Differential geometry Lecture 18: Curvature

David Lindemann
University of Hamburg
Department of Mathematics
Analysis and Differential Geometry \& RTG 1670

14. July 2020

1 Riemann curvature tensor

2 Sectional curvature

3 Ricci curvature

4 Scalar curvature

Recap of lecture 17:

■ defined geodesics in pseudo-Riemannian manifolds as curves with parallel velocity

- viewed geodesics as projections of integral curves of a vector field $G \in \mathfrak{X}(T M)$ with local flow called geodesic flow
- obtained uniqueness and existence properties of geodesics
■ constructed the exponential map $\exp : V \rightarrow M, V$ neighbourhood of the zero-section in $T M \rightarrow M$
■ showed that geodesics with compact domain are precisely the critical points of the energy functional

■ used the exponential map to construct Riemannian normal coordinates, studied local forms of the metric and the Christoffel symbols in such coordinates

- discussed the Hopf-Rinow Theorem

■ erratum: codomain of (x, v) as local integral curve of G is $d \varphi(T U)$, not $T M$

Intuitively, a meaningful definition of the term "curvature" for a smooth surface in \mathbb{R}^{3}, written locally as a graph of a smooth function $f: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$, should involve the second partial derivatives of f at each point. How can we find a coordinatefree definition of curvature not just for surfaces in \mathbb{R}^{3}, which are automatically Riemannian manifolds by restricting $\langle\cdot, \cdot\rangle$, but for all pseudo-Riemannian manifolds?

Definition

Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita connection ∇. The Riemann curvature tensor of (M, g) is defined as

$$
\begin{aligned}
& R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M) \\
& R(X, Y) Z:=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
\end{aligned}
$$

for all $X, Y, Z \in \mathscr{X}(M)$. In the above formula, we understand $\nabla_{X} \nabla_{Y} Z$ as $\nabla_{X}\left(\nabla_{Y} Z\right)$, analogously for X and Y interchanged.

The first thing we need to check is if R is, as implied in its definition, actually a tensor field:

Lemma

The Riemann curvature tensor is, in fact, a tensor field, i.e. $R \in \mathcal{T}^{1,3}(M)$.

Proof: Direct calculation.
Note: If we would replace ∇ with \mathcal{L} in the definition of R, it would identically vanish by the Jacobi identity. Also observe that the Riemann curvature tensor vanishes identically if $\operatorname{dim}(M)=1$.
Question: Why should we study the Riemann curvature tensor R in the first place? What is the geometric picture one should have in mind for R ?
(partial) Answer: (see next page)

Lemma A

Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita connection ∇. For any $X \in \mathfrak{X}(M)$, denote for every $p \in M$ by $P_{0}^{t}(X): T_{p} M \rightarrow T_{\gamma(t)} M$ the parallel transport map with respect to ∇ along the integral curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ of X with $\gamma(0)=p$ for $\varepsilon>0$ small enough, that is for $p \in M$ fixed we have $P_{0}^{t}(X)=P_{0}^{t}(\gamma)$. Let $\left(x^{1}, \ldots, x^{n}\right)$ be local coordinates on $U \subset M$. Then

$$
\begin{aligned}
& \left.R\left(\left.\frac{\partial}{\partial x^{i}}\right|_{p},\left.\frac{\partial}{\partial x^{j}}\right|_{p}\right) \frac{\partial}{\partial x^{k}}\right|_{p}= \\
& \left.\left.\left.\frac{\partial}{\partial s}\right|_{s=0} \frac{\partial}{\partial t}\right|_{t=0} P_{0}^{s}\left(\frac{\partial}{\partial x^{i}}\right)^{-1} P_{0}^{t}\left(\frac{\partial}{\partial x^{j}}\right)^{-1} P_{0}^{s}\left(\frac{\partial}{\partial x^{i}}\right) P_{0}^{t}\left(\frac{\partial}{\partial x^{j}}\right) \frac{\partial}{\partial x^{k}}\right|_{p}
\end{aligned}
$$

for all $1 \leq i, j, k \leq n$ and all $p \in U$. The Riemann curvature tensor is the unique (1,3)-tensor field fulfilling the above equation in all local coordinates.

