Differential geometry
Lecture 19: Geodesics & curvature of pseudo-Riemannian submanifolds

David Lindemann

University of Hamburg
Department of Mathematics
Analysis and Differential Geometry & RTG 1670

24. July 2020

UBLIC
OMAIN

David Lindemann DG lecture 19 24, July 2020  1/37



Induced structures

Curvature of pseudo-Riemannian submanifolds

Geodesics of pseudo-Riemannian submanifolds

A Pseudo-Riemannian hypersurfaces

David Lindemann DG lecture 19

uly 2020

2/37



Recap of lecture 18:

defined Riemann curvature tensor R

discussed geometric interpretation of R via parallel

transport around infinitesimal loops

proved several identities of R, e.g. the Bianchi-identities

interpreted R as measure of how much second covariant

derivatives of vector fields fail to commute

studied sectional curvature, showed how to recover R

from sectional curvatures

defined Ricci curvature and scalar curvature
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Induced structures

Notation: (M, g) is a pseudo-Riemannian submanifold of
(M,g) if M C M and g = B|rmx7m. — does not denote the
topological closure in this lecture.

Recall that for a pseudo-Riemannian submanifold (M, g) of
(M, g) we have an orthogonal splitting TM|y = TM ® TM*.

Definition

The metric g = g|7mxm of a pseudo-Riemannian submanifold
(M, g) of (M,g) is called first fundamental form.

Question: Except from the metric, what other geometrical struc-
tures (connection, curvature,...) are induced by the ambient
manifold of a pseudo-Riemannian submanifold? How are they
related to intrinsic geometrical structures (LCC connection, cur-
vature,...) of the pseudo-Riemannian submanifold?

Answer: Surprisingly nicely!
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Induced structures

Definition

Let (M, g) be a pseudo-Riemannian submanifold of (M, g). We
identify X(M) with tangential sections of

TM|y = TM @ TM* — M. Sections in the subbundle

TM* — M are called normal sections, denoted by X(M)= .
We further define tangential and normal projections as

tan: TM® TM* = TM, nor: TM® TM*+ — TM™*,

given fibrewise by tan(v + &) = v and nor(v + &) = & for all
veT,Mandall £ € T,M-.

The following holds for all smooth submanifolds.

Let M C M be a smooth submanifold. Let further

X,Y € X(M) be arbitrary and X, Y € X(M) be arbitrary
extensions of X, Y to M, i.e. X, = X, and Y, = Y,, for all
p € M. Then [X, Y], € T,M for all p € M.

Proof: Follows from the concept of ¢-related vector fields and
the compatibility with the Lie bracket. O
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Induced structures

Next we will study how the Levi-Civita connection in an ambient
pseudo-Riemannian manifold defines connections in TM —
M and TMY — M for any pseudo-Riemannian submanifold

(M, g).

Lemma B

Let M be a pseudo-Riemannian submanifold of (M, g) and let
V denote the Levi-Civita connection of (M, g). Let X € X(M)
and Y € I'(TM|um) with arbitrary extensions X, Y € X(M).
Then

VxY|,, € [(TM|u)

is independent of the chosen extensions X and Y.

Proof: Follows from ﬁy?’p = V., Y|t for all p € M for
any integral curve v : (—¢,) — M of X with initial condition
~(0) = p and the fact that X restricts by assumption to a vector
field on M. O
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Induced structures

The Levi-Civita connection of a pseudo-Riemannian manifold
(M, g) with pseudo-Riemannian submanifold (M, g) induces a
connection in TM & TM+ — M.

Problem: It is not clear at this point if the above connection
restricts to the subbundles TM — M and TM* — M, respec-
tively.

Solution 1:

Proposition A

Let (M, g) be a pseudo-Riemannian submanifold of (M, g).
Then the Levi-Civita connection V of (M, g) is precisely the

tangent part of the Levi-Civita connection V of (M, g)
restricted to X(M) x X(M), i.e.

VxY =tanVxY

for all X,Y € X(M).

