Differential geometry Lecture 18: Curvature

David Lindemann

University of Hamburg Department of Mathematics Analysis and Differential Geometry & RTG 1670

14. July 2020

1 Riemann curvature tensor

2 Sectional curvature

3 Ricci curvature

4 Scalar curvature

Recap of lecture 17:

- defined geodesics in pseudo-Riemannian manifolds as curves with parallel velocity
- viewed geodesics as projections of integral curves of a vector field $G \in \mathfrak{X}(TM)$ with local flow called geodesic flow
- obtained uniqueness and existence properties of geodesics
- constructed the **exponential map** exp : $V \rightarrow M$, V neighbourhood of the zero-section in $TM \rightarrow M$
- showed that geodesics with compact domain are precisely the critical points of the energy functional
- used the exponential map to construct Riemannian normal coordinates, studied local forms of the metric and the Christoffel symbols in such coordinates
- discussed the Hopf-Rinow Theorem
- erratum: codomain of (x, ν) as local integral curve of G is dφ(TU), not TM

Intuitively, a meaningful definition of the term "curvature" for a smooth surface in \mathbb{R}^3 , written locally as a graph of a smooth function $f : U \subset \mathbb{R}^2 \to \mathbb{R}$, should involve the second partial derivatives of f at each point. How can we find a coordinatefree definition of curvature **not just for surfaces** in \mathbb{R}^3 , which are automatically Riemannian manifolds by restricting $\langle \cdot, \cdot \rangle$, but for all pseudo-Riemannian manifolds?

Definition

Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita connection ∇ . The **Riemann curvature tensor** of (M, g) is defined as

 $R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M),$ $R(X, Y)Z := \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z$

for all $X, Y, Z \in \mathfrak{X}(M)$. In the above formula, we understand $\nabla_X \nabla_Y Z$ as $\nabla_X (\nabla_Y Z)$, analogously for X and Y interchanged.

The first thing we need to check is if R is, as implied in its definition, actually a tensor field:

Lemma

The Riemann curvature tensor is, in fact, a **tensor field**, i.e. $R \in \mathbb{T}^{1,3}(M)$.

Proof: Direct calculation.

Note: If we would **replace** ∇ with \mathcal{L} in the definition of R, it would identically vanish by the **Jacobi identity**. Also observe that the Riemann curvature tensor **vanishes identically** if dim(M) = 1.

Question: Why should we study the Riemann curvature tensor R in the first place? What is the **geometric picture** one should have in mind for R?

(partial) Answer: (see next page)

Lemma A

Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita connection ∇ . For any $X \in \mathfrak{X}(M)$, denote for every $p \in M$ by $P_0^t(X) : T_p M \to T_{\gamma(t)} M$ the **parallel transport map** with respect to ∇ **along the integral curve** $\gamma : (-\varepsilon, \varepsilon) \to M$ of Xwith $\gamma(0) = p$ for $\varepsilon > 0$ small enough, that is for $p \in M$ fixed we have $P_0^t(X) = P_0^t(\gamma)$. Let (x^1, \ldots, x^n) be local coordinates on $U \subset M$. Then

$$\begin{split} R\left(\left.\frac{\partial}{\partial x^{i}}\right|_{p}, \left.\frac{\partial}{\partial x^{j}}\right|_{p}\right) \left.\frac{\partial}{\partial x^{k}}\right|_{p} &= \\ \left.\frac{\partial}{\partial s}\right|_{s=0} \left.\frac{\partial}{\partial t}\right|_{t=0} P_{0}^{s} \left(\frac{\partial}{\partial x^{i}}\right)^{-1} P_{0}^{t} \left(\frac{\partial}{\partial x^{j}}\right)^{-1} P_{0}^{s} \left(\frac{\partial}{\partial x^{i}}\right) P_{0}^{t} \left(\frac{\partial}{\partial x^{j}}\right) \left.\frac{\partial}{\partial x^{k}}\right|_{p} \end{split}$$

for all $1 \le i, j, k \le n$ and all $p \in U$. The Riemann curvature tensor is the **unique** (1, 3)-tensor field fulfilling the above equation in all local coordinates.

