Differential geometry Lecture 16: Parallel transport and the Levi-Civita connection

David Lindemann

University of Hamburg Department of Mathematics Analysis and Differential Geometry & RTG 1670

26. June 2020

1 Covariant derivative along curves

2 Parallel translation

3 The Levi-Civita connection

Recap of lecture 15:

- introduced connections in vector bundles
- explained local form of $\nabla_X s$ using connection 1-forms
- defined Christoffel symbols for connections in tangent bundle
- studied their transformation behaviour
- obtained connection in $T^{r,s}M \to M$ from connection in $TM \to M$ via **tensor derivation property**
- erratum: messed up the indices of the Christoffel symbols of the example connection in $T\mathbb{R}^2 \to \mathbb{R}^2$ in polar coordinates, correct would have been

$$\Gamma^{r}_{arphiarphi}=-r, \quad \Gamma^{arphi}_{rarphi}=\Gamma^{arphi}_{arphi r}=rac{1}{r}, \quad 0 ext{ else }$$

Connections give meaning to the term "constant" for sections of the respective vector bundle. Next, we will study tensor fields that are only defined **along curves**.

Definition

An (r, s)-tensor field $A = A_{\gamma}$ along a curve $\gamma : I \rightarrow M$ is a smooth map

 $A_\gamma:I o T^{r,s}M,\quad t\mapsto A_{\gamma(t)}\in T^{r,s}_{\gamma(t)}M.$

If γ is an embedding and thus $\gamma(I)$ is a submanifold of M, an (r, s)-tensor field A_{γ} along γ is simply a **parametrisation** of a smooth section in $T^{r,s}M|_{\gamma(I)} \rightarrow \gamma(I)$.

Note: The above definition **extends** what is allowed as vector field along curves. Recall that until this point, we understood under this term the pushforward of a vector field on an interval $I \subset \mathbb{R}$ to a smooth manifold M via a smooth curve $\gamma : I \to M$.

In general, (r, s)-tensor fields along curves can not be extended to (r, s)-tensor fields on the ambient manifold. **Question:** Can we always find local extensions near $\gamma(t_0)$? **Answer:** Yes if $\gamma'(t_0) \neq 0$!

Lemma

Let $\gamma: I \to M$ be a smooth curve and suppose that $\gamma'(t_0) \neq 0$. Let further A_{γ} be an (r, s)-tensor field along γ . Then there exists an open interval $I' \subset I$, $t_0 \in I'$, such that $A_{\gamma}|_{I'}$ is the **restriction of an** (r, s)-tensor field $\overline{A} \in \mathfrak{T}^{r,s}(M)$.

Proof:

- use ansatz similar to local rectification of vector fields
- after restricting to I' and using a suitable choice of local coordinates $\varphi = (x^1, \ldots, x^n)$ on $U \subset M$ with $\gamma(I') \subset U$, γ is of the form $t \mapsto \varphi^{-1}(t, 0, \ldots, 0)$, so that $x^1(\gamma(t)) = t$ and $x^i(\gamma(t)) = 0$ for $2 \le i \le n$.

(continued on next page)

hence, if

$$A_{\gamma(t)} = \sum f^{i_1 \dots i_r}{}_{j_1 \dots j_s}(t) \frac{\partial}{\partial x^{i_1}} \otimes \dots \otimes \frac{\partial}{\partial x^{i_r}} \otimes dx^{j_1} \otimes \dots \otimes dx^{j_s},$$

with all $f^{i_1 \ldots i_r}{}_{j_1 \ldots j_s}: I'
ightarrow \mathbb{R}$ smooth, the tensor field

$$\overline{A} = \sum \left(f^{i_1 \dots i_r}{}_{j_1 \dots j_s} \circ x^1 \right) \frac{\partial}{\partial x^{i_1}} \otimes \dots \otimes \frac{\partial}{\partial x^{i_r}} \otimes dx^{j_1} \otimes \dots \otimes dx^{j_s}$$

fulfils the requirements of this lemma

Remark: One way the statement of the above lemma can go wrong for $\gamma'(t_0) = 0$ is when γ is the **constant curve** but A_{γ} is **not constant**.

