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Recap of lecture 15:

introduced connections in vector bundles

explained local form of ∇X s using connection 1-forms

defined Christoffel symbols for connections in tangent
bundle

studied their transformation behaviour

obtained connection in T r,sM → M from connection in
TM → M via tensor derivation property

erratum: messed up the indices of the Christoffel symbols
of the example connection in TR2 → R2 in polar
coordinates, correct would have been

Γr
ϕϕ = −r , Γϕrϕ = Γϕϕr =

1

r
, 0 else
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Covariant derivative along curves

Connections give meaning to the term “constant” for sections
of the respective vector bundle. Next, we will study tensor fields
that are only defined along curves.

Definition

An (r , s)-tensor field A = Aγ along a curve γ : I → M is a
smooth map

Aγ : I → T r,sM, t 7→ Aγ(t) ∈ T r,s
γ(t)M.

If γ is an embedding and thus γ(I ) is a submanifold of M, an
(r , s)-tensor field Aγ along γ is simply a parametrisation of a
smooth section in T r,sM|γ(I ) → γ(I ).

Note: The above definition extends what is allowed as vector
field along curves. Recall that until this point, we understood
under this term the pushforward of a vector field on an interval
I ⊂ R to a smooth manifold M via a smooth curve γ : I → M.
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Covariant derivative along curves

In general, (r , s)-tensor fields along curves can not be extended
to (r , s)-tensor fields on the ambient manifold.
Question: Can we always find local extensions near γ(t0)?
Answer: Yes if γ′(t0) 6= 0!

Lemma

Let γ : I → M be a smooth curve and suppose that γ′(t0) 6= 0.
Let further Aγ be an (r , s)-tensor field along γ. Then there
exists an open interval I ′ ⊂ I , t0 ∈ I ′, such that Aγ |I ′ is the
restriction of an (r , s)-tensor field A ∈ Tr,s(M).

Proof:

use ansatz similar to local rectification of vector fields

after restricting to I ′ and using a suitable choice of local
coordinates ϕ = (x1, . . . , xn) on U ⊂ M with γ(I ′) ⊂ U, γ
is of the form t 7→ ϕ−1(t, 0, . . . , 0), so that x1(γ(t)) = t
and x i (γ(t)) = 0 for 2 ≤ i ≤ n.

(continued on next page)
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Covariant derivative along curves

(continuation of proof)

hence, if

Aγ(t) =
∑

f i1...ir j1...js (t)
∂

∂x i1
⊗. . .⊗ ∂

∂x ir
⊗dx j1⊗. . .⊗dx js ,

with all f i1...ir j1...js : I ′ → R smooth, the tensor field

A =
∑(

f i1...ir j1...js ◦ x
1
) ∂

∂x i1
⊗. . .⊗ ∂

∂x ir
⊗dx j1⊗. . .⊗dx js

fulfils the requirements of this lemma

Remark: One way the statement of the above lemma can go
wrong for γ′(t0) = 0 is when γ is the constant curve but Aγ is
not constant.
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Covariant derivative along curves

Question: How do we measure the infinitesimal change of a
tensor field along a curve using a connection in the corresponding
tensor bundle of the ambient manifold?
Answer:

Proposition

Let M be a smooth manifold and ∇ a connection in TM → M.
Let γ : I → M be a smooth curve and denote the set of vector
fields along γ by Γγ(TM). Then there exists a unique R-linear
map

∇
dt

: Γγ(TM)→ Γγ(TM),

such that
∇
dt

(fX ) =
∂f

∂t
X + f ∇

dt
X

for all f ∈ C∞(I ) and all X ∈ Γγ(TM) and, if X = X |γ(I ),

∇
dt
X = ∇γ′X

for all t ∈ I .