Proof: (see next page)
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Induced structures

(continuation of proof)

m observe that tanV is a connection, follows from fibrewise
linearity of tan

® ~~ remains to show that tanV is metric and torsion-free
m obtain for all X, Y,Z € X(M) with arbitrary respective

extensions X, Y Z e X(M)forallpe M

(tanVxg)(Y, Z)l,
(X(g(Y,2)) - (tanVX Z)—-g(Y, tanﬁxZ))|

(X(&(Y,2)) —g(tanVx Y, Z) — (Y, tanVx2))|
(X(&(Y,2) -&(v 77)—g(Y7V72))|p

m hence, Vg = 0 implies that that tanVg = 0, showing the
metric property

(continued on next page)
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Induced structures

(continuation of proof)
m for torsion-freeness, calculate for all X, Y € X(M) with
arbitrary extensions X, Y € X(M) and all p € M with the
help of Lemmas A & B

(tanﬁxY —tanVy X — [X, Y]) ’p
= (tanVxY — tanVyX — [X, Y]) ’p

= tan (V¥ - Vg X — [X, Y])| =0

as required O

Proposition A allows us to calculate covariant derivatives in
pseudo-Riemannian submanifolds with respect to the
Levi-Civita connection using only tangential projections and
the Levi-Civita connection of the ambient manifold. The
latter is usually easier to handle.
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Induced structures

By a result from John Nash in The Imbedding Problem for Rie-
mannian Manifolds, Annals of Mathematics, Second Series, Vol.
63, No. 1, calculating Levi-Civita connections as in Proposition
A is actually the most general case for Riemannian manifolds:

Let (M, g) be a Riemannian manifold of dimension n. Then
there exists an isometric embedding of (M, g) into any open
subset U C R™ for m = 2n® 4+ 7n” + 1 n equipped with the
standard Riemannian metric (-, -).

Note: In reality, constructing such isometric embeddings explic-
itly for given U C R™ is far from trivial. A picture one might
have in mind for M = (0,1) and m = 2 is “rolling up” the open
interval tight enough to fit into U C R

David Lindemann DG lecture 19 24. July 2020  10/37



Induced structures

Solution 2:

Proposition B

Let (M, g) be a pseudo-Riemannian submanifold of (M, &) and
let V denote the Levi-Civita connection of (M,g). Then
V' = norV : X(M)xX(M)*" = x(M)*, (X, €) — norVxé,

for all X € X(M) and all ¢ € X(M)™ is a connection in
TM* — M, called the normal connection.

y

Proof: Follows from the fibrewise linearity of nor and Lemma
B. O
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Induced structures
Next, we will study the difference between the Levi-Civita con-
nections of a pseudo-Riemannian submanifold and its ambient
manifold restricted to the tangent part of the submanifold. We
will need the following definition:

Definition

Let (M, g) be a pseudo-Riemannian submanifold of (M, g)
with Levi-Civita connection V in TM — M. The second
fundamental form of M is defined as

I1: X(M) x X(M) = X(M)*, TI(X,Y) := norVxY
for all X, Y € X(M).

The second fundamental form has the following properties:

The second fundamental form is a symmetric TM--valued
(0, 2)-tensor field, that is a section of
TM* @ Sym?(T*M) — M.

Proof: (next page)
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Induced structures

(continuation of proof)
m /] is C°°(M)-linear in its first argument

m hence: it suffices to show that /I is symmetric in order to
also obtain the C°°(M)-linearity in the second argument

m ~ for the symmetry we check that for all X, Y € X(M)
using the fibrewise linearity of nor, the torsion-freeness
of V, and Lemma A

(X, Y)=1I(Y,X) =nor (VxY — VyX) =nor[X, Y] =0

|D

Corollary

The Levi-Civita connection V and second fundamﬁental form I/
of a pseudo-Riemannian submanifold (M, g) of (M, g) fulfil the
GauB3 equation

TxY = VxY +lI(X,Y)
for all X, Y € X(M).

v

Warning: There are many “GauB equations”, we will encounter

one more formula with this name.
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Induced structures

The second fundamental form of the graph of a smooth
function f : R — R fulfils for canonical coordinates (x, y) of
the ambient space (R?, (-, -))

62
12} f 8\ — _ 9x2
II(BX+8X6}/’6X+8X6)/)_ €’
1+

(8)()
1 of
where £ = 4”(2;)2 ( ax

The covariant derivatives of normal fields along pseudo-
Riemannian manifolds also split in a certain manner. For this
we need the following definition: (see next page)

Q)‘QJ

o
2 +2).

v
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Induced structures

Definition

Let (M, g) be a pseudo-Riemannian submanifold of (M, g). For
all £ € X(M)*, the g-symmetric endomorphism field
5% € TH1(M) defined by the Weingarten equation

E(”(X’ Y),f) = g(sng Y)

for all X, Y € X(M) is called Weingarten map (alternatively
shape operator).

v

Note: S¢ is well-defined for each ¢ € X(M)™* by the fibrewise
nondegeneracy of g.
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Induced structures

The Weingarten map fulfils the following identity:

Proposition C

Let (M, g) be a pseudo-Riemannian submanifold of (M, ).
The Weingarten map fulfils the Weingarten equation

Vxé=—S*X+Vx'¢
for all X € X(M) and all £ € X(M)~.