Question: How do we measure the **infinitesimal change** of a tensor field along a curve using a connection in the corresponding tensor bundle of the ambient manifold? **Answer:**

Proposition

Let M be a smooth manifold and ∇ a connection in $TM \to M$. Let $\gamma : I \to M$ be a smooth curve and denote the set of vector fields along γ by $\Gamma_{\gamma}(TM)$. Then there exists a **unique** \mathbb{R} -**linear map**

$$rac{
abla}{dt}:\Gamma_{\gamma}(TM)
ightarrow\Gamma_{\gamma}(TM),$$

such that

$$\frac{\nabla}{dt}(fX) = \frac{\partial f}{\partial t}X + f\frac{\nabla}{dt}X$$

for all $f \in C^{\infty}(I)$ and all $X \in \Gamma_{\gamma}(TM)$ and, if $X = \overline{X}|_{\gamma(I)}$,

$$\frac{\nabla}{dt}X = \nabla_{\gamma'}\overline{X}$$

for all $t \in I$.

Proof: (next page)

- **suppose** that such a map $\frac{\nabla}{dt}$ exists \rightsquigarrow show that it is then **unique**
- if $\gamma'(t_0) = 0$, set $\frac{\nabla}{dt}X|_{t=t_0} = 0 \ \forall X \in \Gamma_{\gamma}(TM)$
- this is compatible with the tensoriality in the first argument of any connection, so that $\left(\frac{\nabla}{dt}X\right)\Big|_{t=t_0} = 0$ for all vector fields X along γ that are restrictions $X = \overline{X}_{\gamma}$ of vector fields $\overline{X} \in \mathfrak{X}(M)$
- if $\gamma'(t_0) \neq 0$, choose local coordinates as in **extension lemma** $\varphi = (x^1, \dots, x^n)$ with $\gamma = \varphi^{-1}(t, 0, \dots, 0)$ near t_0 , find local formula

$$\begin{split} \left(\frac{\nabla}{dt}X\right)\Big|_{t=t_0} &= \left(\nabla_{\gamma'}\overline{X}\right)\Big|_{t=t_0} \\ &= \sum_{k=1}^n \left(\frac{\partial X^k}{\partial t}(t_0) + \sum_{i,j=1}^n \frac{\partial \gamma^i}{\partial t}(t_0)X^j(t_0)\Gamma^k_{ij}(t_0)\right) \left.\frac{\partial}{\partial x^k}\right|_{t=t_0} \end{split}$$

for all
$$X = \sum_{k=0}^{n} X^{k}(t) \frac{\partial}{\partial x^{k}}$$
 with local extension
 $\overline{X} = \sum_{k=1}^{n} (X^{k} \circ x^{1}) \frac{\partial}{\partial x^{k}}$ (continued on next page)

- hence: if the operator $\frac{\nabla}{dt}$ exists, it is uniquely determined by the connection ∇
- on the other hand observe that the local formula of $\left(\frac{\nabla}{dt}X\right)\Big|_{t=t_0}$ for $\gamma'(t_0) \neq 0$ defines by the locality property of connections an operator $\frac{\nabla}{dt}$ fulfilling the requirements of this proposition, at least in fixed chosen local coordinates
- to check that the operator extends to $\Gamma_{\gamma}(TM)$, one needs to check that it **transforms as a connection** and is thus **independent of the chosen local extension** \overline{X} of X [exercise!]