Proof: (next page)

in coordinate representations,

 $P_0^t\left(\frac{\partial}{\partial x^j}\right): T_P M \to T_{\gamma(t)}M, t \in (-\varepsilon, \varepsilon)$, and the other parallel translations are **smooth maps** of the form

$$\widehat{P_0^t\left(\frac{\partial}{\partial x^j}\right)}:(-\varepsilon,\varepsilon)\to \mathrm{GL}(n),$$

where GL(n) being the codomain follows the fact that parallel translations are isometries, hence isomorphisms, for each fixed t

• the above map should be understood as mapping **prefactors** of vectors in T_pM written in the **coordinate basis** to **prefactors** of vectors in $T_{\gamma(t)}M$, again written in the **coordinate basis**

(continued on next page)

■ hence, the partial derivatives of products of $P_0^t\left(\frac{\partial}{\partial x^i}\right)$ behave according to the product rule of matrix valued curves, i.e. for all $A, B : (-\varepsilon, \varepsilon) \to \operatorname{GL}(n)$ smooth with A(0) = B(0) = 1 and all $v \in \mathbb{R}^n$ we have

$$\begin{split} & \frac{\partial}{\partial s}\Big|_{s=0} \frac{\partial}{\partial t}\Big|_{t=0} A(s)^{-1} B(t)^{-1} A(s) B(t) v \\ &= \left(\frac{\partial}{\partial s}\Big|_{s=0} A(s)^{-1}\right) \left(\frac{\partial}{\partial t}\Big|_{t=0} B(t)^{-1}\right) v \\ &+ \left(\frac{\partial}{\partial t}\Big|_{t=0} B(t)^{-1}\right) \left(\frac{\partial}{\partial s}\Big|_{s=0} A(s)\right) v \\ &= \left(\frac{\partial}{\partial s}\Big|_{s=0} A(s)\right) \left(\frac{\partial}{\partial t}\Big|_{t=0} B(t)\right) v \\ &- \left(\frac{\partial}{\partial t}\Big|_{t=0} B(t)\right) \left(\frac{\partial}{\partial s}\Big|_{s=0} A(s)\right) v \end{split}$$

■ note that ∂_s|_{s=0} A(s) ∈ End(ℝⁿ), meaning that the derivative is in general not invertible

(continued on next page)

■ hence, using our formula relating ∇ with parallel transport maps, obtain

$$\begin{split} & \frac{\partial}{\partial s}\Big|_{0} \left. \frac{\partial}{\partial t} \Big|_{0} P_{0}^{s} \left(\frac{\partial}{\partial x^{i}} \right)^{-1} P_{0}^{t} \left(\frac{\partial}{\partial x^{j}} \right)^{-1} P_{0}^{s} \left(\frac{\partial}{\partial x^{i}} \right) P_{0}^{t} \left(\frac{\partial}{\partial x^{j}} \right) \left. \frac{\partial}{\partial x^{k}} \Big|_{p} \\ &= \left(\nabla_{\frac{\partial}{\partial x^{i}}} \nabla_{\frac{\partial}{\partial x^{j}}} \frac{\partial}{\partial x^{k}} - \nabla_{\frac{\partial}{\partial x^{j}}} \nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{k}} \right) \Big|_{p} \end{split}$$

proving the first statement of this lemma

• in order to show that *R* is indeed the **unique tensor field fulfilling the above**, we only need to check that for any local functions $X^1, Y^1, Z^1, \ldots, X^n, Y^n, Z^n \in C^{\infty}(U)$ and all $p \in U$, $\sum_{i,j,k} X^i(p)Y^j(p)Z^k(p)R\left(\frac{\partial}{\partial x^i}\Big|_p, \frac{\partial}{\partial x^j}\Big|_p\right)\frac{\partial}{\partial x^k}\Big|_p$ and $(R(X, Y)Z)\Big|_p$ via its initial definition **coincide** [Exercise!] We have the following **local formula** for the Riemann curvature tensor:

Lemma

In local coordinates (x^1, \ldots, x^n) the Riemann curvature tensor of a pseudo-Riemannian manifold (M, g) has components

$$R^{\ell}_{ijk} := dx^{\ell} \left(R \left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}} \right) \frac{\partial}{\partial x^{k}} \right),$$

so that locally $R = \sum_{i,j,k,\ell} R^{\ell}_{ijk} \frac{\partial}{\partial x^{\ell}} \otimes dx^{i} \otimes dx^{j} \otimes dx^{k}$. The local

functions R^{ℓ}_{ijk} are given by

$$R^{\ell}_{ijk} = \frac{\partial \Gamma^{\ell}_{jk}}{\partial x^{i}} - \frac{\partial \Gamma^{\ell}_{ik}}{\partial x^{j}} + \sum_{m=1}^{n} \left(\Gamma^{\ell}_{im} \Gamma^{m}_{jk} - \Gamma^{\ell}_{jm} \Gamma^{m}_{ik} \right)$$

for all $1 \leq i, j, k, \ell \leq n$.

Proof: Direct calculation.

The Riemann curvature tensor R of a pseudo-Riemannian manifold (M, g) fulfils the following **identities**:

Lemma

- $\blacksquare R(X,Y) = -R(Y,X),$
- $\blacksquare g(R(X,Y)Z,W) = -g(Z,R(X,Y)W),$
- $\blacksquare R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0$ (first or algebraic Bianchi identity),
- $\square g(R(X,Y)Z,W) = g(R(Z,W)X,Y),$
- ▼ $(\nabla_X R)(Y, Z) + (\nabla_Y R)(Z, X) + (\nabla_Z R)(X, Y) = 0$ (second or differential Bianchi identity)

for all $X, Y, Z, W \in \mathfrak{X}(M)$.

Proof: (see notes on the right hand side)

As one might expect from the **tensoriality**, the Riemann curvature tensor behaves well under **isometries**.

Lemma B

Let $F : (M,g) \to (N,h)$ be an isometry and let R^M and R^N denote the **Riemann curvature tensors** of (M,g) and (N,h), respectively. Then

$$F_*(R^M(X,Y)Z) = R^N(F_*X,F_*Y)F_*Z$$

for all $X, Y, Z \in \mathfrak{X}(M)$.

Proof:

- suffices to show that $F_* \nabla^M_X Y = \nabla^N_{F_*X}(F_*Y)$ for all $X, Y \in \mathfrak{X}(M)$, where ∇^M and ∇^N denote the Levi-Civita connections of (M, g) and (N, h), respectively
- \rightsquigarrow use **Koszul formula** for ∇^M and ∇^N , **bijectivity** of $F_* : \mathfrak{X}(M) \to \mathfrak{X}(N)$, and $F_*[X, Y] = [F_*X, F_*Y]$

Definition

A pseudo-Riemannian manifold with vanishing Riemann curvature tensor is called flat.

Examples

The following pseudo-Riemannian manifolds are flat:

- $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\nu}), \ 0 \leq \nu \leq n$
- the cylinder $\mathbb{R} \times S^1$ and the 2-torus $T^2 = S^1 \times S^1$ equipped with the respective product metric
- more generally, $(M \times N, g + h)$ for all (M, g) and (N, h) flat

Suppose that we are given a **flat Riemannian** manifold (M, g). **Question:** Is (M, g) automatically of a **simple form**, at least locally (up to isometry)?

Answer: Yes! **Locally**, we have the following result:

Theorem

An *n*-dimensional **Riemannian manifold** (M, g) is **flat** if and only if it is **locally isometric** to $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$, meaning that for all $p \in M$ there exists an open neighbourhood $U \subset M$ of p and an isometry $F : (U, g) \to (F(U), \langle \cdot, \cdot \rangle)$, $F(U) \subset \mathbb{R}^n$ open.

