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Recap of lecture 18:

defined Riemann curvature tensor R

discussed geometric interpretation of R via parallel
transport around infinitesimal loops

proved several identities of R, e.g. the Bianchi-identities

interpreted R as measure of how much second covariant
derivatives of vector fields fail to commute

studied sectional curvature, showed how to recover R
from sectional curvatures

defined Ricci curvature and scalar curvature
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Induced structures

Notation: (M, g) is a pseudo-Riemannian submanifold of
(M, g) if M ⊂ M and g = g |TM×TM . · does not denote the
topological closure in this lecture.
Recall that for a pseudo-Riemannian submanifold (M, g) of
(M, g) we have an orthogonal splitting TM|M = TM ⊕TM⊥.

Definition

The metric g = g |TM×TM of a pseudo-Riemannian submanifold
(M, g) of (M, g) is called first fundamental form.

Question: Except from the metric, what other geometrical struc-
tures (connection, curvature,...) are induced by the ambient
manifold of a pseudo-Riemannian submanifold? How are they
related to intrinsic geometrical structures (LCC connection, cur-
vature,...) of the pseudo-Riemannian submanifold?
Answer: Surprisingly nicely!
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Induced structures

Definition

Let (M, g) be a pseudo-Riemannian submanifold of (M, g). We
identify X(M) with tangential sections of
TM|M = TM ⊕ TM⊥ → M. Sections in the subbundle
TM⊥ → M are called normal sections, denoted by X(M)⊥.
We further define tangential and normal projections as

tan : TM ⊕ TM⊥ → TM, nor : TM ⊕ TM⊥ → TM⊥,

given fibrewise by tan(v + ξ) = v and nor(v + ξ) = ξ for all
v ∈ TpM and all ξ ∈ TpM

⊥.

The following holds for all smooth submanifolds.

Lemma A

Let M ⊂ M be a smooth submanifold. Let further
X ,Y ∈ X(M) be arbitrary and X ,Y ∈ X(M) be arbitrary
extensions of X ,Y to M, i.e. X p = Xp and Y p = Yp for all
p ∈ M. Then [X ,Y ]p ∈ TpM for all p ∈ M.

Proof: Follows from the concept of φ-related vector fields and
the compatibility with the Lie bracket.
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Induced structures

Next we will study how the Levi-Civita connection in an ambient
pseudo-Riemannian manifold defines connections in TM →
M and TM⊥ → M for any pseudo-Riemannian submanifold
(M, g).

Lemma B

Let M be a pseudo-Riemannian submanifold of (M, g) and let
∇ denote the Levi-Civita connection of (M, g). Let X ∈ X(M)
and Y ∈ Γ(TM|M) with arbitrary extensions X ,Y ∈ X(M).
Then

∇XY
∣∣
M
∈ Γ(TM|M)

is independent of the chosen extensions X and Y .

Proof: Follows from ∇XY
∣∣
p

= ∇γ′Y γ |t=0 for all p ∈ M for

any integral curve γ : (−ε, ε)→ M of X with initial condition
γ(0) = p and the fact that X restricts by assumption to a vector
field on M.
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Induced structures

Corollary

The Levi-Civita connection of a pseudo-Riemannian manifold
(M, g) with pseudo-Riemannian submanifold (M, g) induces a
connection in TM ⊕ TM⊥ → M.

Problem: It is not clear at this point if the above connection
restricts to the subbundles TM → M and TM⊥ → M, respec-
tively.
Solution 1:

Proposition A

Let (M, g) be a pseudo-Riemannian submanifold of (M, g).
Then the Levi-Civita connection ∇ of (M, g) is precisely the
tangent part of the Levi-Civita connection ∇ of (M, g)
restricted to X(M)× X(M), i.e.

∇XY = tan∇XY

for all X ,Y ∈ X(M).