Proof: (next page)
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Covariant derivative along curves

suppose that such a map ∇
dt

exists  show that it is then
unique

if γ′(t0) = 0, set ∇
dt
X |t=t0 = 0 ∀X ∈ Γγ(TM)

this is compatible with the tensoriality in the first
argument of any connection, so that

(∇
dt
X
)∣∣

t=t0
= 0 for

all vector fields X along γ that are restrictions X = X γ of
vector fields X ∈ X(M)

if γ′(t0) 6= 0, choose local coordinates as in extension
lemma ϕ = (x1, . . . , xn) with γ = ϕ−1(t, 0, . . . , 0) near
t0, find local formula(∇

dt
X
)∣∣

t=t0
=
(
∇γ′X

)∣∣
t=t0

=
n∑

k=1

(
∂X k

∂t
(t0) +

n∑
i,j=1

∂γ i

∂t
(t0)X j(t0)Γk

ij(t0)

)
∂

∂xk

∣∣∣∣
t=t0

for all X =
n∑

k=0

X k(t) ∂
∂xk

with local extension

X =
n∑

k=1

(
X k ◦ x1

)
∂
∂xk

(continued on next page)
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Covariant derivative along curves

(continuation of proof)

hence: if the operator ∇
dt

exists, it is uniquely determined
by the connection ∇
on the other hand observe that the local formula of(∇

dt
X
)∣∣

t=t0
for γ′(t0) 6= 0 defines by the locality property

of connections an operator ∇
dt

fulfilling the requirements of
this proposition, at least in fixed chosen local coordinates

to check that the operator extends to Γγ(TM), one needs
to check that it transforms as a connection and is thus
independent of the chosen local extension X of X
[exercise!]
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Covariant derivative along curves

Definition

The linear differential operator ∇γ′ is called covariant
derivative along γ. It has the local form

∇γ′X =
n∑

k=1

(
∂X k

∂t
+

n∑
i,j=1

∂γ i

∂t
X jΓk

ij

)
∂

∂xk

for all X ∈ Γγ(TM) locally given by X =
n∑

k=1

X k ∂
∂xk

,

X k = X k(t) ∈ C∞(I ) ∀ 1 ≤ i ≤ n.

Remark: More generally, one can define the covariant derivative
along curves for any vector bundle E → M with a connection.
From the tensor derivative property of connections one obtains:

Corollary

Let A be an (r , s)-tensor field on a smooth manifold M along
γ : I → M with r , s ≥ 1. Let C : Tr,s(M)→ Tr−1,s−1(M) be
any contraction (note: C canonically extends to (r , s)-tensor
fields along curves). Then C(∇γ′A) = ∇γ′(C(A)).
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Parallel translation

Notation: We will use ∇γ′ for ∇
dt

, this is up to preference.

Having defined what covariant differentiation along a curve is
allows us to define what it means for a vector field along a curve
to be parallel along said curve:

Definition

Let X ∈ Γγ(TM) be a vector field along a smooth curve
γ : I → M and let ∇ be a connection in TM → M. X is called
parallel along γ, or simply parallel, if ∇γ′X = 0.

Remark: One similarly defines parallel tensor fields along
curves. E.g. for 1-forms along curves ω ∈ Γγ(T ∗M) we find
that ∇γ′ω = 0 if and only if

∂(ω(X ))

∂t
− ω(∇γ′X ) = 0

for all X ∈ Γγ(TM).
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Parallel translation

Our notion of “parallel along curves” allows us to translate
vectors (or covectors, tensor powers of vectors and covectors)
in a parallel way along curves.

Theorem

Let ∇ be a connection in TM → M, γ : I → M, t0 ∈ I , be a
smooth curve with non-vanishing velocity, and v ∈ Tγ(t0)M.
Then there exists a unique vector field along γ, X ∈ Γγ(TM),
such that X is parallel along γ and Xγ(t0) = v . This means that
X is the unique solution to the initial value problem

∇γ′X = 0, Xγ(t0) = v .

Proof:

locally, ∇γ′X = 0 is an ODE, hence has locally unique
solutions

for global statement, need to deal with cases where γ(I ) is
not covered by a single chart

Exercise! Alternatively see Thm. 4.11 in Lee’s
“Riemannian Manifolds. An Introduction to
Curvature”.
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Parallel translation

Note: The latter theorem can be formulated not just for vector
fields, but sections in any vector bundle with connection, e.g.
T r,sM → M.

Example

Let γ : R→ R2, γ : t 7→ ( t
1 ) and

X = Xγ = (γ(t), ( 1
1 )) ∈ Γγ(TR2).