Proof: Follows by writing out g(Vx¢,Y) for Y € X(M) with
Y|m € X(M) arbitrary and using Proposition B and the metric

property of V. O
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Curvature of pseudo-Riemannian submanifolds

Question: How are the Riemann curvature tensors of a pseudo-
Riemannian submanifold and its ambient manifold related?
Answer:

Proposition

Let (M, g) be a pseudo-Riemannian submanifold of (M, ).
The Riemann curvature tensors R of (M, g) and R of (M, g)
are related by the GauB equation for Riemann curvature
tensors

g(R(X,Y)Z,W)
= g(R(Xa Y)Za W)
+g(I1(X, 2), TI(Y, W)) — g(II(Y, Z), TI(X, W))

forall X,Y,Z, W e X(M).

Proof:

B since above equation is a tensor equation, we might
without loss of generality assume [X, Y] =0

(continued on next page)
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Curvature of pseudo-Riemannian submanifolds

(continuation of proof)
m observe that for all X,Y,Z, W € X(M), Proposition C
implies

g(VxVyZ, W)
=g(tanVxVyZ, W)
=g(Vx(tanVyZ), W) + g(tanVx(norVy Z), W)
=g(VxVyZ, W)+ g(tanVx(1I(Y, Z)), W)
=g(VxVyZ, W) —g(s""Ix, w)
=&(VxVyZ, W) — g(II(X, W), II(Y, Z)).

m repeating the above calculation with X and Y
interchanged and using R(X,Y) = VxVy — VyVx for
[X, Y] = 0 we obtain the claimed formula O
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Curvature of pseudo-Riemannian submanifolds

As a consequence we obtain a formula for the relation of the
sectional curvatures of pseudo-Riemannian submanifolds and
their ambient manifolds.

Corollary

Let (M, g) be a pseudo-Riemannian submanifold of (M, ). For
every nondegenerate plane spanned by v,w € T,M in

T,M C T,M, the sectional curvatures K of (M, g) and K of
(M, g) are related by

K(v,w) = K(v,w)

_ &8(I(v, v), II(w, w)) — g(1I(v, w), II(v, w))
g(v,v)g(w,w) — g(v,w)? .

y

Note: The above corollary is particularly nice if the ambient
manifold has constant sectional curvature.

The unit sphere S” C R"*! equipped with the restriction of
the standard Riemannian metric has constant sectional
curvature 1.
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Geodesics of pseudo-Riemannian submanifolds

We have seen how to relate the Levi-Civita connections and the
curvature tensors of pseudo-Riemannian manifolds and their
pseudo-Riemannian submanifolds. Next, we will study geodesics
of pseudo-Riemannian submanifolds.

Proposition D

Let (M, g) be a pseudo-Riemannian submanifold of (M, g)
with respective Levi-Civita connections V and V. A smooth
curve v : | — M is a geodesic with respect to V if and only

if V7' is normal at every point, i.e. V., € [,(TM™*).

Proof:

m GauB equation for the Levi-Civita connections ~~

way’ = V,Y/"yl —+ II(’}/I7 "yl)

m since II(v/,~’) is precisely the normal part of V., the
claim follows O
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Geodesics of pseudo-Riemannian submanifolds

Proposition D usually makes life easier in case the ambient
manifold is the flat Euclidean space.

Geodesics in the unit sphere S” C R"*! are precisely curves of
constant velocity contained in the great circles.

4

Note: In the above example, geodesics in the Riemannian sub-
manifold S” are not geodesics in the ambient space (R™?, (-, -)).
Question: What conditions must a pseudo-Riemannian subman-
ifold fulfil so that its geodesics are also geodesics in the am-
bient manifold?

Answer: (see next page)
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Geodesics of pseudo-Riemannian submanifolds

Definition

A pseudo-Riemannian submanifold (M, g) of a
pseudo-Riemannian manifold (M, g) is called totally geodesic
if all geodesics v : I — M of (M, g) starting in M with initial
velocity tangent to M stay in M for all time, i.e. (/) C M.

From the GauB equation for connections we obtain the following
result to check whether a pseudo-Riemannian submanifold is
totally geodesic or not.

A pseudo-Riemannian submanifold (M, g) of a
pseudo-Riemannian manifold (M, g) is totally geodesic if and
only if its second fundamental form vanishes identically.