Definition

The linear differential operator $\nabla_{\gamma'}$ is called **covariant** derivative along γ . It has the local form

$$\nabla_{\gamma'} X = \sum_{k=1}^{n} \left(\frac{\partial X^k}{\partial t} + \sum_{i,j=1}^{n} \frac{\partial \gamma^i}{\partial t} X^j \Gamma^k_{ij} \right) \frac{\partial}{\partial x^k}$$

for all
$$X \in \Gamma_{\gamma}(TM)$$
 locally given by $X = \sum_{k=1}^{n} X^{k} \frac{\partial}{\partial x^{k}}$,
 $X^{k} = X^{k}(t) \in C^{\infty}(I) \ \forall \ 1 \le i \le n$.

Remark: More generally, one can define the covariant derivative along curves for **any** vector bundle $E \rightarrow M$ with a connection. From the tensor derivative property of connections one obtains:

Corollary

Let A be an (r, s)-tensor field on a smooth manifold M along $\gamma: I \to M$ with $r, s \ge 1$. Let $C: \mathbb{T}^{r,s}(M) \to \mathbb{T}^{r-1,s-1}(M)$ be any **contraction** (note: C **canonically extends** to (r, s)-tensor fields along curves). Then $C(\nabla_{\gamma'}A) = \nabla_{\gamma'}(C(A))$.

Notation: We will use $\nabla_{\gamma'}$ for $\frac{\nabla}{dt}$, this is up to preference.

Having defined what covariant differentiation along a curve is allows us to define what it means for a vector field along a curve to be **parallel** along said curve:

Definition

Let $X \in \Gamma_{\gamma}(TM)$ be a vector field along a smooth curve $\gamma: I \to M$ and let ∇ be a connection in $TM \to M$. X is called **parallel along** γ , or simply **parallel**, if $\nabla_{\gamma'}X = 0$.

Remark: One similarly defines **parallel tensor fields** along curves. E.g. for 1-forms along curves $\omega \in \Gamma_{\gamma}(T^*M)$ we find that $\nabla_{\gamma'}\omega = 0$ if and only if

$$rac{\partial(\omega(X))}{\partial t}-\omega(
abla_{\gamma'}X)=0$$

for all $X \in \Gamma_{\gamma}(TM)$.

Our notion of "parallel along curves" allows us to **translate vectors** (or covectors, tensor powers of vectors and covectors) **in a parallel way** along curves.

Theorem

Let ∇ be a connection in $TM \to M$, $\gamma : I \to M$, $t_0 \in I$, be a smooth curve with non-vanishing velocity, and $v \in T_{\gamma(t_0)}M$. Then there exists a **unique vector field along** γ , $X \in \Gamma_{\gamma}(TM)$, such that X is parallel along γ and $X_{\gamma(t_0)} = v$. This means that X is the **unique solution to the initial value problem**

$$abla_{\gamma'}X=0, \quad X_{\gamma(t_0)}=v.$$

Proof:

- locally, $\nabla_{\gamma'} X = 0$ is an ODE, hence has **locally** unique solutions
- for global statement, need to deal with cases where γ(I) is not covered by a single chart
- Exercise! Alternatively see Thm. 4.11 in Lee's "Riemannian Manifolds. An Introduction to Curvature".

Note: The latter theorem can be formulated not just for vector fields, but sections in any vector bundle with connection, e.g. $T^{r,s}M \rightarrow M$.

Example

Let $\gamma : \mathbb{R} \to \mathbb{R}^2$, $\gamma : t \mapsto \begin{pmatrix} t \\ 1 \end{pmatrix}$ and

 $X = X_{\gamma} = (\gamma(t), (\frac{1}{1})) \in \Gamma_{\gamma}(T\mathbb{R}^2).$

Let ∇ be a connection in $T\mathbb{R}^2 \to \mathbb{R}^2$ defined by setting its **Christoffel symbols in canonical coordinates** all equal to 0. Then X is **parallel along** γ , i.e. $\nabla_{\gamma'}X = 0$, meaning that X solves the initial value problem of parallelly transporting $\nu = (\gamma(0), (\frac{1}{2}))$ along γ . Question: Can we use covariant derivatives along curves to recover their defining connection? Answer: Yes! → Need the following property of parallel translations:

Lemma

Let ∇ be a connection in $TM \to M$ and $\gamma: I \to M$ a smooth curve. Consider parallel translations along γ as **maps**

 $P_{t_0}^t(\gamma): T_{\gamma(t_0)}M \to T_{\gamma(t)}M,$

mapping initial values $v \in T_{\gamma(t_0)}M$, $t_0 \in I$, of the differential equation $\nabla_{\gamma'}X = 0$, to the value of its uniquely solution X at $t \in I$, namely $X_{\gamma(t)} \in T_{\gamma(t)}M$. Then $P_{t_0}^t(\gamma)$ is a **linear** isomorphism for all $t_0, t \in I$.

Proof:

• linearity of $P_{t_0}^t(\gamma)$ follows by observing that whenever X solves $\nabla_{\gamma'}X = 0$ for initial value $v \in T_{\gamma t_0}M$, cX is **also parallel** along γ and is the unique solution of the parallel transport equation for initial value $cv \in T_{\gamma(t_0)}M$

(continued on next page)

- to see that $P_{t_0}^t(\gamma)$ is invertible, fix $t \in I$ and let $\widetilde{\gamma}(s) := \gamma(t s)$
- \rightarrow the parallel transport with respect to $\tilde{\gamma}$ from s = 0to $s = t - t_0$, $P_0^{t-t_0}(\tilde{\gamma}) : T_{\gamma(t)}M \rightarrow T_{\gamma(t_0)}M$ is precisely the inverse of $P_{t_0}^t(\gamma) : T_{\gamma(t_0)}M \rightarrow T_{\gamma(t)}M$, which follows from $\nabla_{\tilde{\gamma}'}(X \circ (t-s)) = 0$ for X being the unique solution of $\nabla_{\gamma'}X = 0$ with fixed initial value in $T_{\gamma(t_0)}M$

With this result we can describe a connection completely by its covariant derivatives along curves:

Proposition A

Let ∇ be a connection in $TM \to M$ and $X, Y \in \mathfrak{X}(M)$. For $p \in M$ arbitrary let $\gamma : (-\varepsilon, \varepsilon) \to M, \varepsilon > 0$, be an **integral curve** of X with $\gamma(0) = p$, and let $P_{t_0}^t$ denote the corresponding parallel transport maps. Then

$$(\nabla_X Y)_p = \left. \frac{\partial}{\partial t} \right|_{t=0} P^0_t(\gamma) Y_{\gamma(t)}.$$

Proof: (next page)

- note: t → P⁰_t(γ)Y_{γ(t)} is smooth, follows from the smoothness of the local prefactors of the defining differential equation in local coordinates
- the smooth manifold structure in T_pM is given by its linear isomorphy to ℝⁿ
- also note: P⁰_t(γ)Y_{γ(t)} ∈ T_pM for all t ∈ (−ε, ε), so it makes sense to take its time derivative
- choose **basis** $\{v_1, \ldots, v_n\}$ of T_pM , e.g. via local charts
- \rightsquigarrow for all $1 \le i \le n$, $V_i = V_i|_{\gamma(t)} := P_0^t(\gamma)v_i$ defines a parallel vector field along γ , i.e. $\nabla_{\gamma'}V_i = 0$
- hence $\{V_1, \ldots, V_n\}$ is a **parallel frame** of *TM* along $\gamma|_{(-\varepsilon,\varepsilon)}$, meaning that each vector field along γ that is the restriction of a vector field on the ambient manifold can be written as a $C^{\infty}((-\varepsilon,\varepsilon))$ -linear combination of its elements

(continued on next page)