Let ∇ be a connection in TR2 → R2 defined by setting its
Christoffel symbols in canonical coordinates all equal to 0.
Then X is parallel along γ, i.e. ∇γ′X = 0, meaning that X
solves the initial value problem of parallelly transporting
v = (γ(0), ( 1

1 )) along γ.
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Parallel translation

Question: Can we use covariant derivatives along curves to re-
cover their defining connection?
Answer: Yes!  Need the following property of parallel transla-
tions:

Lemma

Let ∇ be a connection in TM → M and γ : I → M a smooth
curve. Consider parallel translations along γ as maps

P t
t0 (γ) : Tγ(t0)M → Tγ(t)M,

mapping initial values v ∈ Tγ(t0)M, t0 ∈ I , of the differential
equation ∇γ′X = 0, to the value of its uniquely solution X at
t ∈ I , namely Xγ(t) ∈ Tγ(t)M. Then P t

t0 (γ) is a linear
isomorphism for all t0, t ∈ I .

Proof:

linearity of P t
t0 (γ) follows by observing that whenever X

solves ∇γ′X = 0 for initial value v ∈ Tγt0M, cX is also
parallel along γ and is the unique solution of the parallel
transport equation for initial value cv ∈ Tγ(t0)M

(continued on next page)
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Parallel translation

(continuation of proof)

to see that P t
t0 (γ) is invertible, fix t ∈ I and let

γ̃(s) := γ(t − s)

 the parallel transport with respect to γ̃ from s = 0
to s = t − t0, P t−t0

0 (γ̃) : Tγ(t)M → Tγ(t0)M is precisely
the inverse of P t

t0 (γ) : Tγ(t0)M → Tγ(t)M, which follows
from ∇γ̃′(X ◦ (t − s)) = 0 for X being the unique solution
of ∇γ′X = 0 with fixed initial value in Tγ(t0)M

With this result we can describe a connection completely by its
covariant derivatives along curves:

Proposition A

Let ∇ be a connection in TM → M and X ,Y ∈ X(M). For
p ∈ M arbitrary let γ : (−ε, ε)→ M, ε > 0, be an integral
curve of X with γ(0) = p, and let P t

t0 denote the
corresponding parallel transport maps. Then

(∇XY )p =
∂

∂t

∣∣∣∣
t=0

P0
t (γ)Yγ(t).

Proof: (next page)
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Parallel translation

(continuation of proof)

note: t 7→ P0
t (γ)Yγ(t) is smooth, follows from the

smoothness of the local prefactors of the defining
differential equation in local coordinates

the smooth manifold structure in TpM is given by its
linear isomorphy to Rn

also note: P0
t (γ)Yγ(t) ∈ TpM for all t ∈ (−ε, ε), so it

makes sense to take its time derivative

choose basis {v1, . . . , vn} of TpM, e.g. via local charts

 for all 1 ≤ i ≤ n, Vi = Vi |γ(t) := P t
0(γ)vi defines a

parallel vector field along γ, i.e. ∇γ′Vi = 0

hence {V1, . . . ,Vn} is a parallel frame of TM along
γ|(−ε,ε), meaning that each vector field along γ that is the
restriction of a vector field on the ambient manifold can
be written as a C∞((−ε, ε))-linear combination of its
elements

(continued on next page)
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Parallel translation

(continuation of proof)

thus we can write

Yγ =
n∑

i=1

f iVi ,

f i ∈ C∞((−ε, ε)) for all 1 ≤ i ≤ n

using (∇XY )p = ∇γ′Yγ |t=0
we calculate

∇γ′Yγ |t=0
=

n∑
i=1

(
∂f i

∂t
Vi + f i∇γ′Vi

)∣∣∣∣
t=0

=
n∑

i=1

∂f i

∂t
(0)vi

On the other hand, we have for all t ∈ (−ε, ε)

P0
t (γ)Yγ(t) = P0

t (γ)

(
n∑

i=1

f i (t)Vi |γ(t)

)
= f i (t)vi , (1)

where we used that P0
t (γ) =

(
P t

0(γ)
)−1

and that, by
construction, Vi is precisely the parallel extension of vi
along γ for all 1 ≤ i ≤ n (continued on next page)
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Parallel translation

(continuation of proof)

 taking the t-derivative at t = 0 of the right hand side
of (1) finishes the proof

The previous proposition has the following at first sight surpris-
ing consequence:

Corollary

Let ∇ be a connection in TM → M and X ,Y ∈ X(M). Then
(∇XY )p depends only on Xp, any choice of smooth curve
γ : (−ε, ε)→ M, ε > 0, with γ′(0) = Xp, and Yγ , that is Y
along γ.

