Differential geometry Lecture 19: Geodesics & curvature of pseudo-Riemannian submanifolds

David Lindemann

University of Hamburg Department of Mathematics Analysis and Differential Geometry & RTG 1670

24. July 2020

1 Induced structures

2 Curvature of pseudo-Riemannian submanifolds

3 Geodesics of pseudo-Riemannian submanifolds

4 Pseudo-Riemannian hypersurfaces

Recap of lecture 18:

- defined **Riemann curvature tensor** *R*
- discussed geometric interpretation of R via parallel transport around infinitesimal loops
- proved several identities of R, e.g. the Bianchi-identities
- interpreted R as measure of how much second covariant derivatives of vector fields fail to commute
- studied sectional curvature, showed how to recover R from sectional curvatures
- defined Ricci curvature and scalar curvature

Notation: (M, g) is a **pseudo-Riemannian submanifold** of $(\overline{M}, \overline{g})$ if $M \subset \overline{M}$ and $g = \overline{g}|_{TM \times TM}$. $\overline{}$ does **not** denote the topological closure in this lecture.

Recall that for a pseudo-Riemannian submanifold (M, g) of $(\overline{M}, \overline{g})$ we have an **orthogonal splitting** $T\overline{M}|_M = TM \oplus TM^{\perp}$.

Definition

The metric $\underline{g} = \overline{g}|_{TM \times TM}$ of a pseudo-Riemannian submanifold (M, g) of $(\overline{M}, \overline{g})$ is called **first fundamental form**.

Question: Except from the metric, what other geometrical structures (connection, curvature,...) are induced by the **ambient manifold** of a pseudo-Riemannian submanifold? How are they related to **intrinsic** geometrical structures (LCC connection, curvature,...) of the pseudo-Riemannian submanifold? **Answer:** Surprisingly **nicely**!

Definition

Let (M, g) be a pseudo-Riemannian submanifold of $(\overline{M}, \overline{g})$. We **identify** $\mathfrak{X}(M)$ with tangential sections of $T\overline{M}|_{M} = TM \oplus TM^{\perp} \to M$. Sections in the subbundle $TM^{\perp} \to M$ are called **normal sections**, denoted by $\mathfrak{X}(M)^{\perp}$. We further define **tangential and normal projections** as

$$\tan: TM \oplus TM^{\perp} \to TM, \quad \text{nor}: TM \oplus TM^{\perp} \to TM^{\perp},$$

given fibrewise by $tan(v + \xi) = v$ and $nor(v + \xi) = \xi$ for all $v \in T_p M$ and all $\xi \in T_p M^{\perp}$.

The following holds for all smooth submanifolds.

Lemma A

Let $M \subset \overline{M}$ be a smooth submanifold. Let further $X, Y \in \mathfrak{X}(M)$ be arbitrary and $\overline{X}, \overline{Y} \in \mathfrak{X}(\overline{M})$ be arbitrary extensions of X, Y to \overline{M} , i.e. $\overline{X}_p = X_p$ and $\overline{Y}_p = Y_p$ for all $p \in M$. Then $[\overline{X}, \overline{Y}]_p \in T_pM$ for all $p \in M$.

Proof: Follows from the concept of ϕ -related vector fields and the compatibility with the Lie bracket.

Next we will study how the Levi-Civita connection in an ambient pseudo-Riemannian manifold **defines connections in** $TM \rightarrow M$ **and** $TM^{\perp} \rightarrow M$ for any pseudo-Riemannian submanifold (M, g).

Lemma B

Let M be a pseudo-Riemannian submanifold of $(\overline{M}, \overline{g})$ and let $\overline{\nabla}$ denote the Levi-Civita connection of $(\overline{M}, \overline{g})$. Let $X \in \mathfrak{X}(M)$ and $Y \in \Gamma(T\overline{M}|_M)$ with arbitrary extensions $\overline{X}, \overline{Y} \in \mathfrak{X}(M)$. Then

 $\overline{\nabla}_{\overline{X}}\overline{Y}\big|_{M}\in\Gamma(T\overline{M}|_{M})$

is independent of the chosen extensions \overline{X} and \overline{Y} .

