Differential geometry

Lecture 16: Parallel transport and the Levi-Civita connection

David Lindemann
University of Hamburg
Department of Mathematics
Analysis and Differential Geometry \& RTG 1670

26. June 2020

1 Covariant derivative along curves

2 Parallel translation

3 The Levi-Civita connection

Recap of lecture 15:

- introduced connections in vector bundles

■ explained local form of ∇_{X} s using connection 1-forms

- defined Christoffel symbols for connections in tangent bundle
- studied their transformation behaviour

■ obtained connection in $T^{r, s} M \rightarrow M$ from connection in $T M \rightarrow M$ via tensor derivation property
■ erratum: messed up the indices of the Christoffel symbols of the example connection in $T \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ in polar coordinates, correct would have been

$$
\Gamma_{\varphi \varphi}^{r}=-r, \quad \Gamma_{r \varphi}^{\varphi}=\Gamma_{\varphi r}^{\varphi}=\frac{1}{r}, \quad 0 \text { else }
$$

Connections give meaning to the term "constant" for sections of the respective vector bundle. Next, we will study tensor fields that are only defined along curves.

Definition

An (r, s)-tensor field $A=A_{\gamma}$ along a curve $\gamma: I \rightarrow M$ is a smooth map

$$
A_{\gamma}: I \rightarrow T^{r, s} M, \quad t \mapsto A_{\gamma(t)} \in T_{\gamma(t)}^{r, s} M
$$

If γ is an embedding and thus $\gamma(I)$ is a submanifold of M, an (r, s)-tensor field A_{γ} along γ is simply a parametrisation of a smooth section in $\left.T^{r, s} M\right|_{\gamma(I)} \rightarrow \gamma(I)$.

Note: The above definition extends what is allowed as vector field along curves. Recall that until this point, we understood under this term the pushforward of a vector field on an interval $I \subset \mathbb{R}$ to a smooth manifold M via a smooth curve $\gamma: I \rightarrow M$.

In general, (r, s)-tensor fields along curves can not be extended to (r, s)-tensor fields on the ambient manifold.
Question: Can we always find local extensions near $\gamma\left(t_{0}\right)$?
Answer: Yes if $\gamma^{\prime}\left(t_{0}\right) \neq 0$!

Lemma

Let $\gamma: I \rightarrow M$ be a smooth curve and suppose that $\gamma^{\prime}\left(t_{0}\right) \neq 0$. Let further A_{γ} be an (r, s)-tensor field along γ. Then there exists an open interval $I^{\prime} \subset I, t_{0} \in I^{\prime}$, such that $\left.A_{\gamma}\right|_{\prime^{\prime}}$ is the restriction of an (r, s)-tensor field $\bar{A} \in \mathcal{T}^{r, s}(M)$.

Proof:

- use ansatz similar to local rectification of vector fields
- after restricting to I^{\prime} and using a suitable choice of local coordinates $\varphi=\left(x^{1}, \ldots, x^{n}\right)$ on $U \subset M$ with $\gamma\left(I^{\prime}\right) \subset U, \gamma$ is of the form $t \mapsto \varphi^{-1}(t, 0, \ldots, 0)$, so that $x^{1}(\gamma(t))=t$ and $x^{i}(\gamma(t))=0$ for $2 \leq i \leq n$.
(continued on next page)
(continuation of proof)
■ hence, if

$$
A_{\gamma(t)}=\sum f^{i_{1} \ldots i_{r}}{ }_{j_{1} \ldots j_{s}}(t) \frac{\partial}{\partial x^{i_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_{r}}} \otimes d x^{j_{1}} \otimes \ldots \otimes d x^{j_{s}}
$$

with all $f^{i_{1} \ldots i_{r}}{ }_{j_{1} \ldots j_{s}}: I^{\prime} \rightarrow \mathbb{R}$ smooth, the tensor field
$\bar{A}=\sum\left(f^{i_{1} \ldots i_{r}}{ }_{j_{1} \ldots j_{s}} \circ x^{1}\right) \frac{\partial}{\partial x^{i_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_{r}}} \otimes d x^{j_{1}} \otimes \ldots \otimes d x^{j_{s}}$
fulfils the requirements of this lemma
Remark: One way the statement of the above lemma can go wrong for $\gamma^{\prime}\left(t_{0}\right)=0$ is when γ is the constant curve but A_{γ} is not constant.