Proof: (see next page)
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Induced structures

(continuation of proof)

observe that tan∇ is a connection, follows from fibrewise
linearity of tan

 remains to show that tan∇ is metric and torsion-free

obtain for all X ,Y ,Z ∈ X(M) with arbitrary respective
extensions X ,Y ,Z ∈ X(M) for all p ∈ M

(tan∇Xg)(Y ,Z)|p
=
(
X (g(Y ,Z))− g(tan∇XY ,Z)− g(Y , tan∇XZ)

)∣∣
p

=
(
X (g(Y ,Z))− g(tan∇XY ,Z)− g(Y , tan∇XZ)

)∣∣
p

=
(
X (g(Y ,Z))− g(∇XY ,Z)− g(Y ,∇XZ)

)∣∣
p

hence, ∇g = 0 implies that that tan∇g = 0, showing the
metric property

(continued on next page)
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Induced structures

(continuation of proof)

for torsion-freeness, calculate for all X ,Y ∈ X(M) with
arbitrary extensions X ,Y ∈ X(M) and all p ∈ M with the
help of Lemmas A & B(

tan∇XY − tan∇YX − [X ,Y ]
)∣∣

p

=
(
tan∇XY − tan∇YX − [X ,Y ]

)∣∣
p

= tan
(
∇XY −∇YX − [X ,Y ]

)∣∣
p

= 0

as required

Remark

Proposition A allows us to calculate covariant derivatives in
pseudo-Riemannian submanifolds with respect to the
Levi-Civita connection using only tangential projections and
the Levi-Civita connection of the ambient manifold. The
latter is usually easier to handle.
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Induced structures

By a result from John Nash in The Imbedding Problem for Rie-
mannian Manifolds, Annals of Mathematics, Second Series, Vol.
63, No. 1, calculating Levi-Civita connections as in Proposition
A is actually the most general case for Riemannian manifolds:

Theorem

Let (M, g) be a Riemannian manifold of dimension n. Then
there exists an isometric embedding of (M, g) into any open
subset U ⊂ Rm for m = 3

2
n3 + 7n2 + 11

2
n equipped with the

standard Riemannian metric 〈·, ·〉.

Note: In reality, constructing such isometric embeddings explic-
itly for given U ⊂ Rm is far from trivial. A picture one might
have in mind for M = (0, 1) and m = 2 is “rolling up” the open
interval tight enough to fit into U ⊂ R2.
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Induced structures

Solution 2:

Proposition B

Let (M, g) be a pseudo-Riemannian submanifold of (M, g) and
let ∇ denote the Levi-Civita connection of (M, g). Then

∇nor
:= nor∇ : X(M)×X(M)⊥ → X(M)⊥, (X , ξ) 7→ nor∇X ξ,

for all X ∈ X(M) and all ξ ∈ X(M)⊥ is a connection in
TM⊥ → M, called the normal connection.

Proof: Follows from the fibrewise linearity of nor and Lemma
B.
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Induced structures

Next, we will study the difference between the Levi-Civita con-
nections of a pseudo-Riemannian submanifold and its ambient
manifold restricted to the tangent part of the submanifold. We
will need the following definition:

Definition

Let (M, g) be a pseudo-Riemannian submanifold of (M, g)
with Levi-Civita connection ∇ in TM → M. The second
fundamental form of M is defined as

II : X(M)× X(M)→ X(M)⊥, II(X ,Y ) := nor∇XY

for all X ,Y ∈ X(M).

The second fundamental form has the following properties:

Lemma

The second fundamental form is a symmetric TM⊥-valued
(0, 2)-tensor field, that is a section of
TM⊥ ⊗ Sym2(T ∗M)→ M.

Proof: (next page)
David Lindemann DG lecture 19 24. July 2020 12 / 37



Induced structures

(continuation of proof)

II is C∞(M)-linear in its first argument

hence: it suffices to show that II is symmetric in order to
also obtain the C∞(M)-linearity in the second argument

 for the symmetry we check that for all X ,Y ∈ X(M)
using the fibrewise linearity of nor, the torsion-freeness
of ∇, and Lemma A

II (X ,Y )−II (Y ,X ) = nor
(
∇XY −∇YX

)
= nor[X ,Y ] = 0

Corollary

The Levi-Civita connection ∇ and second fundamental form II
of a pseudo-Riemannian submanifold (M, g) of (M, g) fulfil the
Gauß equation

∇XY = ∇XY + II (X ,Y )

for all X ,Y ∈ X(M).