Proof: Follows from $\overline{\nabla}_{\overline{X}}\overline{Y}|_p = \overline{\nabla}_{\gamma'}\overline{Y}_{\gamma}|_{t=0}$ for all $p \in M$ for any **integral curve** $\gamma : (-\varepsilon, \varepsilon) \to \overline{M}$ of \overline{X} with initial condition $\gamma(0) = p$ and the fact that \overline{X} restricts by assumption to a vector field on M.

Corollary

The Levi-Civita connection of a pseudo-Riemannian manifold $(\overline{M}, \overline{g})$ with pseudo-Riemannian submanifold (M, g) induces a connection in $TM \oplus TM^{\perp} \to M$.

Problem: It is **not clear** at this point if the above connection restricts to the subbundles $TM \rightarrow M$ and $TM^{\perp} \rightarrow M$, respectively.

Solution 1:

Proposition A

Let (M, g) be a pseudo-Riemannian submanifold of $(\overline{M}, \overline{g})$. Then the Levi-Civita connection ∇ of (M, g) is precisely the tangent part of the Levi-Civita connection $\overline{\nabla}$ of $(\overline{M}, \overline{g})$ restricted to $\mathfrak{X}(M) \times \mathfrak{X}(M)$, i.e.

$$\nabla_X Y = \tan \overline{\nabla}_X Y$$

for all $X, Y \in \mathfrak{X}(M)$.

Proof: (see next page)

- \blacksquare observe that $\tan\overline{\nabla}$ is a connection, follows from fibrewise linearity of \tan
- \blacksquare \rightsquigarrow remains to show that $tan\overline{\nabla}$ is metric and torsion-free
- obtain for all $X, Y, Z \in \mathfrak{X}(M)$ with arbitrary respective extensions $\overline{X}, \overline{Y}, \overline{Z} \in \mathfrak{X}(\overline{M})$ for all $p \in M$

$$\begin{aligned} &(\tan\overline{\nabla}_{X}g)(Y,Z)|_{\rho} \\ &= \left(X(g(Y,Z)) - g(\tan\overline{\nabla}_{X}Y,Z) - g(Y,\tan\overline{\nabla}_{X}Z))\right)|_{\rho} \\ &= \left(\overline{X}(\overline{g}(\overline{Y},\overline{Z})) - \overline{g}(\tan\overline{\nabla}_{\overline{X}}\overline{Y},\overline{Z}) - \overline{g}(\overline{Y},\tan\overline{\nabla}_{\overline{X}}\overline{Z}))\right)|_{\rho} \\ &= \left(\overline{X}(\overline{g}(\overline{Y},\overline{Z})) - \overline{g}(\overline{\nabla}_{\overline{X}}\overline{Y},\overline{Z}) - \overline{g}(\overline{Y},\overline{\nabla}_{\overline{X}}\overline{Z}))\right)|_{\rho} \end{aligned}$$

(continued on next page)

• for torsion-freeness, calculate for all $X, Y \in \mathfrak{X}(M)$ with arbitrary extensions $\overline{X}, \overline{Y} \in \mathfrak{X}(\overline{M})$ and all $p \in M$ with the help of Lemmas A & B

$$\begin{split} & \left(\mathrm{tan} \overline{\nabla}_X Y - \mathrm{tan} \overline{\nabla}_Y X - [X, Y] \right) \Big|_{\rho} \\ & = \left(\mathrm{tan} \overline{\nabla}_{\overline{X}} \overline{Y} - \mathrm{tan} \overline{\nabla}_{\overline{Y}} \overline{X} - [\overline{X}, \overline{Y}] \right) \Big|_{\rho} \\ & = \mathrm{tan} \left(\overline{\nabla}_{\overline{X}} \overline{Y} - \overline{\nabla}_{\overline{Y}} \overline{X} - [\overline{X}, \overline{Y}] \right) \Big|_{\rho} = 0 \end{split}$$

as required

Remark

Proposition A allows us to calculate **covariant derivatives in pseudo-Riemannian submanifolds** with respect to the Levi-Civita connection using **only tangential projections** and the **Levi-Civita connection of the ambient manifold**. The latter is usually **easier to handle**. By a result from John Nash in *The Imbedding Problem for Riemannian Manifolds*, Annals of Mathematics, Second Series, Vol. **63**, No. **1**, calculating Levi-Civita connections as in Proposition A is actually the **most general case for Riemannian manifolds**:

Theorem

Let (M, g) be a **Riemannian manifold** of dimension *n*. Then there exists an **isometric embedding** of (M, g) into any open subset $U \subset \mathbb{R}^m$ for $m = \frac{3}{2}n^3 + 7n^2 + \frac{11}{2}n$ equipped with the standard Riemannian metric $\langle \cdot, \cdot \rangle$.

Note: In reality, constructing such isometric embeddings explicitly for given $U \subset \mathbb{R}^m$ is far from trivial. A picture one might have in mind for M = (0, 1) and m = 2 is "rolling up" the open interval tight enough to fit into $U \subset \mathbb{R}^2$.

Solution 2:

Proposition B

Let (M, g) be a pseudo-Riemannian submanifold of $(\overline{M}, \overline{g})$ and let $\overline{\nabla}$ denote the Levi-Civita connection of $(\overline{M}, \overline{g})$. Then

$$\overline{
abla}^{\mathrm{nor}} := \mathrm{nor}\overline{
abla}: \mathfrak{X}(M) {}^{ot}
ightarrow \mathfrak{X}(M)^{ot}
ightarrow \mathfrak{X}(M)^{ot}, \quad (X,\xi) \mapsto \mathrm{nor}\overline{
abla}_X \xi,$$

for all $X \in \mathfrak{X}(M)$ and all $\xi \in \mathfrak{X}(M)^{\perp}$ is a connection in $TM^{\perp} \to M$, called the normal connection.

Proof: Follows from the **fibrewise linearity** of nor and Lemma B. $\hfill \square$

Next, we will study the **difference** between the Levi-Civita connections of a pseudo-Riemannian submanifold and its ambient manifold restricted to the tangent part of the submanifold. We will need the following definition:

Definition

Let (M, g) be a pseudo-Riemannian submanifold of $(\overline{M}, \overline{g})$ with Levi-Civita connection $\overline{\nabla}$ in $T\overline{M} \to \overline{M}$. The **second** fundamental form of M is defined as

II :
$$\mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)^{\perp}$$
, II $(X, Y) := \operatorname{nor} \overline{\nabla}_X Y$

for all $X, Y \in \mathfrak{X}(M)$.

The second fundamental form has the following properties:

Lemma

The second fundamental form is a symmetric TM^{\perp} -valued (0, 2)-tensor field, that is a section of $TM^{\perp} \otimes \operatorname{Sym}^2(T^*M) \to M$.

Proof: (next page)

Induced structures

(continuation of proof)

- If is $C^{\infty}(M)$ -linear in its first argument
- hence: it suffices to show that *II* is symmetric in order to also obtain the C[∞](M)-linearity in the second argument
- \rightsquigarrow for the symmetry we check that for all $X, Y \in \mathfrak{X}(M)$ using the fibrewise linearity of nor, the torsion-freeness of $\overline{\nabla}$, and Lemma A

$$II(X, Y) - II(Y, X) = \operatorname{nor} \left(\overline{\nabla}_X Y - \overline{\nabla}_Y X\right) = \operatorname{nor}[X, Y] = 0$$

Corollary

The Levi-Civita connection ∇ and second fundamental form II of a pseudo-Riemannian submanifold (M,g) of $(\overline{M},\overline{g})$ fulfil the **Gauß equation**

$$\overline{\nabla}_X Y = \nabla_X Y + II(X,Y)$$

for all $X, Y \in \mathfrak{X}(M)$.

Warning: There are many "Gauß equations", we will encounter one more formula with this name.