Parallel translation

(continuation of proof)

thus we can write

$$Y_{\gamma} = \sum_{i=1}^{n} f^{i} V_{i},$$

 $\begin{aligned} &f^{i} \in C^{\infty}((-\varepsilon,\varepsilon)) \text{ for all } 1 \leq i \leq n \\ & \bullet \text{ using } (\nabla_{X}Y)_{\rho} = \left. \nabla_{\gamma'}Y_{\gamma} \right|_{t=0} \text{ we calculate} \end{aligned}$

$$\nabla_{\gamma'} Y_{\gamma}|_{t=0} = \sum_{i=1}^{n} \left(\frac{\partial f^{i}}{\partial t} V_{i} + f^{i} \nabla_{\gamma'} V_{i} \right) \Big|_{t=0} = \sum_{i=1}^{n} \frac{\partial f^{i}}{\partial t} (0) v_{i}$$

• On the other hand, we have for all $t \in (-\varepsilon, \varepsilon)$

$$\mathcal{P}_t^0(\gamma) Y_{\gamma(t)} = \mathcal{P}_t^0(\gamma) \left(\sum_{i=1}^n f^i(t) V_i |_{\gamma(t)} \right) = f^i(t) v_i, \quad (1)$$

where we used that $P_t^0(\gamma) = (P_0^t(\gamma))^{-1}$ and that, by construction, V_i is precisely the **parallel extension of** v_i along γ for all $1 \le i \le n$ (continued on next page)

→→ taking the *t*-derivative at *t* = 0 of the right hand side of (1) finishes the proof

The previous proposition has the following at first sight **surprising** consequence:

Corollary

Let ∇ be a connection in $TM \to M$ and $X, Y \in \mathfrak{X}(M)$. Then $(\nabla_X Y)_\rho$ depends only on X_ρ , **any** choice of smooth curve $\gamma : (-\varepsilon, \varepsilon) \to M$, $\varepsilon > 0$, with $\gamma'(0) = X_\rho$, and Y_γ , that is Y along γ .

The next definition will allow us to understand the "space" of connections in the tangent bundle better.

Definition

Let M be a smooth manifold and let ∇^1, ∇^2 be connections in $TM \to M$. Then the **difference tensor** $A \in \mathcal{T}^{1,2}(M)$ of ∇^1 and ∇^2 is defined via

$$A(X,Y) :=
abla^1_X Y -
abla^2_X Y \quad orall X, Y \in \mathfrak{X}(M).$$

After showing that the difference tensor is, in fact, a tensor field, this means that we can interpret the space of connections in $TM \to M$ as an affine space with basepoint any fixed connection ∇ and linear space $\mathfrak{T}^{1,2}(M)$ with origin ∇ .

Apart from its interpretation as the proper generalisation of derivatives for sections in vector bundles, we do not yet have a purely geometric interpretation of connections. Using the next definition will allow us to find such a property.

Definition

The **torsion tensor** $T \in \mathcal{T}^{1,2}(M)$ of a connection ∇ in $TM \to M$ is given by

$$T(X,Y) := \nabla_X Y - \nabla_Y X - [X,Y]$$

for all $X, Y \in \mathfrak{X}(M)$. The connection ∇ is called **torsion-free** if $T \equiv 0$.

Remark: ∇ in $TM \rightarrow M$ is torsion free **if and only if** $\Gamma_{ij}^k = \Gamma_{ji}^k$ for all Christoffel symbols.

Remark

Consider for $n \ge 2$ the connection in $T\mathbb{R}^n \to \mathbb{R}^n$ with vanishing Christoffel symbols, fix $p \in \mathbb{R}^n$, and choose two linearly independent vectors $v, w \in T_p\mathbb{R}^n$. Let further $\varepsilon > 0$ and

$$\gamma_{v} := t \mapsto p + tv, \quad \gamma_{w} := t \mapsto p + tw.$$

For any t > 0, the four vectors

 $v, w, P_0^1(\gamma_v)w, P_0^1(\gamma_w)v$

can be interpreted as the **edges of a parallelogram**. What is the proper **analogue for this picture** for general smooth manifolds M and connections in $TM \rightarrow M$? The answer lies in making t > 0 **infinitesimally small** and using Proposition A. We fix $p \in M$ and local coordinates $\varphi = (x^1, \ldots, x^n)$ on $U \subset M, p \in U$. (continued on next page)