Proof: (next page)
(continuation of proof)
■ in coordinate representations, $P_{0}^{t}\left(\frac{\partial}{\partial x^{j}}\right): T_{p} M \rightarrow T_{\gamma(t)} M, t \in(-\varepsilon, \varepsilon)$, and the other parallel translations are smooth maps of the form

$$
\widehat{P_{0}^{t}\left(\frac{\partial}{\partial x^{j}}\right)}:(-\varepsilon, \varepsilon) \rightarrow \mathrm{GL}(n)
$$

where $\mathrm{GL}(n)$ being the codomain follows the fact that parallel translations are isometries, hence isomorphisms, for each fixed t
■ the above map should be understood as mapping prefactors of vectors in $T_{p} M$ written in the coordinate basis to prefactors of vectors in $T_{\gamma(t)} M$, again written in the coordinate basis
(continued on next page)

(continuation of proof)

- hence, the partial derivatives of products of $\widehat{P_{0}^{t}\left(\frac{\partial}{\partial \times^{j}}\right)}$ behave according to the product rule of matrix valued curves, i.e. for all $A, B:(-\varepsilon, \varepsilon) \rightarrow \mathrm{GL}(n)$ smooth with $A(0)=B(0)=\mathbb{1}$ and all $v \in \mathbb{R}^{n}$ we have

$$
\begin{aligned}
& \left.\left.\frac{\partial}{\partial s}\right|_{s=0} \frac{\partial}{\partial t}\right|_{t=0} A(s)^{-1} B(t)^{-1} A(s) B(t) v \\
& =\left(\left.\frac{\partial}{\partial s}\right|_{s=0} A(s)^{-1}\right)\left(\left.\frac{\partial}{\partial t}\right|_{t=0} B(t)^{-1}\right) v \\
& +\left(\left.\frac{\partial}{\partial t}\right|_{t=0} B(t)^{-1}\right)\left(\left.\frac{\partial}{\partial s}\right|_{s=0} A(s)\right) v \\
& =\left(\left.\frac{\partial}{\partial s}\right|_{s=0} A(s)\right)\left(\left.\frac{\partial}{\partial t}\right|_{t=0} B(t)\right) v \\
& -\left(\left.\frac{\partial}{\partial t}\right|_{t=0} B(t)\right)\left(\left.\frac{\partial}{\partial s}\right|_{s=0} A(s)\right) v
\end{aligned}
$$

- note that $\left.\frac{\partial}{\partial s}\right|_{s=0} A(s) \in \operatorname{End}\left(\mathbb{R}^{n}\right)$, meaning that the derivative is in general not invertible (continued on next page)
(continuation of proof)
- hence, using our formula relating ∇ with parallel transport maps, obtain

$$
\begin{aligned}
& \left.\left.\left.\frac{\partial}{\partial s}\right|_{0} \frac{\partial}{\partial t}\right|_{0} P_{0}^{s}\left(\frac{\partial}{\partial x^{\prime}}\right)^{-1} P_{0}^{t}\left(\frac{\partial}{\partial x^{j}}\right)^{-1} P_{0}^{s}\left(\frac{\partial}{\partial x^{i}}\right) P_{0}^{t}\left(\frac{\partial}{\partial x^{j}}\right) \frac{\partial}{\partial x^{k}}\right|_{p} \\
& =\left.\left(\nabla \frac{\partial}{\partial x^{i}} \nabla \frac{\partial}{\partial x^{j}} \frac{\partial}{\partial x^{k}}-\nabla \frac{\partial}{\partial x^{j}} \nabla \frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{k}}\right)\right|_{p}
\end{aligned}
$$

proving the first statement of this lemma

- in order to show that R is indeed the unique tensor field fulfilling the above, we only need to check that for any local functions $X^{1}, Y^{1}, Z^{1}, \ldots, X^{n}, Y^{n}, Z^{n} \in C^{\infty}(U)$ and all $p \in U,\left.\sum_{i, j, k} X^{i}(p) Y^{j}(p) Z^{k}(p) R\left(\left.\frac{\partial}{\partial x^{i}}\right|_{p},\left.\frac{\partial}{\partial x^{j}}\right|_{p}\right) \frac{\partial}{\partial x^{k}}\right|_{p}$ and $\left.(R(X, Y) Z)\right|_{p}$ via its initial definition coincide [Exercise!]