David Lindemann

Example

The second fundamental form of the **graph of a smooth function** $f : \mathbb{R} \to \mathbb{R}$ fulfils for canonical coordinates (x, y) of the ambient space $(\mathbb{R}^2, \langle \cdot, \cdot \rangle)$

$$\mathrm{II}\left(\frac{\partial}{\partial x} + \frac{\partial f}{\partial x}\frac{\partial}{\partial y}, \frac{\partial}{\partial x} + \frac{\partial f}{\partial x}\frac{\partial}{\partial y}\right) = \frac{\frac{\partial^2 f}{\partial x^2}}{\sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2}}\xi,$$

where $\xi = \frac{1}{\sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2}}\left(-\frac{\partial f}{\partial x}\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right).$

The covariant derivatives of **normal fields** along pseudo-Riemannian manifolds **also split** in a certain manner. For this we need the following definition: (see next page)

Definition

Let (M, g) be a pseudo-Riemannian submanifold of $(\overline{M}, \overline{g})$. For all $\xi \in \mathfrak{X}(M)^{\perp}$, the *g*-symmetric endomorphism field $S^{\xi} \in \mathbb{T}^{1,1}(M)$ defined by the Weingarten equation

$$\overline{g}(II(X,Y),\xi) = g(S^{\xi}X,Y)$$

for all $X, Y \in \mathfrak{X}(M)$ is called **Weingarten map** (alternatively **shape operator**).

Note: S^{ξ} is well-defined for each $\xi \in \mathfrak{X}(M)^{\perp}$ by the fibrewise nondegeneracy of g.

The Weingarten map fulfils the following **identity**:

Proposition C

Let (M, g) be a pseudo-Riemannian submanifold of $(\overline{M}, \overline{g})$. The Weingarten map fulfils the **Weingarten equation**

$$\overline{\nabla}_X \xi = -S^{\xi} X + \overline{\nabla}_X^{\mathrm{nor}} \xi$$

for all $X \in \mathfrak{X}(M)$ and all $\xi \in \mathfrak{X}(M)^{\perp}$.

Proof: Follows by writing out $\overline{g}(\overline{\nabla}_X \xi, \overline{Y})$ for $\overline{Y} \in \mathfrak{X}(\overline{M})$ with $\overline{Y}|_M \in \mathfrak{X}(M)$ arbitrary and using Proposition B and the **metric** property of $\overline{\nabla}$.

Question: How are the **Riemann curvature tensors** of a **pseudo-Riemannian submanifold** and its **ambient manifold** related? **Answer:**

Proposition

Let (M, g) be a pseudo-Riemannian submanifold of $(\overline{M}, \overline{g})$. The **Riemann curvature tensors** R of (M, g) and \overline{R} of $(\overline{M}, \overline{g})$ are **related** by the **Gauß equation for Riemann curvature tensors**

 $\overline{g}(\overline{R}(X, Y)Z, W)$ = g(R(X, Y)Z, W) $+ \overline{g}(II(X, Z), II(Y, W)) - \overline{g}(II(Y, Z), II(X, W))$

for all $X, Y, Z, W \in \mathfrak{X}(M)$.

Proof:

 since above equation is a tensor equation, we might without loss of generality assume [X, Y] = 0

(continued on next page)

■ observe that for all X, Y, Z, W ∈ 𝔅(M), Proposition C implies

$$\begin{split} \overline{g}(\overline{\nabla}_{X}\overline{\nabla}_{Y}Z,W) \\ &= \overline{g}(\tan\overline{\nabla}_{X}\overline{\nabla}_{Y}Z,W) \\ &= \overline{g}(\nabla_{X}(\tan\overline{\nabla}_{Y}Z),W) + \overline{g}(\tan\overline{\nabla}_{X}(\operatorname{nor}\overline{\nabla}_{Y}Z),W) \\ &= \overline{g}(\nabla_{X}\nabla_{Y}Z,W) + \overline{g}(\tan\overline{\nabla}_{X}(\operatorname{II}(Y,Z)),W) \\ &= \overline{g}(\nabla_{X}\nabla_{Y}Z,W) - \overline{g}(S^{\operatorname{II}(Y,Z)}X,W) \\ &= \overline{g}(\nabla_{X}\nabla_{Y}Z,W) - \overline{g}(\operatorname{II}(X,W),\operatorname{II}(Y,Z)). \end{split}$$

• repeating the above calculation with X and Y interchanged and using $\overline{R}(X, Y) = \overline{\nabla}_X \overline{\nabla}_Y - \overline{\nabla}_Y \overline{\nabla}_X$ for [X, Y] = 0 we obtain the claimed formula As a consequence we obtain a formula for the relation of the **sectional curvatures** of pseudo-Riemannian submanifolds and their ambient manifolds.

