Differential geometry

Lecture 15: Connections in vector bundles

David Lindemann

University of Hamburg
Department of Mathematics
Analysis and Differential Geometry \& RTG 1670

15. June 2020

1 Motivation

2 Connections in vector bundles

Recap of lecture 14:

- introduces (local) frames of vector bundles
- described subbundles using local frames of ambient vector bundles, discussed examples
■ defined Killing vector fields

Question 1: What is a good choice for a derivative of sections in vector bundles, in particular tensor powers of the tangent bundle?
Hint 1: Not the Lie derivative.
Question 2: What is a, in a sense preferred, way to transport vectors or, more generally, tensors in a given fibre to some other fibre in $T M \rightarrow M$, respectively $T^{r, s} M \rightarrow M$, along a piecewise smooth curve? What extra data do we need on M to make our choice the preferred choice?
Hint 2: Do not attempt to use a coordinate-based approach...

Question 3: Can we somehow connect fibres in a vector bundle in the sense that we can identify them via a preferred linear isomorphism for each pair of fibres?
Hint 3: If we can solve Q1 \& Q2 and, frankly, work a lot more.

Definition

Let $E \rightarrow M$ be a vector bundle. A connection in $E \rightarrow M$ is a bilinear map

$$
\nabla: \mathfrak{X}(M) \times \Gamma(E) \rightarrow \Gamma(E), \quad(X, s) \mapsto \nabla \times s
$$

that is $C^{\infty}(M)$-linear in the first entry, i.e.

$$
\nabla_{f X} s=f \nabla_{X} s \quad \forall f \in C^{\infty}(M), X \in \mathfrak{X}(M), s \in \Gamma(E)
$$

and fulfils the Leibniz rule
$\nabla_{X}\left(f_{s}\right)=X(f) s+f \nabla_{X} s \quad \forall f \in C^{\infty}(M), X \in \mathfrak{X}(M), s \in \Gamma(E)$.
The last condition can be written as $\nabla(f s)=s \otimes d f+f \nabla s$.
Note: A connection can be canonically extended to be defined on local sections.

Remark

Recall that for $E=T^{r, s} M$, the Lie derivative is not
$C^{\infty}(M)$-linear in the first entry of $(X, A) \mapsto \mathcal{L}_{X} A, X \in \mathfrak{X}(M)$, $A \in \mathcal{T}^{r, s}(M)$. Hence, \mathcal{L} is not a connection in $T^{r, s} M \rightarrow M$ for any r, s.

Question: How do we actually calculate with a given connection in a vector bundle $E \rightarrow M$?

Answer: Use local frames of E and local coordinates on M.

Definition

Let ∇ be a connection in $E \rightarrow M$ of rank ℓ and $\left\{s_{1}, \ldots, s_{\ell}\right\}$ be a local frame over $U \subset M$ open, such that there exist local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ on $U \subset M$. This can always be achieved after possibly shrinking U. Let further $\operatorname{dim}(M)=n$. Define

$$
\nabla s_{i}:=\omega_{i}, \quad \omega_{i}(X)=\nabla \times s_{i} \quad \forall X \in \mathfrak{X}(M)
$$

for $1 \leq i \leq \ell$. Then each ω_{i} is an E-valued 1-form, that is $\omega_{i} \in \Gamma\left(\left.\left.E\right|_{U} \otimes T^{*} M\right|_{U}\right)$ for all $1 \leq i \leq \ell$. (continued on next page)

Definition (continuation)

Thus we have

$$
\omega_{i}=\sum_{j=1}^{n} \omega_{i j} \otimes d x^{j}
$$

for all $1 \leq i \leq \ell$, where $\omega_{i j} \in \Gamma\left(\left.E\right|_{U}\right)$ for all $1 \leq i \leq \ell$, $1 \leq j \leq n$. We can further write

$$
\omega_{i j}=\sum_{k=1}^{\ell} \omega_{i j}^{k} s_{k},
$$

with $\omega_{i j}^{k} \in C^{\infty}(U)$ for all $1 \leq i \leq \ell, 1 \leq j \leq n, 1 \leq k \leq \ell$. Recall that for any local section $s \in \Gamma\left(\left.E\right|_{U}\right)$ we can write $s=\sum_{i=1}^{k} f^{i} s_{i}$ with $f^{i}, 1 \leq i \leq k$, uniquely determined for s. We obtain the general formula

$$
\begin{equation*}
\nabla s=\sum_{i=1}^{\ell} s_{i} \otimes d f^{i}+\sum_{j=1}^{n} \sum_{i, k=1}^{\ell} f^{i} \omega_{i j}^{k} s_{k} \otimes d x^{j} \tag{1}
\end{equation*}
$$

(continued on next page)

Definition (continuation)

On the other hand we might write

$$
\nabla s_{i}=\omega_{i}=\sum_{k=1}^{\ell} s_{k} \otimes \omega_{i}^{k}
$$

for all $1 \leq i \leq k$, where $\omega_{i}^{k} \in \Omega^{1}(U)$ for all $1 \leq i, k \leq \ell$. The ω_{i}^{k} are called connection 1-forms and determine the connection ∇ in $\left.E\right|_{u}$ completely. We can view $\left(\omega_{i}^{k}\right)$ as an $(\ell \times \ell)$-matrix valued map where each entry is a local 1-form on M.