Proof:

- Lemma B \rightsquigarrow local isometry to $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ implies flatness, i.e. $R \equiv 0$
- the other direction of this proof requires a lot more work, for details see Theorem 7.3 in J.M. Lee's *Riemannian Manifolds – An Introduction to Curvature*, Springer GTM 176 (1997) (with slightly different conventions)

(continued on next page)

- the idea is to construct a commuting orthonormal local frame of $TM \rightarrow M$ near every given point
- the key ingredient is that parallel transport of vectors at, say, p ∈ M, to a close enough point q ∈ M does not depend on the chosen curve starting at p and ending at q if it is required to be contained in a small enough open neighbourhood of both p and q

follows from a similar argument as in Lemma A

In Lemma A we have described how to interpret the Riemann curvature tensor **geometrically** as **infinitesimal change of parallel transport** of tangent vectors **around infinitesimal parallelograms**.

Question: Is there **another motivation** for the definition of the Riemann curvature tensor?

Answer: Yes, via second covariant derivatives!

Definition

Let (M, g) be a **pseudo-Riemannian manifold** with **Levi-Civita connection** ∇ . Then for all $X, Y, Z \in \mathfrak{X}(M)$,

$$\nabla_{X,Y}^2 Z := (\nabla_X (\nabla Z))(Y) = \nabla_X \nabla_Y Z - \nabla_{\nabla_X Y} Z \qquad (1)$$

is called the **second covariant derivative** of Z in direction X, Y.

Exercise

Check that
$$(\nabla_X(\nabla Z))(Y) = \nabla_X \nabla_Y Z - \nabla_{\nabla_X Y} Z$$
 actually holds true for all $X, Y, Z \in \mathfrak{X}(M)$.

Using second covariant derivatives of vector fields, we can write the Riemann curvature tensor as follows:

Lemma

The **Riemann curvature tensor** of a pseudo-Riemannian manifold (M, g) with Levi-Civita connection ∇ **fulfils**

$$R(X,Y)Z =
abla^2_{X,Y}Z -
abla^2_{Y,X}Z$$

for all $X, Y, Z \in \mathfrak{X}(M)$.

Proof:

• torsion-freeness of $\nabla \rightsquigarrow$

$$-\nabla_{\nabla_X Y} Z + \nabla_{\nabla_Y X} Z = -\nabla_{[X,Y]} Z$$

• writing out $\nabla^2_{X,Y}Z - \nabla^2_{Y,X}Z$ with the above proves our claim

Hence: The Riemann curvature tensor **describes** "how much" second covariant derivatives are **not symmetric**. In the **flat** case, second covariant derivatives **do commute**.

(2)

Remark

Instead of defining the Riemann curvature tensor of (M, g) as a (1, 3)-tensor field, we could have taken the other common approach and define it as a (0, 4)-tensor field $\widetilde{R} \in \mathbb{T}^{0,4}(M)$ given by

$$\widehat{R}(X,Y,Z,W) := g(R(X,Y)Z,W) \quad \forall X,Y,Z,W \in \mathfrak{X}(M)$$

It is clear that R can be recovered from \widetilde{R} by raising the fitting index. In local coordinates (x^1, \ldots, x^n) , \widetilde{R} is of the form

$$\widetilde{R} = \sum_{i,j,k,\ell} R_{ijk\ell} \, dx^i \otimes dx^j \otimes dx^k \otimes dx^\ell,$$

where $R_{ijk\ell} = \sum_m g_{\ell m} R^m{}_{ijk}$.

In **Riemannian normal coordinates**, the Riemann curvature tensor determines the **second order terms** in the **Taylor expansion** of the metric near the reference point:

Lemma

Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita connection ∇ and let $\varphi = (x^1, \ldots, x^n)$ be **Riemannian normal coordinates** at $p \in M$ corresponding to a choice of **orthonormal basis** $\{v_1, \ldots, v_n\}$ of T_pM . Then the local prefactors g_{ij} of g fulfil

$$rac{\partial^2 g_{ij}}{\partial x^k \partial x^\ell}(p) = rac{2}{3} R_{ijk\ell}(p)$$

for all $1 \leq i, j, k, \ell \leq n$.

Proof: See Prop. 3.1.12 in C. Bär's *Differential Geometry*, lecture notes (2013).