Question: How do we measure the infinitesimal change of a tensor field along a curve using a connection in the corresponding tensor bundle of the ambient manifold?

Answer:

Proposition

Let M be a smooth manifold and ∇ a connection in $T M \rightarrow M$. Let $\gamma: I \rightarrow M$ be a smooth curve and denote the set of vector fields along γ by $\Gamma_{\gamma}(T M)$. Then there exists a unique \mathbb{R}-linear map

$$
\frac{\nabla}{d t}: \Gamma_{\gamma}(T M) \rightarrow \Gamma_{\gamma}(T M)
$$

such that

$$
\frac{\nabla}{d t}(f X)=\frac{\partial f}{\partial t} X+f \frac{\nabla}{d t} X
$$

for all $f \in C^{\infty}(I)$ and all $X \in \Gamma_{\gamma}(T M)$ and, if $X=\left.\bar{X}\right|_{\gamma(I)}$,

$$
\frac{\nabla}{d t} X=\nabla_{\gamma^{\prime}} \bar{X}
$$

for all $t \in I$.
Proof: (next page)

■ suppose that such a map $\frac{\nabla}{d t}$ exists \rightsquigarrow show that it is then unique

- if $\gamma^{\prime}\left(t_{0}\right)=0$, set $\left.\frac{\nabla}{d t} X\right|_{t=t_{0}}=0 \forall X \in \Gamma_{\gamma}(T M)$
- this is compatible with the tensoriality in the first argument of any connection, so that $\left.\left(\frac{\nabla}{d t} X\right)\right|_{t=t_{0}}=0$ for all vector fields X along γ that are restrictions $X=\bar{X}_{\gamma}$ of vector fields $\bar{X} \in \mathfrak{X}(M)$
■ if $\gamma^{\prime}\left(t_{0}\right) \neq 0$, choose local coordinates as in extension
lemma $\varphi=\left(x^{1}, \ldots, x^{n}\right)$ with $\gamma=\varphi^{-1}(t, 0, \ldots, 0)$ near t_{0}, find local formula

$$
\begin{aligned}
& \left.\left(\frac{\nabla}{d t} X\right)\right|_{t=t_{0}}=\left.\left(\nabla_{\gamma^{\prime}} \bar{X}\right)\right|_{t=t_{0}} \\
& =\left.\sum_{k=1}^{n}\left(\frac{\partial X^{k}}{\partial t}\left(t_{0}\right)+\sum_{i, j=1}^{n} \frac{\partial \gamma^{i}}{\partial t}\left(t_{0}\right) X^{j}\left(t_{0}\right) \Gamma_{i j}^{k}\left(t_{0}\right)\right) \frac{\partial}{\partial x^{k}}\right|_{t=t_{0}}
\end{aligned}
$$

for all $X=\sum_{k=0}^{n} X^{k}(t) \frac{\partial}{\partial x^{k}}$ with local extension
$\bar{X}=\sum_{k=1}^{n}\left(X^{k} \circ x^{1}\right) \frac{\partial}{\partial x^{k}}$ (continued on next page)
(continuation of proof)
■ hence: if the operator $\frac{\nabla}{d t}$ exists, it is uniquely determined by the connection ∇
■ on the other hand observe that the local formula of $\left.\left(\frac{\nabla}{d t} X\right)\right|_{t=t_{0}}$ for $\gamma^{\prime}\left(t_{0}\right) \neq 0$ defines by the locality property of connections an operator $\frac{\nabla}{d t}$ fulfilling the requirements of this proposition, at least in fixed chosen local coordinates
$■$ to check that the operator extends to $\Gamma_{\gamma}(T M)$, one needs to check that it transforms as a connection and is thus independent of the chosen local extension \bar{X} of X [exercise!]