Proof:
m II =0 ~ GauB equation implies that V..y' = V., for
all smooth curves v:/ - M

(continued on next page)
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Geodesics of pseudo-Riemannian submanifolds

(continuation of proof)
m hence: v is a geodesic in (M, g) if and only if it is a
geodesic in (M, g)
m for the other direction suppose that II #Z 0
m fix pe Mand v € T,M C T,M, such that TI(v,v) # 0

m for ¢ > 0 small enough let v : (—¢,€) — M be a geodesic
in (M, g) with 7/(0) = v

m GauB equation ~ 7 is not a geodesic in (M, g)

m hence, (M, g) is not totally geodesic O
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Geodesics of pseudo-Riemannian submanifolds

In order to check if a pseudo-Riemannian submanifold is total
geodesic, we might use the following equivalent conditions:

Proposition E

A ps.-R. submanifold (M, g) C (M, g) is totally geodesic if and
only if one of the following equivalent statements hold:

B Every geodesic in (M, g) is a geodesic in (M, g).

| For every geodesic 7y : | — M with 0 € /, | open, and
initial conditions v(0) = p, ¥'(0) =v € T,M C T,M
there exists € > 0, such that v((—¢,¢g)) C M.

B For every smooth curve v : [a, b] = M C M the parallel
transport in (M, g),

P2(7) : TyyM — TymyM
coincides with the parallel transport in (M, ),

7b — P—
Pa 5 Tq(a)M = Tv(b)M

restricted to T, ;)M C T, M.
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Geodesics of pseudo-Riemannian submanifolds

Proof:
m (i) is by definition of totally geodesic pseudo-Riemannian
submanifolds equivalent to (M, g) being totally geodesic
m (iii) is equivalent to (M, g) being totally geodesic by
Lemma C
m ‘(i) = (ii)": let v : | = M be a geodesic in (M, g) with
0€/,/open,andy'(0)=ve T,M, andlet¥: ] — M
be a geodesic in (M, g) with 0 € /, | open, and 5'(0) = v
m by assumption, 7 is also a geodesic in (M, g) and by the
uniqueness property of maximal geodesics coincides
with yon IN/
= choosing ¢ > 0 small enough so that (—¢,e) C I N1
proves the claim
m “(ii) = (i)": let p€ M and v € T,M be arbitrary and
v : (—€,€) = M for any ¢ > 0 small enough be a
geodesic in (M, g) with v(0) = p, 7(0) = v, such that
(=€) M
(continued on next page)
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Geodesics of pseudo-Riemannian submanifolds

(continuation of proof)

m GauB equation ~~

0= ﬁ/ﬂtzo = Vy’y/|t20 + IIp(v, v)

m hence, the factihat we have a fibrewise direct sum of
the splitting TM|y = TM @ TM~* and p and v were
arbitrary implies II = 0 as required O
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Geodesics of pseudo-Riemannian submanifolds

Question: How can one construct totally geodesic submani-
folds?
Answer: One neat possibility is the following:

Proposition

Let (M,g) be a pseudo-Riemannian manifold and let

F € Isom(M, g) be an isometry of (M, g). Suppose that a
connected component M of Fix(F) :={p€ M | F(p) = p}
is a pseudo-Riemannian submanifold of (M, g). Then M is
totally geodesic.

Proof:
m F restricted to M is the identity, i.e. F|y = idum

m hence, dF restricted to the subbundle TM C TM|y is
also the identity, meaning that dF(v) = v for all
veT,MC T,Mandallpe M

(continued on next page)
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Geodesics of pseudo-Riemannian submanifolds

(continuation of proof)

m to show that M is totally geodesic, it suffices to show by
Proposition E (ii) that isometries map geodesics of
(M, g) to geodesics of (M, g)

m this means that for ¢ > 0 small enough, any geodesic of
(M,g8), v: (—e,e) > M with v(0) = p e M,

v'(0) = v € T,M, will be contained in M by construction

m ~ follows from the naturality of the Levi-Civita
connection, that is F,VxY = VF*yF* Y for all
X,Y € X(M) O
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Geodesics of pseudo-Riemannian submanifolds

In the case that considered totally geodesic submanifolds are
geodesically complete and connected, we have the following
convenient way to check if they are isometric:

Proposition

Let M and N be connected totally geodesic geodesically
complete pseudo-Riemannian submanifolds of (M, g). If there
exists p € M N N, such that T,M = T,N as linear subspaces
of T,M, we already have M = N.