Corollary

Let (M, g) be a pseudo-Riemannian submanifold of $(\overline{M}, \overline{g})$. For every nondegenerate plane spanned by $v, w \in T_p M$ in $T_p M \subset T_p \overline{M}$, the sectional curvatures K of (M, g) and \overline{K} of $(\overline{M}, \overline{g})$ are related by

$$\overline{K}(v,w) = K(v,w) - \frac{\overline{g}(\mathrm{II}(v,v),\mathrm{II}(w,w)) - \overline{g}(\mathrm{II}(v,w),\mathrm{II}(v,w))}{g(v,v)g(w,w) - g(v,w)^2}.$$

Note: The above corollary is particularly nice if the ambient manifold has **constant sectional curvature**.

Example

The unit sphere $S^n \subset \mathbb{R}^{n+1}$ equipped with the restriction of the standard Riemannian metric has **constant sectional curvature** 1.

We have seen how to relate the Levi-Civita connections and the curvature tensors of pseudo-Riemannian manifolds and their pseudo-Riemannian submanifolds. Next, we will study geodesics of pseudo-Riemannian submanifolds.

Proposition D

Let (M, g) be a pseudo-Riemannian submanifold of $(\overline{M}, \overline{g})$ with **respective Levi-Civita connections** ∇ and $\overline{\nabla}$. A smooth curve $\gamma : I \to M$ is a geodesic with respect to ∇ if and only if $\overline{\nabla}_{\gamma'}\gamma'$ is normal at every point, i.e. $\overline{\nabla}_{\gamma'}\gamma' \in \Gamma_{\gamma}(TM^{\perp})$.

Proof:

■ Gauß equation for the Levi-Civita connections ~->

$$\overline{\nabla}_{\gamma'}\gamma' = \nabla_{\gamma'}\gamma' + \operatorname{II}(\gamma',\gamma')$$

since II(γ', γ') is precisely the **normal part** of $\overline{\nabla}_{\gamma'}\gamma'$, the claim follows

Remark

Proposition D usually **makes life easier** in case the ambient manifold is the **flat Euclidean space**.

Example

Geodesics in the unit sphere $S^n \subset \mathbb{R}^{n+1}$ are precisely curves of constant velocity contained in the great circles.

Note: In the above example, geodesics in the Riemannian submanifold S^n are **not** geodesics in the ambient space $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)$. **Question:** What conditions must a pseudo-Riemannian submanifold fulfil so that **its geodesics are also geodesics in the ambient manifold**?

Answer: (see next page)

Definition

A pseudo-Riemannian submanifold (M, g) of a pseudo-Riemannian manifold $(\overline{M}, \overline{g})$ is called **totally geodesic** if all geodesics $\gamma : I \to \overline{M}$ of $(\overline{M}, \overline{g})$ **starting in** M with **initial velocity tangent to** M stay in M for all time, i.e. $\gamma(I) \subset M$.

From the Gauß equation for connections we obtain the following result to **check** whether a pseudo-Riemannian submanifold is totally geodesic or not.

Lemma C

A pseudo-Riemannian submanifold (M, g) of a pseudo-Riemannian manifold $(\overline{M}, \overline{g})$ is totally geodesic **if and only** if its second fundamental form **vanishes identically**.