The next definition will allow us to understand the “space” of
connections in the tangent bundle better.

Definition

Let M be a smooth manifold and let ∇1,∇2 be connections in
TM → M. Then the difference tensor A ∈ T1,2(M) of ∇1 and
∇2 is defined via

A(X ,Y ) := ∇1
XY −∇2

XY ∀X ,Y ∈ X(M).
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The Levi-Civita connection

After showing that the difference tensor is, in fact, a tensor
field, this means that we can interpret the space of connections
in TM → M as an affine space with basepoint any fixed con-
nection ∇ and linear space T1,2(M) with origin ∇.

Apart from its interpretation as the proper generalisation of
derivatives for sections in vector bundles, we do not yet have a
purely geometric interpretation of connections. Using the next
definition will allow us to find such a property.

Definition

The torsion tensor T ∈ T1,2(M) of a connection ∇ in
TM → M is given by

T (X ,Y ) := ∇XY −∇YX − [X ,Y ]

for all X ,Y ∈ X(M). The connection ∇ is called torsion-free
if T ≡ 0.

Remark: ∇ in TM → M is torsion free if and only if Γk
ij = Γk

ji

for all Christoffel symbols.
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The Levi-Civita connection

Remark

Consider for n ≥ 2 the connection in TRn → Rn with
vanishing Christoffel symbols, fix p ∈ Rn, and choose two
linearly independent vectors v ,w ∈ TpRn. Let further ε > 0
and

γv := t 7→ p + tv , γw := t 7→ p + tw .

For any t > 0, the four vectors

v ,w ,P1
0 (γv )w ,P1

0 (γw )v

can be interpreted as the edges of a parallelogram. What is
the proper analogue for this picture for general smooth
manifolds M and connections in TM → M? The answer lies in
making t > 0 infinitesimally small and using Proposition A.
We fix p ∈ M and local coordinates ϕ = (x1, . . . , xn) on
U ⊂ M, p ∈ U.
(continued on next page)
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The Levi-Civita connection

Remark (continuation)

For 1 ≤ k ≤ n and ε > 0 small enough, consider the smooth
curves

γk : (−ε, ε)→ M, x`(γk(t)) = δ`kt ∀1 ≤ k, ` ≤ n,

so that γ′k = ∂
∂xk

. For any i 6= j , we obtain using Proposition A

T
(
∂
∂x i
, ∂
∂x j

)∣∣
p

=

(
∇ ∂
∂x i

∂
∂x j
−∇ ∂

∂x j

∂
∂x i

)∣∣∣∣
p

=
∂

∂t

∣∣∣∣
t=0

(
P0
t (γi )

∂
∂x j
− P0

t (γj)
∂
∂x i

)
= lim

t→0
t>0

∂
∂x i

∣∣
p

+ P0
t (γi )

∂
∂x j
− ∂

∂x j

∣∣
p
− P0

t (γj)
∂
∂x i

t
.

Hence, the “infinitesimal” parallelograms spanned by any two
different coordinate vectors and their parallel translations
close, meaning that there is no “gap” when gluing the
“infinitesimal” edges together.
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The Levi-Civita connection

Question: How do we combine the properties of a pseudo-
Riemannian metric and a connection?
Answer: Define metric connections:

Definition

Let (M, g) be a pseudo-Riemannian manifold. A connection ∇
in TM → M is called metric if ∇g = 0, that is

X (g(Y ,Z)) = g(∇XY ,Z) + g(Y ,∇XZ) (2)

for all X ,Y ,Z ∈ X(M).

How can we interpret the above definition? The answer is as
follows.

Proposition

A connection in TM → M on a pseudo-Riemannian manifold
(M, g) is metric if and only if its parallel transport maps
P t
t0 (γ) : Tγ(t0)M → Tγ(t)M are linear isometries for all smooth

curves γ : I → M.