Next, we will study the so-called sectional curvature.

Definition

Let (M, g) be a pseudo-Riemannian manifold with Riemann curvature tensor R. Let $\Pi \subset T_p M$ be a **nondegenerate plane** spanned by linearly independent vectors $v, w \in T_p M$. The **sectional curvature** of Π is defined by

$$K(\Pi) := K(v,w) := \frac{g(R(v,w)w,v)}{g(v,v)g(w,w) - g(v,w)^2}.$$

 \rightarrow need to check that the sectional curvature is well-defined, i.e. that $K(\Pi)$ is independent of the basis vectors v, w of Π

Lemma

K only depends on the plane Π , not on the choice of basis vectors v, w of Π .

Proof:

- let $\{V, W\}$ be another basis of Π
- write v = aV + bW, w = cV + dW for $a, b, c, d \in \mathbb{R}$
- since **both** $\{v, w\}$ and $\{V, W\}$ are a basis of Π , obtain

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \neq 0$$

we check that

$$g(R(v, w)w, v) = (ad - bc)^2 g(R(V, W)W, V) \text{ and}$$

$$g(v, v)g(w, w) - g(v, w)^2 =$$

$$(ad - bc)^2 (g(V, V)g(W, W) - g(V, W)^2) \text{ which proves}$$
our claim

• this also proves that Π is nondegenerate if and only if $g(v, v)g(w, w) - g(v, w)^2 \neq 0$

Definition

A pseudo-Riemannian manifold (M, g) is of **constant curvature** if its **sectional curvatures coincide at every point for every nondegenerate plane** in the corresponding tangent space.

Examples

The following pseudo-Riemannian manifolds have **constant curvature**:

- $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\nu})$ for all $0 \leq \nu \leq n$
- $S^n \subset \mathbb{R}^{n+1}$ equipped with $g = \langle \cdot, \cdot \rangle |_{TS^n \times TS^n}$ has positive constant curvature
- the hyperbolic upper half plane $\{y > 0\} \subset \mathbb{R}^2$ with Riemannian metric $\frac{dx^2+dy^2}{y^2}$ has negative constant curvature

Question: Can we **recover** the Riemann curvature tensor from the sectional curvatures? **Answer: Yes**, need the following concept:

Definition

A (1,3)-tensor

$$F \in T^{1,3}_{\rho}M, \ F: (u,v,w) \mapsto F(u,v)w \in T_{\rho}M \ \forall u,v,w \in T_{\rho}M,$$

on a pseudo-Riemannian manifold (M,g) is called **abstract** curvature tensor if it fulfils the identities

$$F(v, w) = -F(w, v),$$

$$g(F(v, w)V, W) = -g(V, F(v, w)W),$$

$$\sum_{cycl.} F(u, v)w = 0$$

for all $u, v, w, V, W \in T_0M$

Lemma C

Let (M, g) be a pseudo-Riemannian manifold with Riemann curvature tensor R and assume that for $p \in M$ fixed and an abstract curvature tensor $F \in T_{p}^{1,3}M$

$$K(v,w) = \frac{g(F(v,w)w,v)}{g(v,v)g(w,w) - g(v,w)^2}$$

for all linearly independent $v, w \in T_p M$ spanning a **nondegenerate plane** in $T_p M$. Then $F = R_p$.

Proof: (see right hand side)

As a **consequence** of Lemma C we obtain:

Corollary

Let (M, g) be a pseudo-Riemannian manifold with constant sectional curvature $K = c \in \mathbb{R}$. Then the Riemann curvature tensor of (M, g) fulfils

$$R(X,Y)Z = c(g(Y,Z)X - g(X,Z)Y)$$

for all $X, Y, Z \in \mathfrak{X}(M)$.

Proof:

• \rightarrow check that for every point $p \in M$, c(g(Y, Z)X - g(X, Z)Y) restricted to $T_pM \times T_pM \times T_pM$ defines an abstract curvature tensor, fulfilling

$$K(v,w) = c$$

for all v, w spanning a **nondegenerate plane** in T_pM (continued on next page)

Ricci curvature

(continuation of proof)

Lemma C now implies that

$$R(X,Y)Z = c(g(Y,Z)X - g(X,Z)Y)$$
 holds at $p \in M$

• since $p \in M$ was **arbitrary** this finishes the proof

Next, we will introduce the **Ricci curvature** which is obtained by **contracting the Riemann curvature tensor**.