Definition

The linear differential operator $\nabla_{\gamma^{\prime}}$ is called covariant derivative along γ. It has the local form

$$
\nabla_{\gamma^{\prime}} X=\sum_{k=1}^{n}\left(\frac{\partial X^{k}}{\partial t}+\sum_{i, j=1}^{n} \frac{\partial \gamma^{i}}{\partial t} X^{j} \Gamma_{i j}^{k}\right) \frac{\partial}{\partial x^{k}}
$$

for all $X \in \Gamma_{\gamma}(T M)$ locally given by $X=\sum_{k=1}^{n} X^{k} \frac{\partial}{\partial x^{k}}$,
$X^{k}=X^{k}(t) \in C^{\infty}(I) \forall 1 \leq i \leq n$.
Remark: More generally, one can define the covariant derivative along curves for any vector bundle $E \rightarrow M$ with a connection. From the tensor derivative property of connections one obtains:

Corollary

Let A be an (r, s)-tensor field on a smooth manifold M along $\gamma: I \rightarrow M$ with $r, s \geq 1$. Let $C: \mathfrak{T}^{r, s}(M) \rightarrow \mathcal{T}^{r-1, s-1}(M)$ be any contraction (note: C canonically extends to (r, s)-tensor fields along curves). Then $C\left(\nabla_{\gamma^{\prime}} A\right)=\nabla_{\gamma^{\prime}}(C(A))$.

Notation: We will use $\nabla_{\gamma^{\prime}}$ for $\frac{\nabla}{d t}$, this is up to preference.
Having defined what covariant differentiation along a curve is allows us to define what it means for a vector field along a curve to be parallel along said curve:

Definition

Let $X \in \Gamma_{\gamma}(T M)$ be a vector field along a smooth curve $\gamma: I \rightarrow M$ and let ∇ be a connection in $T M \rightarrow M . X$ is called parallel along γ, or simply parallel, if $\nabla_{\gamma^{\prime}} X=0$.

Remark: One similarly defines parallel tensor fields along curves. E.g. for 1 -forms along curves $\omega \in \Gamma_{\gamma}\left(T^{*} M\right)$ we find that $\nabla_{\gamma^{\prime}} \omega=0$ if and only if

$$
\frac{\partial(\omega(X))}{\partial t}-\omega\left(\nabla_{\gamma^{\prime}} X\right)=0
$$

for all $X \in \Gamma_{\gamma}(T M)$.

Our notion of "parallel along curves" allows us to translate vectors (or covectors, tensor powers of vectors and covectors) in a parallel way along curves.

Theorem

Let ∇ be a connection in $T M \rightarrow M, \gamma: I \rightarrow M, t_{0} \in I$, be a smooth curve with non-vanishing velocity, and $v \in T_{\gamma\left(t_{0}\right)} M$. Then there exists a unique vector field along $\gamma, X \in \Gamma_{\gamma}(T M)$, such that X is parallel along γ and $X_{\gamma\left(t_{0}\right)}=v$. This means that X is the unique solution to the initial value problem

$$
\nabla_{\gamma^{\prime}} X=0, \quad X_{\gamma\left(t_{0}\right)}=v
$$

Proof:

- locally, $\nabla_{\gamma^{\prime}} X=0$ is an ODE, hence has locally unique solutions
- for global statement, need to deal with cases where $\gamma(I)$ is not covered by a single chart
■ Exercise! Alternatively see Thm. 4.11 in Lee's "Riemannian Manifolds. An Introduction to Curvature".

Note: The latter theorem can be formulated not just for vector fields, but sections in any vector bundle with connection, e.g. $T^{r, s} M \rightarrow M$.

Example

Let $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}, \gamma: t \mapsto\binom{t}{1}$ and

$$
X=X_{\gamma}=\left(\gamma(t),\binom{1}{1}\right) \in \Gamma_{\gamma}\left(T \mathbb{R}^{2}\right)
$$

Let ∇ be a connection in $T \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by setting its Christoffel symbols in canonical coordinates all equal to 0 . Then X is parallel along γ, i.e. $\nabla_{\gamma^{\prime}} X=0$, meaning that X solves the initial value problem of parallelly transporting $v=\left(\gamma(0),\binom{1}{1}\right)$ along γ.