Warning: There are many “Gauß equations”, we will encounter
one more formula with this name.
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Induced structures

Example

The second fundamental form of the graph of a smooth
function f : R→ R fulfils for canonical coordinates (x , y) of
the ambient space (R2, 〈·, ·〉)

II
(
∂
∂x

+ ∂f
∂x

∂
∂y
, ∂
∂x

+ ∂f
∂x

∂
∂y

)
=

∂2f
∂x2√

1+

(
∂f
∂x

)2
ξ,

where ξ = 1√
1+

(
∂f
∂x

)2

(
− ∂f
∂x

∂
∂x

+ ∂
∂y

)
.

The covariant derivatives of normal fields along pseudo-
Riemannian manifolds also split in a certain manner. For this
we need the following definition: (see next page)
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Induced structures

Definition

Let (M, g) be a pseudo-Riemannian submanifold of (M, g). For
all ξ ∈ X(M)⊥, the g-symmetric endomorphism field
Sξ ∈ T1,1(M) defined by the Weingarten equation

g(II (X ,Y ), ξ) = g(SξX ,Y )

for all X ,Y ∈ X(M) is called Weingarten map (alternatively
shape operator).

Note: Sξ is well-defined for each ξ ∈ X(M)⊥ by the fibrewise
nondegeneracy of g .
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Induced structures

The Weingarten map fulfils the following identity:

Proposition C

Let (M, g) be a pseudo-Riemannian submanifold of (M, g).
The Weingarten map fulfils the Weingarten equation

∇X ξ = −SξX +∇nor
X ξ

for all X ∈ X(M) and all ξ ∈ X(M)⊥.

Proof: Follows by writing out g(∇X ξ,Y ) for Y ∈ X(M) with
Y |M ∈ X(M) arbitrary and using Proposition B and the metric
property of ∇.
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Curvature of pseudo-Riemannian submanifolds

Question: How are the Riemann curvature tensors of a pseudo-
Riemannian submanifold and its ambient manifold related?
Answer:

Proposition

Let (M, g) be a pseudo-Riemannian submanifold of (M, g).
The Riemann curvature tensors R of (M, g) and R of (M, g)
are related by the Gauß equation for Riemann curvature
tensors

g(R(X ,Y )Z ,W )

= g(R(X ,Y )Z ,W )

+ g(II(X ,Z), II(Y ,W ))− g(II(Y ,Z), II(X ,W ))

for all X ,Y ,Z ,W ∈ X(M).

Proof:

since above equation is a tensor equation, we might
without loss of generality assume [X ,Y ] = 0

(continued on next page)
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Curvature of pseudo-Riemannian submanifolds

(continuation of proof)

observe that for all X ,Y ,Z ,W ∈ X(M), Proposition C
implies

g(∇X∇YZ ,W )

= g(tan∇X∇YZ ,W )

= g(∇X (tan∇YZ),W ) + g(tan∇X (nor∇YZ),W )

= g(∇X∇YZ ,W ) + g(tan∇X (II(Y ,Z)),W )

= g(∇X∇YZ ,W )− g(S II(Y ,Z)X ,W )

= g(∇X∇YZ ,W )− g(II(X ,W ), II(Y ,Z)).

repeating the above calculation with X and Y
interchanged and using R(X ,Y ) = ∇X∇Y −∇Y∇X for
[X ,Y ] = 0 we obtain the claimed formula

David Lindemann DG lecture 19 24. July 2020 18 / 37



Curvature of pseudo-Riemannian submanifolds

As a consequence we obtain a formula for the relation of the
sectional curvatures of pseudo-Riemannian submanifolds and
their ambient manifolds.

Corollary

Let (M, g) be a pseudo-Riemannian submanifold of (M, g). For
every nondegenerate plane spanned by v ,w ∈ TpM in
TpM ⊂ TpM, the sectional curvatures K of (M, g) and K of
(M, g) are related by

K(v ,w) = K(v ,w)

− g(II(v , v), II(w ,w))− g(II(v ,w), II(v ,w))

g(v , v)g(w ,w)− g(v ,w)2
.

Note: The above corollary is particularly nice if the ambient
manifold has constant sectional curvature.