Proof:

II
$$\equiv 0 \rightsquigarrow$$
 Gauß equation implies that $\overline{\nabla}_{\gamma'}\gamma' = \nabla_{\gamma'}\gamma'$ for all smooth curves $\gamma: I \rightarrow M$

(continued on next page)

- hence: γ is a geodesic in (M, g) if and only if it is a geodesic in (M, g)
- \blacksquare for the other direction suppose that $\mathrm{II}\not\equiv 0$
- **a** fix $p \in M$ and $v \in T_pM \subset T_p\overline{M}$, such that $\operatorname{II}(v, v) \neq 0$
- for ε > 0 small enough let γ : (−ε, ε) → M
 M
 be a geodesic
 in (M, g) with γ'(0) = ν
- Gauß equation $\rightsquigarrow \gamma$ is **not a geodesic** in $(\overline{M}, \overline{g})$
- hence, (*M*, *g*) is **not totally geodesic**

In order to check if a pseudo-Riemannian submanifold is total geodesic, we might use the following **equivalent conditions**:

Proposition E

A ps.-R. submanifold $(M,g) \subset (\overline{M},\overline{g})$ is totally geodesic if and only if one of the following equivalent statements hold:

- **I** Every geodesic in (M, g) is a geodesic in $(\overline{M}, \overline{g})$.
- For every geodesic $\gamma: I \to \overline{M}$ with $0 \in I$, I open, and initial conditions $\gamma(0) = p$, $\gamma'(0) = v \in T_pM \subset T_p\overline{M}$ there exists $\varepsilon > 0$, such that $\gamma((-\varepsilon, \varepsilon)) \subset M$.
- For every smooth curve $\gamma : [a, b] \to M \subset \overline{M}$ the parallel transport in (M, g),

$$P^b_a(\gamma): T_{\gamma(a)}M \to T_{\gamma(b)}M$$

coincides with the parallel transport in $(\overline{M}, \overline{g})$,

$$\overline{P}^{b}_{a}: T_{\gamma(a)}\overline{M} \to T_{\gamma(b)}\overline{M}$$

restricted to $T_{\gamma(a)}M \subset T_{\gamma(a)}\overline{M}$.

Proof:

- (i) is **by definition** of totally geodesic pseudo-Riemannian submanifolds equivalent to (M, g) being totally geodesic
- (iii) is equivalent to (*M*, *g*) being totally geodesic by Lemma C
- "(i) \Rightarrow (ii)": let $\gamma: I \rightarrow \overline{M}$ be a geodesic in $(\overline{M}, \overline{g})$ with $0 \in I$, I open, and $\gamma'(0) = v \in T_pM$, and let $\widetilde{\gamma}: \widetilde{I} \rightarrow M$ be a geodesic in (M, g) with $0 \in \widetilde{I}$, \widetilde{I} open, and $\widetilde{\gamma}'(0) = v$
- by assumption, γ̃ is also a geodesic in (M, ḡ) and by the uniqueness property of maximal geodesics coincides with γ on I ∩ Ĩ
- choosing ε > 0 small enough so that (−ε, ε) ⊂ I ∩ I proves the claim
- "(ii) \Rightarrow (i)": let $p \in M$ and $v \in T_pM$ be arbitrary and $\gamma : (-\varepsilon, \varepsilon) \rightarrow \overline{M}$ for any $\varepsilon > 0$ small enough be a geodesic in $(\overline{M}, \overline{g})$ with $\gamma(0) = p, \gamma'(0) = v$, such that $\gamma((-\varepsilon, \varepsilon)) \subset M$

(continued on next page)

■ Gauß equation ~→

$$0 = \overline{\nabla}_{\gamma'} \gamma' \big|_{t=0} = \left. \nabla_{\gamma'} \gamma' \right|_{t=0} + \operatorname{II}_{\rho}(\boldsymbol{v}, \boldsymbol{v})$$

• hence, the fact that we have a **fibrewise direct sum** of the splitting $T\overline{M}|_M = TM \oplus TM^{\perp}$ and p and v were **arbitrary** implies II $\equiv 0$ as required

Question: How can one **construct** totally geodesic submanifolds?

Answer: One neat possibility is the following:

Proposition

Let $(\overline{M}, \overline{g})$ be a pseudo-Riemannian manifold and let $F \in \text{Isom}(\overline{M}, \overline{g})$ be an isometry of $(\overline{M}, \overline{g})$. Suppose that a connected component M of $\text{Fix}(F) := \{p \in \overline{M} \mid F(p) = p\}$ is a pseudo-Riemannian submanifold of $(\overline{M}, \overline{g})$. Then M is totally geodesic.