Remark (continuation)

For $1 \leq k \leq n$ and $\varepsilon > 0$ small enough, consider the smooth curves

$$\gamma_k: (-arepsilon, arepsilon) o M, \quad x^\ell(\gamma_k(t)) = \delta_k^\ell t \quad orall 1 \le k, \ell \le n,$$

so that $\gamma'_k = \frac{\partial}{\partial x^k}$. For any $i \neq j$, we obtain using Proposition A

$$\begin{split} T\left(\frac{\partial}{\partial x^{i}},\frac{\partial}{\partial x^{j}}\right)\Big|_{p} \\ &= \left(\nabla_{\frac{\partial}{\partial x^{i}}}\frac{\partial}{\partial x^{j}} - \nabla_{\frac{\partial}{\partial x^{j}}}\frac{\partial}{\partial x^{i}}\right)\Big|_{p} \\ &= \left.\frac{\partial}{\partial t}\right|_{t=0} \left(P_{t}^{0}(\gamma_{i})\frac{\partial}{\partial x^{j}} - P_{t}^{0}(\gamma_{j})\frac{\partial}{\partial x^{i}}\right) \\ &= \lim_{\substack{t \to 0 \\ t \to 0}} \frac{\frac{\partial}{\partial x^{i}}\Big|_{p} + P_{t}^{0}(\gamma_{i})\frac{\partial}{\partial x^{j}} - \frac{\partial}{\partial x^{i}}\Big|_{p} - P_{t}^{0}(\gamma_{j})\frac{\partial}{\partial x^{i}}. \end{split}$$

Hence, the **"infinitesimal" parallelograms** spanned by any two different coordinate vectors and their parallel translations **close**, meaning that there is no "gap" when gluing the "infinitesimal" edges together.

Question: How do we combine the properties of a pseudo-Riemannian metric and a connection? Answer: Define metric connections:

Definition

Let (M, g) be a pseudo-Riemannian manifold. A connection ∇ in $TM \to M$ is called **metric** if $\nabla g = 0$, that is

$$X(g(Y,Z)) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$$
(2)

for all $X, Y, Z \in \mathfrak{X}(M)$.

How can we interpret the above definition? The answer is as follows.

Proposition

A connection in $TM \to M$ on a pseudo-Riemannian manifold (M, g) is metric **if and only if** its parallel transport maps $P_{t_0}^t(\gamma) : T_{\gamma(t_0)}M \to T_{\gamma(t)}M$ are **linear isometries** for all smooth curves $\gamma : I \to M$.

Proof: (next page)

all possible $P_{t_0}^t(\gamma)$ are linear isometries if and only if for all such $P_{t_0}^t(\gamma)$ and all $v, w \in T_pM$, $p = \gamma(t_0)$, the map

 $t\mapsto g_{\gamma(t)}(P^t_{t_0}(\gamma)v,P^t_{t_0}(\gamma)w)$

is constant

• by considering affine reparametrisations of curves by $t \rightarrow t + c$ for constant *c*, find that this holds **if and only if**

$$\left. \frac{\partial}{\partial t} \right|_{t=t_0} g_{\gamma(t)}(P_{t_0}^t(\gamma) v, P_{t_0}^t(\gamma) w) = 0$$

for all parallel translations $P_{t_0}^t(\gamma)$

viewing P^t_{t0}(γ)v and P^t_{t0}(γ)w as vector fields along γ, it now follows from the **tensor derivation property** of any connection ∇ that if ∇ is metric, the left hand side of the above equation always vanishes

if one has problems seeing that, formally replace
$$\left.\frac{\partial}{\partial t}\right|_{t=0}$$
 by $\nabla_{\gamma'}|_{t=0}$

(continued on next page)