Warning: Even though connection 1-forms have "1-form" in their name, they do not transform like E-valued 1-forms when changing the local frame in E, e.g. via a change of coordinates on M when $E=T^{r, s} M$. (details on next page)
Question: Does every manifold admit a connection in its tangent bundle?
Answer: Yes! [Exercise! Alternatively, wait until we define the so-called Levi-Civita connection.]

Lemma

Let ∇ be a connection in a vector bundle $E \rightarrow M$ of rank ℓ. Let $\left\{s_{1}, \ldots, s_{\ell}\right\}$ and $\left\{\widetilde{s}_{1}, \ldots, \widetilde{s}_{\ell}\right\}$ be local frames of E over a chart neighbourhood $U \subset M$, equipped with local coordinates $\left(x^{1}, \ldots, x^{n}\right)$, that are related by the $(\ell \times \ell)$-matrix valued smooth map

$$
A: U \rightarrow \operatorname{GL}(\ell), \quad\left(s_{1}, \ldots, s_{\ell}\right) \cdot A=\left(\widetilde{s}_{1}, \ldots, \widetilde{s}_{\ell}\right)
$$

Let $\left(\omega_{i}^{k}\right)$ denote the matrix of connection 1-forms with respect to the local frame $\left\{s_{1}, \ldots, s_{\ell}\right\}$ and $\left(\widetilde{\omega}_{i}^{k}\right)$ the matrix of connection 1-forms with respect to the local frame $\left\{\widetilde{s}_{1}, \ldots, \widetilde{s}_{\ell}\right\}$. Then

$$
\left(\widetilde{\omega}_{i}^{k}\right)=A^{-1} d A+A^{-1}\left(\omega_{i}^{k}\right) A
$$

In the above equation, $d A$ denotes the differential of the map $A: U \rightarrow \mathrm{GL}(\ell)$, where we identify $T \mathrm{GL}(\ell) \cong \mathrm{GL}(\ell) \times \operatorname{End}\left(\mathbb{R}^{\ell}\right)$.

Connections, like tangent vectors, are local objects:

Lemma A

Let ∇ be a connection in a vector bundle $E \rightarrow M$ of rank ℓ. Let $U \subset M$ be open and suppose that for two vector fields $X, Y \in \mathscr{X}(M)$ and two sections in $E \rightarrow M, s, \widetilde{s}$, we have

$$
\left.X\right|_{U}=\left.Y\right|_{U},\left.\quad s\right|_{U}=\left.\widetilde{s}\right|_{U} .
$$

Then $\nabla_{X} s$ and $\nabla_{Y} \widetilde{s}$ coincide on U.

Proof:

■ $\left.\nabla_{X} s\right|_{U}=\left.\nabla_{Y} s\right|_{U}$ follows from the tensoriality property in the first argument of any connection
■ \rightsquigarrow suffices to show $\left.\nabla_{X} s\right|_{u}=\left.\nabla_{X} \widetilde{s}\right|_{u}$
■ by the linearity in the second argument, $\nabla_{X} s$ and $\nabla_{X} \widetilde{s}$ coincide in U if and only if $\nabla_{X}(s-\widetilde{s}) \mid U \equiv 0$
$■ \rightsquigarrow$ suffices to prove $\left.\nabla_{X} s\right|_{U}=0$ if $\left.s\right|_{U}=0$
(continued on next page)

- fix $p \in U$, choose a bump function $b \in C^{\infty}(M)$ and an open nbh. of $p, V \subset U$, that is precompact in U, such that $\left.b\right|_{V} \equiv 1$ and $\operatorname{supp}(b) \subset U$
■ the Leibniz rule implies

$$
0=\left.\nabla_{X} 0\right|_{p}=\left.\nabla_{X}(b s)\right|_{p}=\left.X(b) s\right|_{p}+\left.b(p) \nabla_{X} s\right|_{p}=\left.\nabla_{X} s\right|_{p}
$$

■ since $p \in U$ was arbitrary, above completes the proof Note: Lemma A means that $\left(\nabla_{x} s\right)(p)$ for any $p \in M$ depends only on $X_{p} \in T_{p} M$ and the restriction of s to an arbitrary small open neighbourhood of p in M