Proof:

• F restricted to M is the **identity**, i.e. $F|_M = id_M$

• hence, dF restricted to the subbundle $TM \subset T\overline{M}|_M$ is also the identity, meaning that dF(v) = v for all $v \in T_pM \subset T_p\overline{M}$ and all $p \in M$

(continued on next page)

• to show that M is totally geodesic, it suffices to show by Proposition E (ii) that isometries map geodesics of $(\overline{M}, \overline{g})$ to geodesics of $(\overline{M}, \overline{g})$

- this means that for $\varepsilon > 0$ small enough, any geodesic of $(\overline{M}, \overline{g}), \gamma : (-\varepsilon, \varepsilon) \to \overline{M}$ with $\gamma(0) = p \in M$, $\gamma'(0) = v \in T_p M$, will be contained in M by construction
- \rightsquigarrow follows from the **naturality** of the Levi-Civita connection, that is $F_*\overline{\nabla}_{\overline{X}}\overline{Y} = \overline{\nabla}_{F_*\overline{X}}F_*\overline{Y}$ for all $\overline{X}, \overline{Y} \in \mathfrak{X}(\overline{M})$

In the case that considered totally geodesic submanifolds are **geodesically complete** and connected, we have the following convenient way to check if they are **isometric**:

Proposition

Let M and N be connected totally geodesic geodesically complete pseudo-Riemannian submanifolds of $(\overline{M}, \overline{g})$. If there exists $p \in M \cap N$, such that $T_p M = T_p N$ as linear subspaces of $\overline{T_p M}$, we already have M = N.

Proof:

- we will show M ⊂ N, the other direction follows by symmetry of the arguments
- let $\gamma : [a, b] \to M$ be a **geodesic in** M from $p = \gamma(a)$ to $q := \gamma(b)$ and note that M being totally geodesic implies γ is also a geodesic in \overline{M}

(continued on next page)

by assumption of geodesic completeness of N, there exists a unique geodesic

 $\widetilde{\gamma}: \mathbb{R} \to \mathbf{N}$

with $\widetilde{\gamma}'(a) = \gamma'(a)$

- since $N \subset \overline{M}$ is totally geodesic, $\widetilde{\gamma}$ is also a geodesic in \overline{M}
- hence by uniqueness of maximal geodesics γ and $\widetilde{\gamma}|_{[a,b]}$ coincide, showing in particular $q \in N$
- By Proposition E (iii) and the **linear isometry property** of $P_a^b(\gamma): T_p M \to T_q M$ it follows that $T_q M = T_q N$
- by the **connectedness of** M and N and the fact that we can connect arbitrary points in connected geodesically complete manifolds with **piecewise geodesics**, we conclude that this argument holds for all $q \in M$, showing that $q \in N$

Corollary

The connected totally geodesic geodesically complete Riemannian submanifolds of \mathbb{R}^n with standard Riemannian metric are the affine $m \leq n$ -spaces, that is smooth submanifolds of the form

M = p + V, $V \subset \mathbb{R}^n$ *m*-dimensional linear subspace.

Lastly, we focus our studies on **pseudo-Riemannian hypersurfaces**, that is pseudo-Riemannian submanifolds of codim. 1.

Definition

Let $(\overline{M}, \overline{g})$ be a pseudo-Riemannian manifold with **orientable pseudo-Riemannian hypersurface** (M, g). An orthogonal vector field $\xi \in \mathfrak{X}(M)^{\perp}$ is called **unit normal** if $\overline{g}(\xi, \xi) \equiv 1$ or $\overline{g}(\xi, \xi) \equiv -1$.

Note: Orientability of hypersurfaces is usually defined by requiring that there exists a **nowhere vanishing transversal vector** field along said hypersurface. Alternatively, one can study the existence of a globally defined **volume form**.

If a pseudo-Riemannian hypersurface **admits** a unit normal, it admits **precisely** 2 unit normals related by a sign flip.