Definition

Let (M, g) be a pseudo-Riemannian manifold with Riemann curvature tensor R. The **Ricci curvature** $\text{Ric} \in \mathcal{T}^{0,2}(M)$ is defined as

$$\operatorname{Ric}(X, Y) := \operatorname{tr}(R(\cdot, X)Y)$$

for all $X, Y \in \mathfrak{X}(M)$ where

$$R(\cdot,X)Y\in \mathfrak{T}^{1,1}(M), \quad R(\cdot,X)Y:Z\mapsto R(Z,X)Y.$$

In local coordinates (x^1, \ldots, x^n) , Ric is of the form

$$\operatorname{Ric} = \sum_{i,j=1}^{n} \operatorname{Ric}_{ij} dx^{i} \otimes dx^{j} = \sum_{i,j=1}^{n} \left(\sum_{k=1}^{n} R^{k}{}_{kij} \right) dx^{i} \otimes dx^{j}.$$

David Lindemann

Exercise

- Show that Ric is symmetric, that is $\operatorname{Ric}(X, Y) = \operatorname{Ric}(Y, X)$ for all $X, Y \in \mathfrak{X}(M)$.
- Determine a local formula for each Ric_{ij} in terms of the Christoffel symbols.
- Find a formula for Ric for pseudo-Riemannian manifolds of constant curvature.

Note: The Ricci curvature plays a prominent role in **general relativity** and, as indicated by the name, the study of the **Ricci flow**.

Definition

In case that $\operatorname{Ric} = \lambda g$ for a pseudo-Riemannian manifold (M,g) and some real number $\lambda \in \mathbb{R}$, (M,g) is called **Einstein manifold**.

The Ricci curvature can be used to define a **scalar curvature invariant** as follows:

Definition

The scalar curvature of a pseudo-Riemannian manifold (M, g) is defined as

 $S := \operatorname{tr}_g(\operatorname{Ric}) \in C^{\infty}(M).$

Note: *S* is well defined because of the **symmetry** of Ric. In local coordinates (x^1, \ldots, x^n) , *S* is of the form

$$S = \sum_{i,j,k,\ell} R^m{}_{mij} g^{ij} = \sum_{i,j,k,\ell} R_{k\ell i j} g^{k\ell} g^{ij}.$$

Exercise

Find a local formula of the scalar curvature in terms of the **Christoffel symbols**.

In good situations, the scalar curvature can be used to show that two given pseudo-Riemannian manifolds are **not isometric**:

Lemma

The **number of isolated local minima and maxima** of the scalar curvature of a pseudo-Riemannian manifold is **invariant under isometries**.

Proof:

- let (M, g) and (N, h) be two isometric pseudo-Riemannian manifolds with scalar curvature S_M, S_N , respectively, and let $F : M \to N$ be an isometry
- Lemma $B \rightsquigarrow S_N = S_M \circ F$
- *F* is in particular a **diffeomorphism**, hence the claim of this lemma follows

The scalar curvature can also be **calculated** from the **sectional curvatures**:

Lemma

Let (M, g) be an $n \ge 2$ -dimensional pseudo-Riemannian manifold. For $p \in M$ fixed let $\{v_1, \ldots, v_n\}$ be an **orthonormal basis of** T_pM . Then

$$S(p) = \sum_{i \neq j} K(v_i, v_j).$$

Proof: Exercise!

Remark

Another commonly studied scalar curvature invariant of pseudo-Riemannian manifolds is the so-called **Kretschmann** scalar which is for a pseudo-Riemannian manifold (M, g) given by $g(R, R) \in C^{\infty}(M)$.

END OF LECTURE 18

Next lecture:

- first and second fundamental form
- geodesics & curvature of pseudo-Riemannian submanifolds