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Recap of lecture 17:

defined geodesics in pseudo-Riemannian manifolds as
curves with parallel velocity

viewed geodesics as projections of integral curves of a
vector field G ∈ X(TM) with local flow called geodesic
flow

obtained uniqueness and existence properties of
geodesics

constructed the exponential map exp : V → M, V
neighbourhood of the zero-section in TM → M

showed that geodesics with compact domain are precisely
the critical points of the energy functional

used the exponential map to construct Riemannian
normal coordinates, studied local forms of the metric and
the Christoffel symbols in such coordinates

discussed the Hopf-Rinow Theorem

erratum: codomain of (x , v) as local integral curve of G
is dϕ(TU), not TM
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Riemann curvature tensor

Intuitively, a meaningful definition of the term “curvature” for
a smooth surface in R3, written locally as a graph of a smooth
function f : U ⊂ R2 → R, should involve the second partial
derivatives of f at each point. How can we find a coordinate-
free definition of curvature not just for surfaces in R3, which
are automatically Riemannian manifolds by restricting 〈·, ·〉, but
for all pseudo-Riemannian manifolds?

Definition

Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita
connection ∇. The Riemann curvature tensor of (M, g) is
defined as

R : X(M)× X(M)× X(M)→ X(M),

R(X ,Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X ,Y ]Z

for all X ,Y ,Z ∈ X(M). In the above formula, we understand
∇X∇YZ as ∇X (∇YZ), analogously for X and Y interchanged.
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Riemann curvature tensor

The first thing we need to check is if R is, as implied in its
definition, actually a tensor field:

Lemma

The Riemann curvature tensor is, in fact, a tensor field, i.e.
R ∈ T1,3(M).

Proof: Direct calculation.
Note: If we would replace ∇ with L in the definition of R,
it would identically vanish by the Jacobi identity. Also ob-
serve that the Riemann curvature tensor vanishes identically
if dim(M) = 1.
Question: Why should we study the Riemann curvature tensor
R in the first place? What is the geometric picture one should
have in mind for R?
(partial) Answer: (see next page)
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Riemann curvature tensor

Lemma A

Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita
connection ∇. For any X ∈ X(M), denote for every p ∈ M by
P t

0(X ) : TpM → Tγ(t)M the parallel transport map with
respect to ∇ along the integral curve γ : (−ε, ε)→ M of X
with γ(0) = p for ε > 0 small enough, that is for p ∈ M fixed
we have P t

0(X ) = P t
0(γ). Let (x1, . . . , xn) be local coordinates

on U ⊂ M. Then

R
(

∂
∂x i

∣∣
p
, ∂
∂x j

∣∣
p

)
∂
∂xk

∣∣
p

=

∂

∂s

∣∣∣∣
s=0

∂

∂t

∣∣∣∣
t=0

P s
0

(
∂
∂x i

)−1
P t

0

(
∂
∂x j

)−1
P s

0

(
∂
∂x i

)
P t

0

(
∂
∂x j

)
∂
∂xk

∣∣
p

for all 1 ≤ i , j , k ≤ n and all p ∈ U. The Riemann curvature
tensor is the unique (1, 3)-tensor field fulfilling the above
equation in all local coordinates.

Proof: (next page)
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Riemann curvature tensor

(continuation of proof)

in coordinate representations,
P t

0

(
∂
∂x j

)
: TpM → Tγ(t)M, t ∈ (−ε, ε), and the other

parallel translations are smooth maps of the form

̂P t
0

(
∂
∂x j

)
: (−ε, ε)→ GL(n),

where GL(n) being the codomain follows the fact that
parallel translations are isometries, hence isomorphisms,
for each fixed t

the above map should be understood as mapping
prefactors of vectors in TpM written in the coordinate
basis to prefactors of vectors in Tγ(t)M, again written in
the coordinate basis

(continued on next page)
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Riemann curvature tensor

(continuation of proof)

hence, the partial derivatives of products of ̂P t
0

(
∂
∂x j

)
behave according to the product rule of matrix valued
curves, i.e. for all A,B : (−ε, ε)→ GL(n) smooth with
A(0) = B(0) = 1 and all v ∈ Rn we have