Question: Can we use covariant derivatives along curves to recover their defining connection?
Answer: Yes! \rightsquigarrow Need the following property of parallel translations:

Lemma

Let ∇ be a connection in $T M \rightarrow M$ and $\gamma: I \rightarrow M$ a smooth curve. Consider parallel translations along γ as maps

$$
P_{t_{0}}^{t}(\gamma): T_{\gamma\left(t_{0}\right)} M \rightarrow T_{\gamma(t)} M
$$

mapping initial values $v \in T_{\gamma\left(t_{0}\right)} M, t_{0} \in I$, of the differential equation $\nabla_{\gamma^{\prime}} X=0$, to the value of its uniquely solution X at $t \in I$, namely $X_{\gamma(t)} \in T_{\gamma(t)} M$. Then $P_{t_{0}}^{t}(\gamma)$ is a linear isomorphism for all $t_{0}, t \in I$.

Proof:

■ linearity of $P_{t_{0}}^{t}(\gamma)$ follows by observing that whenever X solves $\nabla_{\gamma^{\prime}} X=0$ for initial value $v \in T_{\gamma t_{0}} M, c X$ is also parallel along γ and is the unique solution of the parallel transport equation for initial value $c v \in T_{\gamma\left(t_{0}\right)} M$
(continued on next page)

(continuation of proof)

- to see that $P_{t_{0}}^{t}(\gamma)$ is invertible, fix $t \in I$ and let $\widetilde{\gamma}(s):=\gamma(t-s)$
■ \rightsquigarrow the parallel transport with respect to $\widetilde{\gamma}$ from $s=0$ to $s=t-t_{0}, P_{0}^{t-t_{0}}(\widetilde{\gamma}): T_{\gamma(t)} M \rightarrow T_{\gamma\left(t_{0}\right)} M$ is precisely the inverse of $P_{t_{0}}^{t}(\gamma): T_{\gamma\left(t_{0}\right)} M \rightarrow T_{\gamma(t)} M$, which follows from $\nabla_{\widetilde{\gamma}^{\prime}}(X \circ(t-s))=0$ for X being the unique solution of $\nabla_{\gamma^{\prime}} X=0$ with fixed initial value in $T_{\gamma\left(t_{0}\right)} M$
With this result we can describe a connection completely by its covariant derivatives along curves:

Proposition A

Let ∇ be a connection in $T M \rightarrow M$ and $X, Y \in \mathfrak{X}(M)$. For $p \in M$ arbitrary let $\gamma:(-\varepsilon, \varepsilon) \rightarrow M, \varepsilon>0$, be an integral curve of X with $\gamma(0)=p$, and let $P_{t_{0}}^{t}$ denote the corresponding parallel transport maps. Then

$$
\left(\nabla_{X} Y\right)_{p}=\left.\frac{\partial}{\partial t}\right|_{t=0} P_{t}^{0}(\gamma) Y_{\gamma(t)}
$$

Proof: (next page)
(continuation of proof)
■ note: $t \mapsto P_{t}^{0}(\gamma) Y_{\gamma(t)}$ is smooth, follows from the smoothness of the local prefactors of the defining differential equation in local coordinates
\square the smooth manifold structure in $T_{p} M$ is given by its linear isomorphy to \mathbb{R}^{n}
■ also note: $P_{t}^{0}(\gamma) Y_{\gamma(t)} \in T_{p} M$ for all $t \in(-\varepsilon, \varepsilon)$, so it makes sense to take its time derivative
■ choose basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of $T_{p} M$, e.g. via local charts
■ \rightsquigarrow for all $1 \leq i \leq n, V_{i}=\left.V_{i}\right|_{\gamma(t)}:=P_{0}^{t}(\gamma) v_{i}$ defines a parallel vector field along γ, i.e. $\nabla_{\gamma^{\prime}} V_{i}=0$
■ hence $\left\{V_{1}, \ldots, V_{n}\right\}$ is a parallel frame of $T M$ along $\left.\gamma\right|_{(-\varepsilon, \varepsilon)}$, meaning that each vector field along γ that is the restriction of a vector field on the ambient manifold can be written as a $C^{\infty}((-\varepsilon, \varepsilon))$-linear combination of its elements
(continued on next page)

(continuation of proof)

- thus we can write

$$
Y_{\gamma}=\sum_{i=1}^{n} f^{i} V_{i}
$$

$$
f^{i} \in C^{\infty}((-\varepsilon, \varepsilon)) \text { for all } 1 \leq i \leq n
$$