We have the following local formula for the Riemann curvature tensor:

Lemma

In local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ the Riemann curvature tensor of a pseudo-Riemannian manifold (M, g) has components

$$
R_{i j k}^{\ell}:=d x^{\ell}\left(R\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right) \frac{\partial}{\partial x^{k}}\right),
$$

so that locally $R=\sum_{i, j, k, \ell} R^{\ell}{ }_{i j k} \frac{\partial}{\partial x^{\ell}} \otimes d x^{i} \otimes d x^{j} \otimes d x^{k}$. The local functions $R^{\ell}{ }_{i j k}$ are given by

$$
R_{i j k}^{\ell}=\frac{\partial \Gamma_{j k}^{\ell}}{\partial x^{i}}-\frac{\partial \Gamma_{i k}^{\ell}}{\partial x^{j}}+\sum_{m=1}^{n}\left(\Gamma_{i m}^{\ell} \Gamma_{j k}^{m}-\Gamma_{j m}^{\ell} \Gamma_{i k}^{m}\right)
$$

for all $1 \leq i, j, k, \ell \leq n$.
Proof: Direct calculation.

The Riemann curvature tensor R of a pseudo-Riemannian manifold (M, g) fulfils the following identities:

Lemma

ii $R(X, Y)=-R(Y, X)$,
피 $g(R(X, Y) Z, W)=-g(Z, R(X, Y) W)$,
囲 $R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0$ (first or algebraic Bianchi identity),
iv $g(R(X, Y) Z, W)=g(R(Z, W) X, Y)$,
v $\left(\nabla_{X} R\right)(Y, Z)+\left(\nabla_{Y} R\right)(Z, X)+\left(\nabla_{Z} R\right)(X, Y)=0$ (second or differential Bianchi identity)
for all $X, Y, Z, W \in \mathfrak{X}(M)$.
Proof: (see notes on the right hand side)

As one might expect from the tensoriality, the Riemann curvature tensor behaves well under isometries.

Lemma B

Let $F:(M, g) \rightarrow(N, h)$ be an isometry and let R^{M} and R^{N} denote the Riemann curvature tensors of (M, g) and (N, h), respectively. Then

$$
F_{*}\left(R^{M}(X, Y) Z\right)=R^{N}\left(F_{*} X, F_{*} Y\right) F_{*} Z
$$

for all $X, Y, Z \in \mathfrak{X}(M)$.

Proof:

■ suffices to show that $F_{*} \nabla_{X}^{M} Y=\nabla_{F_{*} X}^{N}\left(F_{*} Y\right)$ for all $X, Y \in \mathscr{X}(M)$, where ∇^{M} and ∇^{N} denote the Levi-Civita connections of (M, g) and (N, h), respectively
■ \rightsquigarrow use Koszul formula for ∇^{M} and ∇^{N}, bijectivity of $F_{*}: \mathfrak{X}(M) \rightarrow \mathfrak{X}(N)$, and $F_{*}[X, Y]=\left[F_{*} X, F_{*} Y\right]$

Definition

A pseudo-Riemannian manifold with vanishing Riemann curvature tensor is called flat.

Examples

The following pseudo-Riemannian manifolds are flat:
■ $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle_{\nu}\right), 0 \leq \nu \leq n$

- the cylinder $\mathbb{R} \times S^{1}$ and the 2-torus $T^{2}=S^{1} \times S^{1}$ equipped with the respective product metric
■ more generally, $(M \times N, g+h)$ for all (M, g) and (N, h) flat

Suppose that we are given a flat Riemannian manifold (M, g). Question: Is (M, g) automatically of a simple form, at least locally (up to isometry)?
Answer: Yes! Locally, we have the following result:

Theorem

An n-dimensional Riemannian manifold (M, g) is flat if and only if it is locally isometric to $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle\right)$, meaning that for all $p \in M$ there exists an open neighbourhood $U \subset M$ of p and an isometry $F:(U, g) \rightarrow(F(U),\langle\cdot, \cdot\rangle), F(U) \subset \mathbb{R}^{n}$ open.