Example

The unit sphere Sn ⊂ Rn+1 equipped with the restriction of
the standard Riemannian metric has constant sectional
curvature 1.
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Geodesics of pseudo-Riemannian submanifolds

We have seen how to relate the Levi-Civita connections and the
curvature tensors of pseudo-Riemannian manifolds and their
pseudo-Riemannian submanifolds. Next, we will study geodesics
of pseudo-Riemannian submanifolds.

Proposition D

Let (M, g) be a pseudo-Riemannian submanifold of (M, g)
with respective Levi-Civita connections ∇ and ∇. A smooth
curve γ : I → M is a geodesic with respect to ∇ if and only
if ∇γ′γ′ is normal at every point, i.e. ∇γ′γ′ ∈ Γγ(TM⊥).

Proof:

Gauß equation for the Levi-Civita connections  

∇γ′γ′ = ∇γ′γ′ + II(γ′, γ′)

since II(γ′, γ′) is precisely the normal part of ∇γ′γ′, the
claim follows
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Geodesics of pseudo-Riemannian submanifolds

Remark

Proposition D usually makes life easier in case the ambient
manifold is the flat Euclidean space.

Example

Geodesics in the unit sphere Sn ⊂ Rn+1 are precisely curves of
constant velocity contained in the great circles.

Note: In the above example, geodesics in the Riemannian sub-
manifold Sn are not geodesics in the ambient space (Rn+1, 〈·, ·〉).
Question: What conditions must a pseudo-Riemannian subman-
ifold fulfil so that its geodesics are also geodesics in the am-
bient manifold?
Answer: (see next page)
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Geodesics of pseudo-Riemannian submanifolds

Definition

A pseudo-Riemannian submanifold (M, g) of a
pseudo-Riemannian manifold (M, g) is called totally geodesic
if all geodesics γ : I → M of (M, g) starting in M with initial
velocity tangent to M stay in M for all time, i.e. γ(I ) ⊂ M.

From the Gauß equation for connections we obtain the following
result to check whether a pseudo-Riemannian submanifold is
totally geodesic or not.

Lemma C

A pseudo-Riemannian submanifold (M, g) of a
pseudo-Riemannian manifold (M, g) is totally geodesic if and
only if its second fundamental form vanishes identically.

Proof:

II ≡ 0  Gauß equation implies that ∇γ′γ′ = ∇γ′γ′ for
all smooth curves γ : I → M

(continued on next page)
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Geodesics of pseudo-Riemannian submanifolds

(continuation of proof)

hence: γ is a geodesic in (M, g) if and only if it is a
geodesic in (M, g)

for the other direction suppose that II 6≡ 0

fix p ∈ M and v ∈ TpM ⊂ TpM, such that II(v , v) 6= 0

for ε > 0 small enough let γ : (−ε, ε)→ M be a geodesic
in (M, g) with γ′(0) = v

Gauß equation  γ is not a geodesic in (M, g)

hence, (M, g) is not totally geodesic
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Geodesics of pseudo-Riemannian submanifolds

In order to check if a pseudo-Riemannian submanifold is total
geodesic, we might use the following equivalent conditions:

Proposition E

A ps.-R. submanifold (M, g) ⊂ (M, g) is totally geodesic if and
only if one of the following equivalent statements hold:

i Every geodesic in (M, g) is a geodesic in (M, g).

ii For every geodesic γ : I → M with 0 ∈ I , I open, and
initial conditions γ(0) = p, γ′(0) = v ∈ TpM ⊂ TpM
there exists ε > 0, such that γ((−ε, ε)) ⊂ M.

iii For every smooth curve γ : [a, b]→ M ⊂ M the parallel
transport in (M, g),

Pb
a (γ) : Tγ(a)M → Tγ(b)M

coincides with the parallel transport in (M, g),

P
b
a : Tγ(a)M → Tγ(b)M

restricted to Tγ(a)M ⊂ Tγ(a)M.
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Geodesics of pseudo-Riemannian submanifolds

Proof:

(i) is by definition of totally geodesic pseudo-Riemannian
submanifolds equivalent to (M, g) being totally geodesic