Proposition

Let (M, g) be an oriented pseudo-Riemannian hypersurface of $(\overline{M}, \overline{g})$ and let $\xi \in \mathfrak{X}(M)^{\perp}$ be a **unit normal** with $\overline{g}(\xi, \xi) \equiv \varepsilon \in \{-1, 1\}$. Then the **second fundamental form of** M is of the form

$$II = \xi \otimes \widetilde{g},$$

where $\widetilde{g} \in \Gamma(\operatorname{Sym}^2(T^*M))$ is given by

$$\widetilde{g}(X,Y) = \varepsilon g(S^{\xi}X,Y)$$

for all $X, Y \in \mathfrak{X}(M)$ with S^{ξ} the Weingarten map.

Proposition (continuation)

The Gauß equation for the curvature and the related sectional curvature equation are given by

$$\overline{g}(\overline{R}(X,Y)Z,W) = g(R(X,Y)Z,W) + \varepsilon(g(S^{\xi}X,Z)g(S^{\xi}Y,W) - g(S^{\xi}Y,Z)g(S^{\xi}X,W)), \overline{K}(v,w) = K(v,w) - \varepsilon \frac{g(S^{\xi}v,v)g(S^{\xi}w,w) - g(S^{\xi}v,w)^{2}}{g(v,v)g(w,w) - g(v,w)^{2}},$$

for all $X, Y, Z, W \in \mathfrak{X}(M)$ and all $v, w \in T_pM$ spanning a **nondegenerate plane**.

Proof:

- ξ being by assumption **nowhere vanishing** implies that we can write II = $\xi \otimes \widetilde{g}$
- $\overline{g}(II(X, Y), \xi) = \varepsilon \widetilde{g}(X, Y)$ for all $X, Y \in \mathfrak{X}(M)$ means that \widetilde{g} is uniquely determined

(continued on next page)

the Weingarten equation is given by

 $\overline{g}(\mathrm{II}(X,Y),\xi)=g(S^{\xi}X,Y)$

for all $X, Y \in \mathfrak{X}(M)$ and, hence, $\widetilde{g}(X, Y) = \varepsilon g(S^{\xi}X, Y)$ as claimed

 for the curvature equations in this proposition observe that

$$\overline{g}(\mathrm{II}(X,Z),\mathrm{II}(Y,W)) = \varepsilon \widetilde{g}(X,Z) \widetilde{g}(Y,W)$$

= $\varepsilon g(S^{\xi}X,Z)g(S^{\xi}Y,W),$

for all $X, Y, Z, W \in \mathfrak{X}(M)$, which follows from $\varepsilon = \varepsilon^{-1}$ and our **previous results**

the rest of this proof is just writing out the formulas, that is the Gauß equation for R and R and the sectional curvature relation [Exercise!]

Example

Let (M, g) be an orientable Riemannian hypersurface in $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)$. For $p \in M$ and $U \subset \mathbb{R}^{n+1}$ a small enough open neighbourhood of p, choose $f \in C^{\infty}(U)$ of maximal rank, such that

$$M \cap U = \{f = 0\}.$$

After a possible overall sign flip of f, we can assume w.l.o.g. that the **unit normal** of M is given locally on $M \cap U$ by

$$\xi = rac{\mathrm{grad}_{\langle\cdot,\cdot
angle}(f)}{\sqrt{\langle \mathrm{grad}_{\langle\cdot,\cdot
angle}(f), \mathrm{grad}_{\langle\cdot,\cdot
angle}(f)
angle}} = rac{\mathrm{grad}_{\langle\cdot,\cdot
angle}(f)}{\|\mathrm{grad}_{\langle\cdot,\cdot
angle}(f)\|}.$$

The **second fundamental form** of $M \cap U$ is then given by

$$\mathrm{II}(X,Y) = -\frac{1}{\|\mathrm{grad}_{\langle\cdot,\cdot\rangle}(f)\|}\overline{\nabla}^2 f(X,Y)$$

for all
$$X, Y \in \mathfrak{X}(M \cap U)$$
, where $\overline{\nabla}^2 f$ denotes the **Hessian of** f w.r.t. $\overline{\nabla}$.

END OF LECTURE 19