Proof:

- Lemma $\mathrm{B} \rightsquigarrow$ local isometry to ($\mathbb{R}^{n},\langle\cdot, \cdot\rangle$) implies flatness, i.e. $R \equiv 0$
- the other direction of this proof requires a lot more work, for details see Theorem 7.3 in J.M. Lee's Riemannian Manifolds - An Introduction to Curvature, Springer GTM 176 (1997) (with slightly different conventions)
(continued on next page)
(continuation of proof)
- the idea is to construct a commuting orthonormal local frame of $T M \rightarrow M$ near every given point
■ the key ingredient is that parallel transport of vectors at, say, $p \in M$, to a close enough point $q \in M$ does not depend on the chosen curve starting at p and ending at q if it is required to be contained in a small enough open neighbourhood of both p and q
- follows from a similar argument as in Lemma A

In Lemma A we have described how to interpret the Riemann curvature tensor geometrically as infinitesimal change of parallel transport of tangent vectors around infinitesimal parallelograms.
Question: Is there another motivation for the definition of the Riemann curvature tensor?
Answer: Yes, via second covariant derivatives!

Definition

Let (M, g) be a pseudo-Riemannian manifold with
Levi-Civita connection ∇. Then for all $X, Y, Z \in \mathfrak{X}(M)$,

$$
\begin{equation*}
\nabla_{X, Y}^{2} Z:=\left(\nabla_{X}(\nabla Z)\right)(Y)=\nabla_{X} \nabla_{Y} Z-\nabla_{\nabla_{X} Y} Z \tag{1}
\end{equation*}
$$

is called the second covariant derivative of Z in direction X, Y.

Exercise

Check that $\left(\nabla_{X}(\nabla Z)\right)(Y)=\nabla_{X} \nabla_{Y} Z-\nabla_{\nabla_{X} Y} Z$ actually holds true for all $X, Y, Z \in \mathfrak{X}(M)$.

Using second covariant derivatives of vector fields, we can write the Riemann curvature tensor as follows:

Lemma

The Riemann curvature tensor of a pseudo-Riemannian manifold (M, g) with Levi-Civita connection ∇ fulfils

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X, Y}^{2} Z-\nabla_{Y, X}^{2} Z \tag{2}
\end{equation*}
$$

for all $X, Y, Z \in \mathfrak{X}(M)$.

Proof:

\square torsion-freeness of $\nabla \rightsquigarrow$
$-\nabla_{\nabla_{X} Y} Z+\nabla_{\nabla_{Y} X} Z=-\nabla_{[X, Y]} Z$
■ writing out $\nabla_{X, Y}^{2} Z-\nabla_{Y, X}^{2} Z$ with the above proves our claim

Hence: The Riemann curvature tensor describes "how much" second covariant derivatives are not symmetric. In the flat case, second covariant derivatives do commute.

Remark

Instead of defining the Riemann curvature tensor of (M, g) as a $(1,3)$-tensor field, we could have taken the other common approach and define it as a (0,4)-tensor field $\widetilde{R} \in \mathcal{T}^{0,4}(M)$ given by

$$
\widetilde{R}(X, Y, Z, W):=g(R(X, Y) Z, W) \quad \forall X, Y, Z, W \in \mathfrak{X}(M)
$$

It is clear that R can be recovered from \widetilde{R} by raising the fitting index. In local coordinates $\left(x^{1}, \ldots, x^{n}\right), \widetilde{R}$ is of the form

$$
\widetilde{R}=\sum_{i, j, k, \ell} R_{i j k \ell} d x^{i} \otimes d x^{j} \otimes d x^{k} \otimes d x^{\ell}
$$

where $R_{i j k \ell}=\sum_{m} g_{\ell m} R^{m}{ }_{i j k}$.

In Riemannian normal coordinates, the Riemann curvature tensor determines the second order terms in the Taylor expansion of the metric near the reference point:

Lemma

Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita connection ∇ and let $\varphi=\left(x^{1}, \ldots, x^{n}\right)$ be Riemannian normal coordinates at $p \in M$ corresponding to a choice of orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of $T_{p} M$. Then the local prefactors $g_{i j}$ of g fulfil

$$
\frac{\partial^{2} g_{i j}}{\partial x^{k} \partial x^{\ell}}(p)=\frac{2}{3} R_{i j k \ell}(p)
$$

for all $1 \leq i, j, k, \ell \leq n$.
Proof: See Prop. 3.1.12 in C. Bär's Differential Geometry, lecture notes (2013).