(iii) is equivalent to (M, g) being totally geodesic by
Lemma C

“(i) ⇒ (ii)”: let γ : I → M be a geodesic in (M, g) with

0 ∈ I , I open, and γ′(0) = v ∈ TpM, and let γ̃ : Ĩ → M

be a geodesic in (M, g) with 0 ∈ Ĩ , Ĩ open, and γ̃′(0) = v

by assumption, γ̃ is also a geodesic in (M, g) and by the
uniqueness property of maximal geodesics coincides
with γ on I ∩ Ĩ

choosing ε > 0 small enough so that (−ε, ε) ⊂ I ∩ Ĩ
proves the claim

“(ii) ⇒ (i)”: let p ∈ M and v ∈ TpM be arbitrary and
γ : (−ε, ε)→ M for any ε > 0 small enough be a
geodesic in (M, g) with γ(0) = p, γ′(0) = v , such that
γ((−ε, ε)) ⊂ M

(continued on next page)
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Geodesics of pseudo-Riemannian submanifolds

(continuation of proof)

Gauß equation  

0 = ∇γ′γ′
∣∣
t=0

= ∇γ′γ′
∣∣
t=0

+ IIp(v , v)

hence, the fact that we have a fibrewise direct sum of
the splitting TM|M = TM ⊕ TM⊥ and p and v were
arbitrary implies II ≡ 0 as required
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Geodesics of pseudo-Riemannian submanifolds

Question: How can one construct totally geodesic submani-
folds?
Answer: One neat possibility is the following:

Proposition

Let (M, g) be a pseudo-Riemannian manifold and let
F ∈ Isom(M, g) be an isometry of (M, g). Suppose that a
connected component M of Fix(F ) := {p ∈ M | F (p) = p}
is a pseudo-Riemannian submanifold of (M, g). Then M is
totally geodesic.

Proof:

F restricted to M is the identity, i.e. F |M = idM

hence, dF restricted to the subbundle TM ⊂ TM|M is
also the identity, meaning that dF (v) = v for all
v ∈ TpM ⊂ TpM and all p ∈ M

(continued on next page)
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Geodesics of pseudo-Riemannian submanifolds

(continuation of proof)

to show that M is totally geodesic, it suffices to show by
Proposition E (ii) that isometries map geodesics of
(M, g) to geodesics of (M, g)

this means that for ε > 0 small enough, any geodesic of
(M, g), γ : (−ε, ε)→ M with γ(0) = p ∈ M,
γ′(0) = v ∈ TpM, will be contained in M by construction

 follows from the naturality of the Levi-Civita
connection, that is F∗∇XY = ∇F∗X

F∗Y for all

X ,Y ∈ X(M)
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Geodesics of pseudo-Riemannian submanifolds

In the case that considered totally geodesic submanifolds are
geodesically complete and connected, we have the following
convenient way to check if they are isometric:

Proposition

Let M and N be connected totally geodesic geodesically
complete pseudo-Riemannian submanifolds of (M, g). If there
exists p ∈ M ∩ N, such that TpM = TpN as linear subspaces
of TpM, we already have M = N.

Proof:

we will show M ⊂ N, the other direction follows by
symmetry of the arguments

let γ : [a, b]→ M be a geodesic in M from p = γ(a) to
q := γ(b) and note that M being totally geodesic implies
γ is also a geodesic in M

(continued on next page)
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Geodesics of pseudo-Riemannian submanifolds

(continuation of proof)

by assumption of geodesic completeness of N, there
exists a unique geodesic

γ̃ : R→ N

with γ̃′(a) = γ′(a)

since N ⊂ M is totally geodesic, γ̃ is also a geodesic in M

hence by uniqueness of maximal geodesics γ and γ̃|[a,b]

coincide, showing in particular q ∈ N

By Proposition E (iii) and the linear isometry property of
Pb
a (γ) : TpM → TqM it follows that TqM = TqN

by the connectedness of M and N and the fact that we
can connect arbitrary points in connected geodesically
complete manifolds with piecewise geodesics, we
conclude that this argument holds for all q ∈ M, showing
that q ∈ N
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Geodesics of pseudo-Riemannian submanifolds

Corollary

The connected totally geodesic geodesically complete
Riemannian submanifolds of Rn with standard Riemannian
metric are the affine m ≤ n-spaces, that is smooth
submanifolds of the form

M = p + V , V ⊂ Rn m-dimensional linear subspace.
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Pseudo-Riemannian hypersurfaces

Lastly, we focus our studies on pseudo-Riemannian hypersur-
faces, that is pseudo-Riemannian submanifolds of codim. 1.