∂
∂s

∣∣
s=0

∂
∂t

∣∣
t=0

A(s)−1B(t)−1A(s)B(t)v

=
(
∂
∂s

∣∣
s=0

A(s)−1
)(

∂
∂t

∣∣
t=0

B(t)−1
)
v

+
(
∂
∂t

∣∣
t=0

B(t)−1
) (

∂
∂s

∣∣
s=0

A(s)
)
v

=
(
∂
∂s

∣∣
s=0

A(s)
) (

∂
∂t

∣∣
t=0

B(t)
)
v

−
(
∂
∂t

∣∣
t=0

B(t)
) (

∂
∂s

∣∣
s=0

A(s)
)
v

note that ∂
∂s

∣∣
s=0

A(s) ∈ End(Rn), meaning that the
derivative is in general not invertible

(continued on next page)
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Riemann curvature tensor

(continuation of proof)

hence, using our formula relating ∇ with parallel
transport maps, obtain

∂
∂s

∣∣
0
∂
∂t

∣∣
0
P s

0

(
∂
∂x i

)−1
P t

0

(
∂
∂x j

)−1
P s

0

(
∂
∂x i

)
P t

0

(
∂
∂x j

)
∂
∂xk

∣∣
p

=

(
∇ ∂
∂x i
∇ ∂
∂x j

∂
∂xk
−∇ ∂

∂x j
∇ ∂
∂x i

∂
∂xk

)∣∣∣∣
p

proving the first statement of this lemma

in order to show that R is indeed the unique tensor field
fulfilling the above, we only need to check that for any
local functions X 1,Y 1,Z 1, . . . ,X n,Y n,Z n ∈ C∞(U) and

all p ∈ U,
∑
i,j,k

X i (p)Y j(p)Z k(p)R
(

∂
∂x i

∣∣
p
, ∂
∂x j

∣∣
p

)
∂
∂xk

∣∣
p

and (R(X ,Y )Z)|p via its initial definition coincide
[Exercise!]
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Riemann curvature tensor

We have the following local formula for the Riemann curvature
tensor:

Lemma

In local coordinates (x1, . . . , xn) the Riemann curvature tensor
of a pseudo-Riemannian manifold (M, g) has components

R` ijk := dx`
(
R
(
∂
∂x i
, ∂
∂x j

)
∂
∂xk

)
,

so that locally R =
∑

i,j,k,`

R` ijk
∂
∂x`
⊗ dx i ⊗ dx j ⊗ dxk . The local

functions R` ijk are given by

R` ijk =
∂Γ`jk
∂x i
− ∂Γ`ik
∂x j

+
n∑

m=1

(
Γ`imΓm

jk − Γ`jmΓm
ik

)
for all 1 ≤ i , j , k, ` ≤ n.

Proof: Direct calculation.
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Riemann curvature tensor

The Riemann curvature tensor R of a pseudo-Riemannian man-
ifold (M, g) fulfils the following identities:

Lemma

i R(X ,Y ) = −R(Y ,X ),

ii g(R(X ,Y )Z ,W ) = −g(Z ,R(X ,Y )W ),

iii R(X ,Y )Z + R(Y ,Z)X + R(Z ,X )Y = 0 (first or
algebraic Bianchi identity),

iv g(R(X ,Y )Z ,W ) = g(R(Z ,W )X ,Y ),

v (∇XR)(Y ,Z) + (∇YR)(Z ,X ) + (∇ZR)(X ,Y ) = 0
(second or differential Bianchi identity)

for all X ,Y ,Z ,W ∈ X(M).

Proof: (see notes on the right hand side)
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Riemann curvature tensor

As one might expect from the tensoriality, the Riemann curva-
ture tensor behaves well under isometries.

Lemma B

Let F : (M, g)→ (N, h) be an isometry and let RM and RN

denote the Riemann curvature tensors of (M, g) and (N, h),
respectively. Then

F∗(R
M(X ,Y )Z) = RN(F∗X ,F∗Y )F∗Z

for all X ,Y ,Z ∈ X(M).