- for the other direction, suppose that $\frac{\partial}{\partial t}\Big|_{t=t_0} g_{\gamma(t)}(P_{t_0}^t(\gamma)v, P_{t_0}^t(\gamma)w) = 0 \text{ holds for all parallel translations}$
- let $X, Y, Z \in \mathfrak{X}(M)$, fix $p \in M$, construct a local parallel frame of *TM* along a curve γ fulfilling $\gamma'(0) = X_p$
- write Y_{γ} and Z_{γ} in that parallel frame and, using these local forms, check that indeed

 $X_{
ho}(g(Y,Z)) =
abla_{\gamma'}(g_{\gamma}(Y_{\gamma},Z_{\gamma})|_{t=0})$

using the tensor derivation property of ∇ and Proposition A

- by $\frac{\partial}{\partial t}\Big|_{t=t_0} g_{\gamma(t)}(P_{t_0}^t(\gamma)v, P_{t_0}^t(\gamma)w) = 0$ it then follows that ∇ is metric
- since X, Y, Z and p were arbitrary, it follows that ∇ is indeed a metric connection

While torsion-freeness and metric property alone do not determine a connection uniquely, the situation changes if both are assumed.

Definition

Let (M, g) be a pseudo-Riemannian manifold. A connection ∇ in $TM \rightarrow M$ is called **Levi-Civita connection** if it is **metric** and **torsion-free**.

Proposition

Let (M, g) be a pseudo-Riemannian manifold. Then there exists a **unique Levi-Civita connection** in $TM \rightarrow M$.

Proof: For the proof of this proposition we will introduce the so-called **Koszul formula**.

Proposition

Let (M, g) be a pseudo-Riemannian manifold and ∇ a connection in $TM \to M$. Then ∇ is the Levi-Civita connection of (M, g) if and only if it satisfies the **Koszul formula**

$$2g(\nabla_X Y, Z) = X(g(Y, Z)) + Y(g(X, Z)) - Z(g(X, Y)) - g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y])$$

for all $X, Y, Z \in \mathfrak{X}(M)$. Furthermore, the Koszul formula determines the connection uniquely.

Proof: (see right-hand-side, alternatively exercise!)

Hence, we have shown that there exists precisely **one** torsion-free and metric connection in the tangent bundle of a given pseudo-Riemannian manifold. The Levi-Civita connection will be used in the development of the rest of the theory that we will study in this course. In order to actually **calculate** with the Levi-Civita connection in local coordinates, we need to determine its **Christoffel symbols**:

Lemma

The **Christoffel symbols of the Levi-Civita connection** of a pseudo-Riemannian manifold (M, g) with respect to local coordinates (x^1, \ldots, x^n) are given by

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{\ell=1}^{n} \left(\frac{\partial g_{j\ell}}{\partial x^{i}} + \frac{\partial g_{i\ell}}{\partial x^{j}} - \frac{\partial g_{ij}}{\partial x^{\ell}} \right) g^{\ell \ell}$$

for all $1 \leq i, j, k \leq n$.

Proof: Exercise!

Connections allow us to define a coordinate-free version of the **Hessian** and **Laplace operator**:

Definition

Let ∇ be a connection in $TM \rightarrow M$. The **covariant Hessian** of a smooth function $f \in C^{\infty}(M)$ is defined as the (0, 2)-tensor field

 $abla^2 f :=
abla (
abla f) =
abla df \in \mathfrak{T}^{0,2}(M).$

If (M, g) is a pseudo-Riemannian manifold and ∇ is the Levi-Civita connection, we can take the trace of the covariant Hessian with respect to g and obtain the **Laplace-Beltrami operator** on smooth functions $f \in C^{\infty}(M)$ given by

 $\Delta f := \operatorname{tr}_g(\nabla^2 f).$

Note: The covariant Hessian w.r.t. ∇ is **symmetric** if and only if ∇ is **torsion-free**. This in particular holds for the Levi-Civita connection.

END OF LECTURE 16

Next lecture:

- geodesics
- exponential map
- normal coordinates
- geodesic completeness
- Hopf-Rinow