Definition

Let (M, g) be a pseudo-Riemannian manifold with orientable
pseudo-Riemannian hypersurface (M, g). An orthogonal
vector field ξ ∈ X(M)⊥ is called unit normal if g(ξ, ξ) ≡ 1 or
g(ξ, ξ) ≡ −1.

Note: Orientability of hypersurfaces is usually defined by requir-
ing that there exists a nowhere vanishing transversal vector
field along said hypersurface. Alternatively, one can study the
existence of a globally defined volume form.
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Pseudo-Riemannian hypersurfaces

If a pseudo-Riemannian hypersurface admits a unit normal, it
admits precisely 2 unit normals related by a sign flip.

Proposition

Let (M, g) be an oriented pseudo-Riemannian hypersurface of
(M, g) and let ξ ∈ X(M)⊥ be a unit normal with
g(ξ, ξ) ≡ ε ∈ {−1, 1}. Then the second fundamental form of
M is of the form

II = ξ ⊗ g̃ ,

where g̃ ∈ Γ(Sym2(T ∗M)) is given by

g̃(X ,Y ) = εg(SξX ,Y )

for all X ,Y ∈ X(M) with Sξ the Weingarten map.
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Pseudo-Riemannian hypersurfaces

Proposition (continuation)

The Gauß equation for the curvature and the related
sectional curvature equation are given by

g(R(X ,Y )Z ,W ) = g(R(X ,Y )Z ,W )

+ ε(g(SξX ,Z)g(SξY ,W )− g(SξY ,Z)g(SξX ,W )),

K(v ,w) = K(v ,w)− εg(Sξv , v)g(Sξw ,w)− g(Sξv ,w)2

g(v , v)g(w ,w)− g(v ,w)2
,

for all X ,Y ,Z ,W ∈ X(M) and all v ,w ∈ TpM spanning a
nondegenerate plane.

Proof:

ξ being by assumption nowhere vanishing implies that we
can write II = ξ ⊗ g̃

g(II(X ,Y ), ξ) = εg̃(X ,Y ) for all X ,Y ∈ X(M) means
that g̃ is uniquely determined

(continued on next page)
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Pseudo-Riemannian hypersurfaces

(continuation of proof)

the Weingarten equation is given by

g(II(X ,Y ), ξ) = g(SξX ,Y )

for all X ,Y ∈ X(M) and, hence, g̃(X ,Y ) = εg(SξX ,Y )
as claimed

for the curvature equations in this proposition observe
that

g(II(X ,Z), II(Y ,W )) = εg̃(X ,Z)g̃(Y ,W )

= εg(SξX ,Z)g(SξY ,W ),

for all X ,Y ,Z ,W ∈ X(M), which follows from ε = ε−1

and our previous results

the rest of this proof is just writing out the formulas,
that is the Gauß equation for R and R and the sectional
curvature relation [Exercise!]
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Pseudo-Riemannian hypersurfaces

Example

Let (M, g) be an orientable Riemannian hypersurface in
(Rn+1, 〈·, ·〉). For p ∈ M and U ⊂ Rn+1 a small enough open
neighbourhood of p, choose f ∈ C∞(U) of maximal rank,
such that

M ∩ U = {f = 0}.

After a possible overall sign flip of f , we can assume w.l.o.g.
that the unit normal of M is given locally on M ∩ U by

ξ =
grad〈·,·〉(f )√

〈grad〈·,·〉(f ), grad〈·,·〉(f )〉
=

grad〈·,·〉(f )

‖grad〈·,·〉(f )‖ .

The second fundamental form of M ∩ U is then given by

II(X ,Y ) = − 1

‖grad〈·,·〉(f )‖∇
2
f (X ,Y )

for all X ,Y ∈ X(M ∩ U), where ∇2
f denotes the Hessian of f

w.r.t. ∇.
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END OF LECTURE 19
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