Proof:

suffices to show that F∗∇M
X Y = ∇N

F∗X (F∗Y ) for all
X ,Y ∈ X(M), where ∇M and ∇N denote the Levi-Civita
connections of (M, g) and (N, h), respectively

 use Koszul formula for ∇M and ∇N , bijectivity of
F∗ : X(M)→ X(N), and F∗[X ,Y ] = [F∗X ,F∗Y ]
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Riemann curvature tensor

Definition

A pseudo-Riemannian manifold with vanishing Riemann
curvature tensor is called flat.

Examples

The following pseudo-Riemannian manifolds are flat:

(Rn, 〈·, ·〉ν), 0 ≤ ν ≤ n

the cylinder R× S1 and the 2-torus T 2 = S1 × S1

equipped with the respective product metric

more generally, (M × N, g + h) for all (M, g) and (N, h)
flat
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Riemann curvature tensor

Suppose that we are given a flat Riemannian manifold (M, g).
Question: Is (M, g) automatically of a simple form, at least
locally (up to isometry)?
Answer: Yes! Locally, we have the following result:

Theorem

An n-dimensional Riemannian manifold (M, g) is flat if and
only if it is locally isometric to (Rn, 〈·, ·〉), meaning that for all
p ∈ M there exists an open neighbourhood U ⊂ M of p and an
isometry F : (U, g)→ (F (U), 〈·, ·〉), F (U) ⊂ Rn open.

Proof:

Lemma B  local isometry to (Rn, 〈·, ·〉) implies
flatness, i.e. R ≡ 0

the other direction of this proof requires a lot more work,
for details see Theorem 7.3 in J.M. Lee’s Riemannian
Manifolds – An Introduction to Curvature, Springer GTM
176 (1997) (with slightly different conventions)

(continued on next page)
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Riemann curvature tensor

(continuation of proof)

the idea is to construct a commuting orthonormal local
frame of TM → M near every given point

the key ingredient is that parallel transport of vectors at,
say, p ∈ M, to a close enough point q ∈ M does not
depend on the chosen curve starting at p and ending at
q if it is required to be contained in a small enough open
neighbourhood of both p and q

follows from a similar argument as in Lemma A
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Riemann curvature tensor

In Lemma A we have described how to interpret the Riemann
curvature tensor geometrically as infinitesimal change of par-
allel transport of tangent vectors around infinitesimal paral-
lelograms.
Question: Is there another motivation for the definition of the
Riemann curvature tensor?
Answer: Yes, via second covariant derivatives!

Definition

Let (M, g) be a pseudo-Riemannian manifold with
Levi-Civita connection ∇. Then for all X ,Y ,Z ∈ X(M),

∇2
X ,YZ := (∇X (∇Z))(Y ) = ∇X∇YZ −∇∇XYZ (1)

is called the second covariant derivative of Z in direction
X ,Y .

Exercise

Check that (∇X (∇Z))(Y ) = ∇X∇YZ −∇∇XYZ actually
holds true for all X ,Y ,Z ∈ X(M).
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Riemann curvature tensor

Using second covariant derivatives of vector fields, we can
write the Riemann curvature tensor as follows:

Lemma

The Riemann curvature tensor of a pseudo-Riemannian
manifold (M, g) with Levi-Civita connection ∇ fulfils

R(X ,Y )Z = ∇2
X ,YZ −∇2

Y ,XZ (2)

for all X ,Y ,Z ∈ X(M).

Proof:

torsion-freeness of ∇  
−∇∇XYZ +∇∇Y XZ = −∇[X ,Y ]Z

writing out ∇2
X ,YZ −∇2

Y ,XZ with the above proves our
claim

Hence: The Riemann curvature tensor describes “how much”
second covariant derivatives are not symmetric. In the flat case,
second covariant derivatives do commute.
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Riemann curvature tensor

Remark

Instead of defining the Riemann curvature tensor of (M, g) as
a (1, 3)-tensor field, we could have taken the other common

approach and define it as a (0, 4)-tensor field R̃ ∈ T0,4(M)
given by

R̃(X ,Y ,Z ,W ) := g(R(X ,Y )Z ,W ) ∀X ,Y ,Z ,W ∈ X(M)