Proof:

m we will show M C N, the other direction follows by
symmetry of the arguments

m let v : [a,b] = M be a geodesic in M from p = (a) to
q := y(b) and note that M being totally geodesic implies
v is also a geodesic in M

(continued on next page)
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Geodesics of pseudo-Riemannian submanifolds

(continuation of proof)

m by assumption of geodesic completeness of N, there
exists a unique geodesic

Y:R—>N

with 7'(a) = 7/(2)

m since N C M is totally geodesic, 7 is also a geodesic in M

m hence by uniqueness of maximal geodesics v and ¥/, 4
coincide, showing in particular g € N

m By Proposition E (iii) and the linear isometry property of
Pb(v) : ToM — T,M it follows that T,M = T,N

m by the connectedness of M and N and the fact that we
can connect arbitrary points in connected geodesically
complete manifolds with piecewise geodesics, we

conclude that this argument holds for all g € M, showing
that ge N O

David Lindemann DG lecture 19 24. July 2020 30/37



Geodesics of pseudo-Riemannian submanifolds

The connected totally geodesic geodesically complete
Riemannian submanifolds of R"” with standard Riemannian
metric are the affine m < n-spaces, that is smooth
submanifolds of the form

M=p+V, V CR" m-dimensional linear subspace.
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Pseudo-Riemannian hypersurfaces

Lastly, we focus our studies on pseudo-Riemannian hypersur-
faces, that is pseudo-Riemannian submanifolds of codim. 1.

Definition

Let (M,g) be a pseudo-Riemannian manifold with orientable
pseudo-Riemannian hypersurface (M, g). An orthogonal
vector field &€ € X(M)™ is called unit normal if Z(£,€) =1 or

g(&v 5) =-1

Note: Orientability of hypersurfaces is usually defined by requir-
ing that there exists a nowhere vanishing transversal vector
field along said hypersurface. Alternatively, one can study the
existence of a globally defined volume form.
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Pseudo-Riemannian hypersurfaces

If a pseudo-Riemannian hypersurface admits a unit normal, it
admits precisely 2 unit normals related by a sign flip.

Proposition

Let (M, g) be an oriented pseudo-Riemannian hypersurface of
(M,Z) and let £ € X(M)™* be a unit normal with

g(&,€) =e € {—1,1}. Then the second fundamental form of
M is of the form

where g € T(Sym?(T*M)) is given by
E(X,Y) =g(5°X,Y)

for all X, Y € X(M) with S* the Weingarten map.
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Pseudo-Riemannian hypersurfaces

Proposition (continuation)

The GauBl equation for the curvature and the related
sectional curvature equation are given by

g(R(X,Y)Z, W) = g(R(X, Y)Z, W)

+e(g(S°X, Z)g(S°Y, W) — g(5°Y, Z)g(S°X, W),

g(va, v)g(Sgw, w) — g(ng7 W)2
g(V, V)g(W7 W) - g(V7 W)2

for all X,Y,Z, W € ¥(M) and all v,w € T,M spanning a
nondegenerate plane.

K(v,w) = K(v,w) —¢

)

Proof:

m £ being by assumption nowhere vanishing implies that we
canwrite [I=¢®g

m g(II(X, Y), &) = eg(X,Y) for all X, Y € X(M) means
that g is uniquely determined

(continued on next page)

David Lindemann DG lecture 19 24. July 2020 3437



Pseudo-Riemannian hypersurfaces

(continuation of proof)
m the Weingarten equation is given by
g(I(X, Y),6) = g(5°X. Y)

for all X, Y € X(M) and, hence, g(X, Y) = eg(S°X, Y)
as claimed

m for the curvature equations in this proposition observe
that

g(I(X, Z),1(Y, W)) = eg(X, Z2)g(Y, W)
=cg(S°X, 2)g(S5° Y. W),

for all X, Y, Z, W € X(M), which follows from ¢ = ™!

and our previous results

m the rest of this proof is just writing out the formulas,
that is the GauB equation for R and R and the sectional
curvature relation [Exercise!] O
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Pseudo-Riemannian hypersurfaces

Let (M, g) be an orientable Riemannian hypersurface in
(R™* (-,-)). For p € M and U C R"*! a small enough open
neighbourhood of p, choose f € C*°(U) of maximal rank,
such that

MnU={f =0}

After a possible overall sign flip of f, we can assume w.l.o.g.
that the unit normal of M is given locally on M N U by

grad(,y,)(f) grad<_’,>(f)

- \/<gra‘d(~,~)(f)3grad(.7.)(f)> N nga‘d<~,~)(f)||.

The second fundamental form of M N U is then given by

1

=2
VXY
ferad, AN~ V)

(X, Y) =

for all X, Y € X(M N U), where T2f denotes the Hessian of f
w.rt. V.

v
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