Next, we will study the so-called sectional curvature.

Definition

Let (M, g) be a pseudo-Riemannian manifold with Riemann curvature tensor R. Let $\Pi \subset T_{p} M$ be a nondegenerate plane spanned by linearly independent vectors $v, w \in T_{p} M$. The sectional curvature of Π is defined by

$$
K(\Pi):=K(v, w):=\frac{g(R(v, w) w, v)}{g(v, v) g(w, w)-g(v, w)^{2}}
$$

\rightsquigarrow need to check that the sectional curvature is well-defined, i.e. that $K(\Pi)$ is independent of the basis vectors v, w of Π

Lemma

K only depends on the plane Π, not on the choice of basis vectors v, w of Π.

Proof:

- let $\{V, W\}$ be another basis of Π

■ write $v=a V+b W, w=c V+d W$ for $a, b, c, d \in \mathbb{R}$
■ since both $\{v, w\}$ and $\{V, W\}$ are a basis of Π, obtain

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c \neq 0
$$

- we check that
$g(R(v, w) w, v)=(a d-b c)^{2} g(R(V, W) W, V)$ and
$g(v, v) g(w, w)-g(v, w)^{2}=$
$(a d-b c)^{2}\left(g(V, V) g(W, W)-g(V, W)^{2}\right)$ which proves
our claim
■ this also proves that Π is nondegenerate if and only if $g(v, v) g(w, w)-g(v, w)^{2} \neq 0$

Definition

A pseudo-Riemannian manifold (M, g) is of constant curvature if its sectional curvatures coincide at every point for every nondegenerate plane in the corresponding tangent space.

Examples

The following pseudo-Riemannian manifolds have constant curvature:

■ ($\left.\mathbb{R}^{n},\langle\cdot, \cdot\rangle_{\nu}\right)$ for all $0 \leq \nu \leq n$

- $S^{n} \subset \mathbb{R}^{n+1}$ equipped with $g=\left.\langle\cdot, \cdot\rangle\right|_{T S^{n} \times T S^{n}}$ has positive constant curvature
- the hyperbolic upper half plane $\{y>0\} \subset \mathbb{R}^{2}$ with Riemannian metric $\frac{d x^{2}+d y^{2}}{y^{2}}$ has negative constant curvature

Question: Can we recover the Riemann curvature tensor from the sectional curvatures?
Answer: Yes, need the following concept:

Definition

A (1, 3)-tensor
$F \in T_{p}^{1,3} M, F:(u, v, w) \mapsto F(u, v) w \in T_{p} M \forall u, v, w \in T_{p} M$, on a pseudo-Riemannian manifold (M, g) is called abstract curvature tensor if it fulfils the identities
i $F(v, w)=-F(w, v)$,
[ii $g(F(v, w) V, W)=-g(V, F(v, w) W)$,
田 $\sum_{\text {cycl. }} F(u, v) w=0$
for all $u, v, w, V, W \in T_{p} M$.

Lemma C

Let (M, g) be a pseudo-Riemannian manifold with Riemann curvature tensor R and assume that for $p \in M$ fixed and an abstract curvature tensor $F \in T_{p}^{1,3} M$

$$
K(v, w)=\frac{g(F(v, w) w, v)}{g(v, v) g(w, w)-g(v, w)^{2}}
$$

for all linearly independent $v, w \in T_{p} M$ spanning a nondegenerate plane in $T_{p} M$. Then $F=R_{p}$.

Proof: (see right hand side)

As a consequence of Lemma C we obtain:

Corollary

Let (M, g) be a pseudo-Riemannian manifold with constant sectional curvature $K=c \in \mathbb{R}$. Then the Riemann curvature tensor of (M, g) fulfils

$$
R(X, Y) Z=c(g(Y, Z) X-g(X, Z) Y)
$$

for all $X, Y, Z \in \mathfrak{X}(M)$.