It is clear that R can be recovered from R̃ by raising the
fitting index. In local coordinates (x1, . . . , xn), R̃ is of the form

R̃ =
∑
i,j,k,`

Rijk` dx
i ⊗ dx j ⊗ dxk ⊗ dx`,

where Rijk` =
∑
m

g`mR
m
ijk .
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Riemann curvature tensor

In Riemannian normal coordinates, the Riemann curvature
tensor determines the second order terms in the Taylor ex-
pansion of the metric near the reference point:

Lemma

Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita
connection ∇ and let ϕ = (x1, . . . , xn) be Riemannian normal
coordinates at p ∈ M corresponding to a choice of
orthonormal basis {v1, . . . , vn} of TpM. Then the local
prefactors gij of g fulfil

∂2gij
∂xk∂x`

(p) =
2

3
Rijk`(p).

for all 1 ≤ i , j , k, ` ≤ n.

Proof: See Prop. 3.1.12 in C. Bär’s Differential Geometry, lec-
ture notes (2013).
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Sectional curvature

Next, we will study the so-called sectional curvature.

Definition

Let (M, g) be a pseudo-Riemannian manifold with Riemann
curvature tensor R. Let Π ⊂ TpM be a nondegenerate plane
spanned by linearly independent vectors v ,w ∈ TpM. The
sectional curvature of Π is defined by

K(Π) := K(v ,w) :=
g(R(v ,w)w , v)

g(v , v)g(w ,w)− g(v ,w)2
.

 need to check that the sectional curvature is well-defined,
i.e. that K(Π) is independent of the basis vectors v ,w of Π
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Sectional curvature

Lemma

K only depends on the plane Π, not on the choice of basis
vectors v ,w of Π.

Proof:

let {V ,W } be another basis of Π

write v = aV + bW , w = cV + dW for a, b, c, d ∈ R
since both {v ,w} and {V ,W } are a basis of Π, obtain

det

(
a b
c d

)
= ad − bc 6= 0

we check that
g(R(v ,w)w , v) = (ad − bc)2g(R(V ,W )W ,V ) and
g(v , v)g(w ,w)− g(v ,w)2 =
(ad − bc)2(g(V ,V )g(W ,W )− g(V ,W )2) which proves
our claim

this also proves that Π is nondegenerate if and only if
g(v , v)g(w ,w)− g(v ,w)2 6= 0
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Sectional curvature

Definition

A pseudo-Riemannian manifold (M, g) is of constant
curvature if its sectional curvatures coincide at every point
for every nondegenerate plane in the corresponding tangent
space.

Examples

The following pseudo-Riemannian manifolds have constant
curvature:

(Rn, 〈·, ·〉ν) for all 0 ≤ ν ≤ n

Sn ⊂ Rn+1 equipped with g = 〈·, ·〉|TSn×TSn has positive
constant curvature

the hyperbolic upper half plane {y > 0} ⊂ R2 with

Riemannian metric dx2+dy2

y2 has negative constant
curvature
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Sectional curvature

Question: Can we recover the Riemann curvature tensor from
the sectional curvatures?
Answer: Yes, need the following concept:

Definition

A (1, 3)-tensor

F ∈ T 1,3
p M, F : (u, v ,w) 7→ F (u, v)w ∈ TpM ∀u, v ,w ∈ TpM,

on a pseudo-Riemannian manifold (M, g) is called abstract
curvature tensor if it fulfils the identities

i F (v ,w) = −F (w , v),

ii g(F (v ,w)V ,W ) = −g(V ,F (v ,w)W ),

iii
∑
cycl.

F (u, v)w = 0

for all u, v ,w ,V ,W ∈ TpM.

David Lindemann DG lecture 18 14. July 2020 23 / 31



Sectional curvature

Lemma C

Let (M, g) be a pseudo-Riemannian manifold with Riemann
curvature tensor R and assume that for p ∈ M fixed and an
abstract curvature tensor F ∈ T 1,3

p M

K(v ,w) =
g(F (v ,w)w , v)

g(v , v)g(w ,w)− g(v ,w)2

for all linearly independent v ,w ∈ TpM spanning a
nondegenerate plane in TpM. Then F = Rp.