■ using $\left(\nabla_{X} Y\right)_{p}=\left.\nabla_{\gamma^{\prime}} Y_{\gamma}\right|_{t=0}$ we calculate
$\left.\nabla_{\gamma^{\prime}} Y_{\gamma}\right|_{t=0}=\left.\sum_{i=1}^{n}\left(\frac{\partial f^{i}}{\partial t} V_{i}+f^{i} \nabla_{\gamma^{\prime}} V_{i}\right)\right|_{t=0}=\sum_{i=1}^{n} \frac{\partial f^{i}}{\partial t}(0) v_{i}$

- On the other hand, we have for all $t \in(-\varepsilon, \varepsilon)$

$$
\begin{equation*}
P_{t}^{0}(\gamma) Y_{\gamma(t)}=P_{t}^{0}(\gamma)\left(\left.\sum_{i=1}^{n} f^{i}(t) V_{i}\right|_{\gamma(t)}\right)=f^{i}(t) v_{i} \tag{1}
\end{equation*}
$$

where we used that $P_{t}^{0}(\gamma)=\left(P_{0}^{t}(\gamma)\right)^{-1}$ and that, by construction, V_{i} is precisely the parallel extension of v_{i} along γ for all $1 \leq i \leq n$ (continued on next page)

(continuation of proof)

■ \rightsquigarrow taking the t-derivative at $t=0$ of the right hand side of (1) finishes the proof
The previous proposition has the following at first sight surprising consequence:

Corollary

Let ∇ be a connection in $T M \rightarrow M$ and $X, Y \in \mathfrak{X}(M)$. Then $\left(\nabla_{X} Y\right)_{p}$ depends only on X_{p}, any choice of smooth curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow M, \varepsilon>0$, with $\gamma^{\prime}(0)=X_{p}$, and Y_{γ}, that is Y along γ.

The next definition will allow us to understand the "space" of connections in the tangent bundle better.

Definition

Let M be a smooth manifold and let ∇^{1}, ∇^{2} be connections in $T M \rightarrow M$. Then the difference tensor $A \in \mathcal{T}^{1,2}(M)$ of ∇^{1} and ∇^{2} is defined via

$$
A(X, Y):=\nabla_{X}^{1} Y-\nabla_{X}^{2} Y \quad \forall X, Y \in \mathfrak{X}(M)
$$

After showing that the difference tensor is, in fact, a tensor field, this means that we can interpret the space of connections in $T M \rightarrow M$ as an affine space with basepoint any fixed connection ∇ and linear space $\mathcal{T}^{1,2}(M)$ with origin ∇.

Apart from its interpretation as the proper generalisation of derivatives for sections in vector bundles, we do not yet have a purely geometric interpretation of connections. Using the next definition will allow us to find such a property.

Definition

The torsion tensor $T \in \mathcal{T}^{1,2}(M)$ of a connection ∇ in $T M \rightarrow M$ is given by

$$
T(X, Y):=\nabla_{X} Y-\nabla_{Y} X-[X, Y]
$$

for all $X, Y \in \mathfrak{X}(M)$. The connection ∇ is called torsion-free if $T \equiv 0$.

Remark: ∇ in $T M \rightarrow M$ is torsion free if and only if $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$ for all Christoffel symbols.

Remark

Consider for $n \geq 2$ the connection in $T \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with vanishing Christoffel symbols, fix $p \in \mathbb{R}^{n}$, and choose two linearly independent vectors $v, w \in T_{p} \mathbb{R}^{n}$. Let further $\varepsilon>0$ and

$$
\gamma_{v}:=t \mapsto p+t v, \quad \gamma_{w}:=t \mapsto p+t w
$$

For any $t>0$, the four vectors

$$
v, w, P_{0}^{1}\left(\gamma_{v}\right) w, P_{0}^{1}\left(\gamma_{w}\right) v
$$

can be interpreted as the edges of a parallelogram. What is the proper analogue for this picture for general smooth manifolds M and connections in $T M \rightarrow M$? The answer lies in making $t>0$ infinitesimally small and using Proposition A.
We fix $p \in M$ and local coordinates $\varphi=\left(x^{1}, \ldots, x^{n}\right)$ on $U \subset M, p \in U$.
(continued on next page)