Proof: (next page)
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The Levi-Civita connection

(continuation of proof)

all possible P t
t0 (γ) are linear isometries if and only if for

all such P t
t0 (γ) and all v ,w ∈ TpM, p = γ(t0), the map

t 7→ gγ(t)(P
t
t0 (γ)v ,P t

t0 (γ)w)

is constant

by considering affine reparametrisations of curves by
t → t + c for constant c, find that this holds if and only if

∂

∂t

∣∣∣∣
t=t0

gγ(t)(P
t
t0 (γ)v ,P t

t0 (γ)w) = 0

for all parallel translations P t
t0 (γ)

viewing P t
t0 (γ)v and P t

t0 (γ)w as vector fields along γ, it
now follows from the tensor derivation property of any
connection ∇ that if ∇ is metric, the left hand side of
the above equation always vanishes

if one has problems seeing that, formally replace ∂
∂t

∣∣
t=0

by
∇γ′ |t=0

(continued on next page)
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The Levi-Civita connection

(continuation of proof)

for the other direction, suppose that
∂
∂t

∣∣
t=t0

gγ(t)(P
t
t0 (γ)v ,P t

t0 (γ)w) = 0 holds for all parallel

translations

let X ,Y ,Z ∈ X(M), fix p ∈ M, construct a local parallel
frame of TM along a curve γ fulfilling γ′(0) = Xp

write Yγ and Zγ in that parallel frame and, using these
local forms, check that indeed

Xp(g(Y ,Z)) = ∇γ′(gγ(Yγ ,Zγ)|t=0

using the tensor derivation property of ∇ and
Proposition A

by ∂
∂t

∣∣
t=t0

gγ(t)(P
t
t0 (γ)v ,P t

t0 (γ)w) = 0 it then follows that

∇ is metric

since X ,Y ,Z and p were arbitrary, it follows that ∇ is
indeed a metric connection
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The Levi-Civita connection

While torsion-freeness and metric property alone do not deter-
mine a connection uniquely, the situation changes if both are
assumed.

Definition

Let (M, g) be a pseudo-Riemannian manifold. A connection ∇
in TM → M is called Levi-Civita connection if it is metric
and torsion-free.

Proposition

Let (M, g) be a pseudo-Riemannian manifold. Then there
exists a unique Levi-Civita connection in TM → M.

Proof: For the proof of this proposition we will introduce the
so-called Koszul formula.
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The Levi-Civita connection

Proposition

Let (M, g) be a pseudo-Riemannian manifold and ∇ a
connection in TM → M. Then ∇ is the Levi-Civita connection
of (M, g) if and only if it satisfies the Koszul formula

2g(∇XY ,Z) = X (g(Y ,Z)) + Y (g(X ,Z))− Z(g(X ,Y ))

− g(X , [Y ,Z ])− g(Y , [X ,Z ]) + g(Z , [X ,Y ])

for all X ,Y ,Z ∈ X(M). Furthermore, the Koszul formula
determines the connection uniquely.

Proof: (see right-hand-side, alternatively exercise!)

Hence, we have shown that there exists precisely one torsion-free
and metric connection in the tangent bundle of a given pseudo-
Riemannian manifold. The Levi-Civita connection will be used
in the development of the rest of the theory that we will study
in this course.
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The Levi-Civita connection

In order to actually calculate with the Levi-Civita connection in
local coordinates, we need to determine its Christoffel symbols:

Lemma

The Christoffel symbols of the Levi-Civita connection of a
pseudo-Riemannian manifold (M, g) with respect to local
coordinates (x1, . . . , xn) are given by

Γk
ij =

1

2

n∑
`=1

(
∂gj`
∂x i

+
∂gi`
∂x j
− ∂gij
∂x`

)
g `k

for all 1 ≤ i , j , k ≤ n.

Proof: Exercise!

David Lindemann DG lecture 16 26. June 2020 27 / 29



The Levi-Civita connection

Connections allow us to define a coordinate-free version of the
Hessian and Laplace operator:

Definition

Let ∇ be a connection in TM → M. The covariant Hessian
of a smooth function f ∈ C∞(M) is defined as the
(0, 2)-tensor field

∇2f := ∇(∇f ) = ∇df ∈ T
0,2(M).

If (M, g) is a pseudo-Riemannian manifold and ∇ is the
Levi-Civita connection, we can take the trace of the covariant
Hessian with respect to g and obtain the Laplace-Beltrami
operator on smooth functions f ∈ C∞(M) given by

∆f := trg (∇2f ).

Note: The covariant Hessian w.r.t. ∇ is symmetric if and only
if ∇ is torsion-free. This in particular holds for the Levi-Civita
connection.
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END OF LECTURE 16

Next lecture:

geodesics

exponential map

normal coordinates

geodesic completeness

Hopf-Rinow
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