Proof:

■ \rightsquigarrow check that for every point $p \in M$, $c(g(Y, Z) X-g(X, Z) Y)$ restricted to $T_{p} M \times T_{p} M \times T_{p} M$ defines an abstract curvature tensor, fulfilling

$$
K(v, w)=c
$$

for all v, w spanning a nondegenerate plane in $T_{p} M$
(continued on next page)

(continuation of proof)

- Lemma C now implies that
$R(X, Y) Z=c(g(Y, Z) X-g(X, Z) Y)$ holds at $p \in M$
- since $p \in M$ was arbitrary this finishes the proof

Next, we will introduce the Ricci curvature which is obtained by contracting the Riemann curvature tensor.

Definition

Let (M, g) be a pseudo-Riemannian manifold with Riemann curvature tensor R. The Ricci curvature Ric $\in \mathcal{T}^{0,2}(M)$ is defined as

$$
\operatorname{Ric}(X, Y):=\operatorname{tr}(R(\cdot, X) Y)
$$

for all $X, Y \in \mathfrak{X}(M)$ where

$$
R(\cdot, X) Y \in \mathcal{T}^{1,1}(M), \quad R(\cdot, X) Y: Z \mapsto R(Z, X) Y
$$

In local coordinates $\left(x^{1}, \ldots, x^{n}\right)$, Ric is of the form

$$
\text { Ric }=\sum_{i, j=1}^{n} \operatorname{Ric}_{i j} d x^{i} \otimes d x^{j}=\sum_{i, j=1}^{n}\left(\sum_{k=1}^{n} R_{k i j}^{k}\right) d x^{i} \otimes d x^{j}
$$

Exercise

- Show that Ric is symmetric, that is $\operatorname{Ric}(X, Y)=\operatorname{Ric}(Y, X)$ for all $X, Y \in \mathfrak{X}(M)$.
- Determine a local formula for each $\mathrm{Ric}_{i j}$ in terms of the Christoffel symbols.
- Find a formula for Ric for pseudo-Riemannian manifolds of constant curvature.

Note: The Ricci curvature plays a prominent role in general relativity and, as indicated by the name, the study of the Ricci flow.

Definition

In case that Ric $=\lambda g$ for a pseudo-Riemannian manifold (M, g) and some real number $\lambda \in \mathbb{R},(M, g)$ is called Einstein manifold.

The Ricci curvature can be used to define a scalar curvature invariant as follows:

Definition

The scalar curvature of a pseudo-Riemannian manifold (M, g) is defined as

$$
S:=\operatorname{tr}_{g}(\text { Ric }) \in C^{\infty}(M) .
$$

Note: S is well defined because of the symmetry of Ric.
In local coordinates $\left(x^{1}, \ldots, x^{n}\right), S$ is of the form

$$
S=\sum_{i, j, k, \ell} R_{m i j}^{m} g^{i j}=\sum_{i, j, k, \ell} R_{k \ell i j} g^{k \ell} g^{i j}
$$

Exercise

Find a local formula of the scalar curvature in terms of the Christoffel symbols.

In good situations, the scalar curvature can be used to show that two given pseudo-Riemannian manifolds are not isometric:

Lemma

The number of isolated local minima and maxima of the scalar curvature of a pseudo-Riemannian manifold is invariant under isometries.

Proof:

- let (M, g) and (N, h) be two isometric pseudo-Riemannian manifolds with scalar curvature S_{M}, S_{N}, respectively, and let $F: M \rightarrow N$ be an isometry
■ Lemma $B \rightsquigarrow S_{N}=S_{M} \circ F$
■ F is in particular a diffeomorphism, hence the claim of this lemma follows

The scalar curvature can also be calculated from the sectional curvatures:

Lemma

Let (M, g) be an $n \geq 2$-dimensional pseudo-Riemannian manifold. For $p \in M$ fixed let $\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthonormal basis of $T_{p} M$. Then

$$
S(p)=\sum_{i \neq j} K\left(v_{i}, v_{j}\right)
$$

Proof: Exercise!

Remark

Another commonly studied scalar curvature invariant of pseudo-Riemannian manifolds is the so-called Kretschmann scalar which is for a pseudo-Riemannian manifold (M, g) given by $g(R, R) \in C^{\infty}(M)$.

END OF LECTURE 18

Next lecture:

- first and second fundamental form
- geodesics \& curvature of pseudo-Riemannian submanifolds