Remark (continuation)

For $1 \leq k \leq n$ and $\varepsilon>0$ small enough, consider the smooth curves

$$
\gamma_{k}:(-\varepsilon, \varepsilon) \rightarrow M, \quad x^{\ell}\left(\gamma_{k}(t)\right)=\delta_{k}^{\ell} t \quad \forall 1 \leq k, \ell \leq n,
$$

so that $\gamma_{k}^{\prime}=\frac{\partial}{\partial x^{k}}$. For any $i \neq j$, we obtain using Proposition A

$$
\begin{aligned}
& \left.T\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)\right|_{p} \\
& =\left.\left(\nabla \frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{j}}-\nabla \frac{\partial}{\partial x^{j}} \frac{\partial}{\partial x^{i}}\right)\right|_{p} \\
& =\left.\frac{\partial}{\partial t}\right|_{t=0}\left(P_{t}^{0}\left(\gamma_{i}\right) \frac{\partial}{\partial x^{j}}-P_{t}^{0}\left(\gamma_{j}\right) \frac{\partial}{\partial x^{i}}\right) \\
& =\lim _{\substack{t \rightarrow 0 \\
t>0}} \frac{\left.\frac{\partial}{\partial x^{i}}\right|_{p}+P_{t}^{0}\left(\gamma_{i}\right) \frac{\partial}{\partial x^{j}}-\left.\frac{\partial}{\partial x^{j}}\right|_{p}-P_{t}^{0}\left(\gamma_{j}\right) \frac{\partial}{\partial x^{i}}}{t} .
\end{aligned}
$$

Hence, the "infinitesimal" parallelograms spanned by any two different coordinate vectors and their parallel translations close, meaning that there is no "gap" when gluing the "infinitesimal" edges together.

Question: How do we combine the properties of a pseudoRiemannian metric and a connection?
Answer: Define metric connections:

Definition

Let (M, g) be a pseudo-Riemannian manifold. A connection ∇ in $T M \rightarrow M$ is called metric if $\nabla g=0$, that is

$$
\begin{equation*}
X(g(Y, Z))=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right) \tag{2}
\end{equation*}
$$

for all $X, Y, Z \in \mathfrak{X}(M)$.
How can we interpret the above definition? The answer is as follows.

Proposition

A connection in $T M \rightarrow M$ on a pseudo-Riemannian manifold (M, g) is metric if and only if its parallel transport maps $P_{t_{0}}^{t}(\gamma): T_{\gamma\left(t_{0}\right)} M \rightarrow T_{\gamma(t)} M$ are linear isometries for all smooth curves $\gamma: I \rightarrow M$.

Proof: (next page)

(continuation of proof)

- all possible $P_{t_{0}}^{t}(\gamma)$ are linear isometries if and only if for all such $P_{t_{0}}^{t}(\gamma)$ and all $v, w \in T_{p} M, p=\gamma\left(t_{0}\right)$, the map

$$
t \mapsto g_{\gamma(t)}\left(P_{t_{0}}^{t}(\gamma) v, P_{t_{0}}^{t}(\gamma) w\right)
$$

is constant

- by considering affine reparametrisations of curves by $t \rightarrow t+c$ for constant c, find that this holds if and only if

$$
\left.\frac{\partial}{\partial t}\right|_{t=t_{0}} g_{\gamma(t)}\left(P_{t_{0}}^{t}(\gamma) v, P_{t_{0}}^{t}(\gamma) w\right)=0
$$

for all parallel translations $P_{t_{0}}^{t}(\gamma)$
■ viewing $P_{t_{0}}^{t}(\gamma) v$ and $P_{t_{0}}^{t}(\gamma) w$ as vector fields along γ, it now follows from the tensor derivation property of any connection ∇ that if ∇ is metric, the left hand side of the above equation always vanishes