Proof: (see right hand side)
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Sectional curvature

As a consequence of Lemma C we obtain:

Corollary

Let (M, g) be a pseudo-Riemannian manifold with constant
sectional curvature K = c ∈ R. Then the Riemann curvature
tensor of (M, g) fulfils

R(X ,Y )Z = c(g(Y ,Z)X − g(X ,Z)Y )

for all X ,Y ,Z ∈ X(M).

Proof:

 check that for every point p ∈ M,
c(g(Y ,Z)X − g(X ,Z)Y ) restricted to
TpM × TpM × TpM defines an abstract curvature
tensor, fulfilling

K(v ,w) = c

for all v ,w spanning a nondegenerate plane in TpM

(continued on next page)
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Ricci curvature

(continuation of proof)

Lemma C now implies that
R(X ,Y )Z = c(g(Y ,Z)X − g(X ,Z)Y ) holds at p ∈ M

since p ∈ M was arbitrary this finishes the proof

Next, we will introduce the Ricci curvature which is obtained
by contracting the Riemann curvature tensor.

Definition

Let (M, g) be a pseudo-Riemannian manifold with Riemann
curvature tensor R. The Ricci curvature Ric ∈ T0,2(M) is
defined as

Ric(X ,Y ) := tr(R(·,X )Y )

for all X ,Y ∈ X(M) where

R(·,X )Y ∈ T
1,1(M), R(·,X )Y : Z 7→ R(Z ,X )Y .

In local coordinates (x1, . . . , xn), Ric is of the form

Ric =
n∑

i,j=1

Ricij dx
i ⊗ dx j =

n∑
i,j=1

(
n∑

k=1

Rk
kij

)
dx i ⊗ dx j .
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Ricci curvature

Exercise

Show that Ric is symmetric, that is
Ric(X ,Y ) = Ric(Y ,X ) for all X ,Y ∈ X(M).

Determine a local formula for each Ricij in terms of the
Christoffel symbols.

Find a formula for Ric for pseudo-Riemannian manifolds
of constant curvature.

Note: The Ricci curvature plays a prominent role in general
relativity and, as indicated by the name, the study of the Ricci
flow.

Definition

In case that Ric = λg for a pseudo-Riemannian manifold
(M, g) and some real number λ ∈ R, (M, g) is called Einstein
manifold.
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Scalar curvature

The Ricci curvature can be used to define a scalar curvature
invariant as follows:

Definition

The scalar curvature of a pseudo-Riemannian manifold (M, g)
is defined as

S := trg (Ric) ∈ C∞(M).

Note: S is well defined because of the symmetry of Ric.
In local coordinates (x1, . . . , xn), S is of the form

S =
∑
i,j,k,`

Rm
mij g

ij =
∑
i,j,k,`

Rk`ij g
k`g ij .

Exercise

Find a local formula of the scalar curvature in terms of the
Christoffel symbols.
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Scalar curvature

In good situations, the scalar curvature can be used to show that
two given pseudo-Riemannian manifolds are not isometric:

Lemma

The number of isolated local minima and maxima of the
scalar curvature of a pseudo-Riemannian manifold is invariant
under isometries.

Proof:

let (M, g) and (N, h) be two isometric
pseudo-Riemannian manifolds with scalar curvature
SM , SN , respectively, and let F : M → N be an isometry

Lemma B  SN = SM ◦ F
F is in particular a diffeomorphism, hence the claim of
this lemma follows
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Scalar curvature

The scalar curvature can also be calculated from the sectional
curvatures:

Lemma

Let (M, g) be an n ≥ 2-dimensional pseudo-Riemannian
manifold. For p ∈ M fixed let {v1, . . . , vn} be an orthonormal
basis of TpM. Then

S(p) =
∑
i 6=j

K(vi , vj).

Proof: Exercise!

Remark

Another commonly studied scalar curvature invariant of
pseudo-Riemannian manifolds is the so-called Kretschmann
scalar which is for a pseudo-Riemannian manifold (M, g) given
by g(R,R) ∈ C∞(M).
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END OF LECTURE 18

Next lecture:

first and second fundamental form

geodesics & curvature of pseudo-Riemannian submanifolds
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