum: charts $\varphi: U \to \varphi(U)$ are not just *any* maps, but homeomorphisms

Before stating the implicit function theorem, recall the following:

Inverse function theorem

Let $U \subset \mathbb{R}^n$ be open, $F : U \to \mathbb{R}^n$ be smooth, and assume that the Jacobi matrix $dF|_p$ is **invertible** for some $p \in \mathbb{R}^n$. Then \exists open nbhs. $V \subset \mathbb{R}^n$ of p and $W \subset \mathbb{R}^n$ of F(p), such that

 $F: V \to W$

is invertible and its inverse $F^{-1}: W \to V$ is smooth.

- *F* is **not** necessarily globally invertible
- there are version of the inverse function theorem for e.g. analytic maps, holomorphic functions,
 Frechét-differentiable maps between Banach spaces, and of course for smooth maps between smooth manifolds

Implicit function theorem (smooth version)

Let $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, $(x, y) \mapsto f(x, y)$, be smooth, f(p) = 0for $p = (x_0, y_0) \in \mathbb{R}^n \times \mathbb{R}^m$, and assume that the Jacobi matrix of f with respect to y at p,

$$d_y f|_{
ho} = egin{pmatrix} rac{df_1}{dy^1}(p) & \ldots & rac{df_1}{dy^m}(p) \ dots & \ddots & dots \ rac{df_m}{dy^1}(p) & \ldots & rac{df_m}{dy^m}(p) \end{pmatrix},$$

is invertible. Then \exists open nbhs. $U \subset \mathbb{R}^n$ of x_0 and $V \subset \mathbb{R}^m$ of y_0 , s.t. \exists a **unique** smooth map $g : U \to V$ fulfilling

$$f(x,y) = 0, x \in U, y \in V \quad \Leftrightarrow \quad y = g(x),$$

in particular we have $g(x_0) = y_0$.

- there are other versions of the IFT, e.g. if f is analytic g will be analytic, or a version of the IFT for Banach spaces
- the IFT follows from the inverse function theorem

Important examples of smooth manifolds are the following:

Definition

An m < n-dimensional smooth submanifold of \mathbb{R}^n is a subset $M \subset \mathbb{R}^n$, such that $\forall p \in M \exists$ open nbh. $U \subset \mathbb{R}^n$ of p and a smooth map $f : U \to \mathbb{R}^{n-m}$ with Jacobi matrix of maximal rank n - m for all points in U fulfilling

 $M \cap U = \{x \in U \mid f(x) = 0\}.$

Question: Are smooth submanifolds of \mathbb{R}^n actually smooth manifolds? **Answer:** Yes! \rightsquigarrow use the IFT:

Lemma

m-dimensional smooth submanifolds M of \mathbb{R}^n can be locally written as graphs of smooth maps

 $g: V \to \mathbb{R}^{n-m}, \quad V \subset \mathbb{R}^m$ open.

 \rightsquigarrow still need to find **atlas** on *M*:

Corollary

For any point p in an m-dim. smooth submfd. $M \subset \mathbb{R}^n \exists$ (after possibly reordering coordinates on \mathbb{R}^n) open nbh. $U \subset \mathbb{R}^n$ of p and a smooth invertible map with smooth inverse

$$F: U \to \mathbb{R}^n$$

such that

$$F|_{U\cap M}:(x^1,\ldots,x^n)\mapsto (x^1,\ldots,x^m,0,\ldots,0).$$

Get local coordinates via:

• cover M with open sets U as above

■ get charts on *M*:

$$(\varphi = \operatorname{pr}_{\mathbb{R}^m} \circ F|_{U \cap M}, U \cap M)$$

Yet another way to find examples of smooth manifolds is by taking the product of two manifolds:

Lemma

Let M with atlas A and N with atlas B be smooth manifolds. Then the **Cartesian product** of M and N,

 $M \times N$,

together with the product atlas

$$\mathcal{A} imes \mathcal{B} := \{ (\varphi imes \psi, \mathcal{U} imes \mathcal{V}) \mid (\varphi, \mathcal{U}) \in \mathcal{A}, (\psi, \mathcal{V}) \in \mathcal{B} \}$$

is a smooth manifold.

Proof: Exercise. **Remark:** The product atlas is in general not maximal. **Examples:**

- $S^1 imes S^1 = T^2$, the 2-torus
- $S^1 imes \mathbb{R}$, the cylinder
- $\blacksquare \ \mathbb{R}^m \times \mathbb{R}^n \cong \mathbb{R}^{m+n}$
- Problem: What does "≅" mean?

Smooth maps

Maps between manifolds are called smooth if they are smooth in local coordinates:

Definition

Let *M* and *N* be smooth manifolds. A continuous map $f: M \to N$ is called **smooth** if for all charts (φ, U) of *M*, (ψ, V) of *N*,

$$\psi \circ f \circ \varphi^{-1} : \varphi(U \cap f^{-1}(V)) \to \psi(V)$$

is smooth. If f is invertible and its inverse $f^{-1}: N \to M$ is smooth, f is called a **diffeomorphism**.

- a map $f: U \to V$ between open sets U of \mathbb{R}^n and V of \mathbb{R}^m is smooth in the sense of real analysis if and only if it is smooth in the sense above where U and V are viewed as smooth manifolds equipped with the restriction of the canonical coordinates
- the set of diffeomorphisms on an n ≥ 1-dim. smooth manifold M, Diff(M), forms an infinite dimensional Lie group

END OF LECTURE 2

Next lecture:

tangent spaces [first part]