- if one has problems seeing that, formally replace $\left.\frac{\partial}{\partial t}\right|_{t=0}$ by $\left.\nabla_{\gamma^{\prime}}\right|_{t=0}$
(continued on next page)
(continuation of proof)
■ for the other direction, suppose that $\left.\frac{\partial}{\partial t}\right|_{t=t_{0}} g_{\gamma(t)}\left(P_{t_{0}}^{t}(\gamma) v, P_{t_{0}}^{t}(\gamma) w\right)=0$ holds for all parallel translations
■ let $X, Y, Z \in \mathfrak{X}(M)$, fix $p \in M$, construct a local parallel frame of $T M$ along a curve γ fulfilling $\gamma^{\prime}(0)=X_{p}$
- write Y_{γ} and Z_{γ} in that parallel frame and, using these local forms, check that indeed

$$
X_{p}(g(Y, Z))=\nabla_{\gamma^{\prime}}\left(\left.g_{\gamma}\left(Y_{\gamma}, Z_{\gamma}\right)\right|_{t=0}\right.
$$

using the tensor derivation property of ∇ and Proposition A
$■$ by $\left.\frac{\partial}{\partial t}\right|_{t=t_{0}} g_{\gamma(t)}\left(P_{t_{0}}^{t}(\gamma) v, P_{t_{0}}^{t}(\gamma) w\right)=0$ it then follows that
$\quad \nabla$ is metric

- since X, Y, Z and p were arbitrary, it follows that ∇ is indeed a metric connection

While torsion-freeness and metric property alone do not determine a connection uniquely, the situation changes if both are assumed.

Definition

Let (M, g) be a pseudo-Riemannian manifold. A connection ∇ in $T M \rightarrow M$ is called Levi-Civita connection if it is metric and torsion-free.

Proposition

Let (M, g) be a pseudo-Riemannian manifold. Then there exists a unique Levi-Civita connection in $T M \rightarrow M$.

Proof: For the proof of this proposition we will introduce the so-called Koszul formula.

Proposition

Let (M, g) be a pseudo-Riemannian manifold and ∇ a connection in $T M \rightarrow M$. Then ∇ is the Levi-Civita connection of (M, g) if and only if it satisfies the Koszul formula

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right)= & X(g(Y, Z))+Y(g(X, Z))-Z(g(X, Y)) \\
& -g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y])
\end{aligned}
$$

for all $X, Y, Z \in \mathfrak{X}(M)$. Furthermore, the Koszul formula determines the connection uniquely.

Proof: (see right-hand-side, alternatively exercise!)

Hence, we have shown that there exists precisely one torsion-free and metric connection in the tangent bundle of a given pseudoRiemannian manifold. The Levi-Civita connection will be used in the development of the rest of the theory that we will study in this course.

In order to actually calculate with the Levi-Civita connection in local coordinates, we need to determine its Christoffel symbols:

Lemma

The Christoffel symbols of the Levi-Civita connection of a pseudo-Riemannian manifold (M, g) with respect to local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ are given by

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{\ell=1}^{n}\left(\frac{\partial g_{j \ell}}{\partial x^{i}}+\frac{\partial g_{i \ell}}{\partial x^{j}}-\frac{\partial g_{i j}}{\partial x^{\ell}}\right) g^{\ell k}
$$

for all $1 \leq i, j, k \leq n$.
Proof: Exercise!

Connections allow us to define a coordinate-free version of the Hessian and Laplace operator:

Definition

Let ∇ be a connection in $T M \rightarrow M$. The covariant Hessian of a smooth function $f \in C^{\infty}(M)$ is defined as the (0, 2)-tensor field

$$
\nabla^{2} f:=\nabla(\nabla f)=\nabla d f \in \mathcal{T}^{0,2}(M)
$$

If (M, g) is a pseudo-Riemannian manifold and ∇ is the Levi-Civita connection, we can take the trace of the covariant Hessian with respect to g and obtain the Laplace-Beltrami operator on smooth functions $f \in C^{\infty}(M)$ given by

$$
\Delta f:=\operatorname{tr}_{g}\left(\nabla^{2} f\right)
$$

Note: The covariant Hessian w.r.t. ∇ is symmetric if and only if ∇ is torsion-free. This in particular holds for the Levi-Civita connection.

END OF LECTURE 16

Next lecture:

- geodesics
- exponential map

■ normal coordinates

- geodesic completeness

■ Hopf-Rinow