Example A

Consider \mathbb{R}^{n} with canonical coordinates $\left(u^{1}, \ldots, u^{n}\right)$ and induced global frame $\left\{\frac{\partial}{\partial u^{1}}, \ldots, \frac{\partial}{\partial u^{n}}\right\}$ of $T \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Vector fields on \mathbb{R}^{n} can be viewed as smooth vector valued functions. So a reasonable approach for a connection, defined in our choice of coordinates, is

$$
\nabla_{X} Y:=\sum_{i} X\left(Y^{i}\right) \frac{\partial}{\partial u^{i}} \in \mathfrak{X}\left(\mathbb{R}^{n}\right)
$$

for all vector fields $X=\sum_{i} X^{i} \frac{\partial}{\partial u^{i}}$ and $Y=\sum_{i} Y^{i} \frac{\partial}{\partial u^{i}}$. This means that, in canonical coordinates, we differentiate Y entrywise in X-direction. One verifies that the so-defined ∇ in fact is a connection in $T \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. This construction is, however, not coordinate-independent, meaning that in different coordinates, $\nabla_{X} Y$ will not be the entrywise differentiation of Y in X-direction. Note that all connection 1 -forms of the above connection identically vanish.

Question: How does the connection in Example A look like in different coordinates, e.g. in polar coordinates?
Answer: To formalise this type of question, first define the following:

Definition

Let ∇ be a connection in $T M \rightarrow M$ and $\left(x^{1}, \ldots, x^{n}\right)$ be local coordinates on $U \subset M$. Then in the induced local frame of TM,

$$
\nabla_{\frac{\partial}{\partial x^{\prime}}} \frac{\partial}{\partial x^{j}}=\sum_{k=1}^{n} \Gamma_{i j}^{k} \frac{\partial}{\partial x^{k}},
$$

where $\Gamma_{i j}^{k} \in C^{\infty}(M), 1 \leq i, j, k \leq n$. The terms $\Gamma_{i j}^{k}$ are called Christoffel symbols of the connection ∇ with respect to the chosen local coordinates $\left(x^{1}, \ldots, x^{n}\right)$.

Note: The Christoffel symbols specify the connection ∇ in $\left.T M\right|_{U} \rightarrow U$ completely, meaning in particular that two connections in $T M \rightarrow M$ coincide if they have the same Christoffel symbols for all local coordinates on M.

In comparison with the most general case, the Christoffel symbols are for the special case of the tangent bundle with induced local frame precisely the terms $\omega_{i j}^{k}$ on page 7 .

Question: How do Christoffel symbols behave under a change of coordinates?

Answer:

Lemma

Let M be an n-dimensional smooth manifold, ∇ a connection in $T M \rightarrow M$. Let further $\varphi=\left(x^{1}, \ldots, x^{n}\right)$ and $\psi=\left(y^{n}, \ldots, y^{n}\right)$ local coordinate systems on an open set $U \subset M$. Let $\Gamma_{i j}^{k}$ denote the Christoffel symbols of ∇ with respect to φ and $\widetilde{\Gamma}_{i j}^{k}$ denote the Christoffel symbols of ∇ with respect to ψ. Then the following identity holds:

$$
\Gamma_{i j}^{k}=\sum_{\rho} \frac{\partial^{2} y^{\rho}}{\partial x^{i} \partial x^{j}} \frac{\partial x^{k}}{\partial y^{\rho}}+\sum_{\mu, \nu, \rho} \frac{\partial y^{\mu}}{\partial x^{i}} \frac{\partial y^{\nu}}{\partial x^{j}} \frac{\partial x^{k}}{\partial y^{\rho}} \widetilde{\Gamma}_{\mu \nu}^{\rho}
$$

Proof: (on the right)

Example

In polar coordinates (r, φ), the connection ∇ in
$T\left(\mathbb{R}^{2} \backslash\{(x, 0), x \leq 0\}\right) \rightarrow \mathbb{R}^{2} \backslash\{(x, 0), x \leq 0\}$ as in Example A has the following Christoffel symbols:

$$
\Gamma_{\varphi \varphi}^{r}=-r, \quad \Gamma_{r \varphi}^{\varphi}=\Gamma_{\varphi r}^{\varphi}=\frac{1}{r}, \quad 0 \text { else. }
$$

Recall that knowing the Lie derivative on vector fields and functions allowed us to make sense of $\mathcal{L}_{X} A$ for $X \in \mathfrak{X}(M)$ and any type of tensor field $A \in \mathcal{T}^{r, s}(M)$, turning it into a tensor derivative for X fixed.

Question: Can we similarly define a connection in $T^{r, s} M \rightarrow M$ if we have a connection in the tangent bundle? Do we get a similar Leibniz rule for the tensor product?
Answer: Yes! (see next page)

Lemma

Let ∇ be a connection in $T M \rightarrow M$. Then ∇ induces a connection ∇ in each tensor bundle $T^{r, s} M \rightarrow M, r \geq 0$, $s \geq 0$, such that

- the induced connection in $T^{1,0} M \cong T M \rightarrow M$ coincides with ∇,
- $\nabla f=d f$ for all $f \in \mathcal{T}^{0,0}(M)=C^{\infty}(M)$,
\square the induced connection is a tensor derivation in the second argument, meaning that

$$
\nabla(A \otimes B)=(\nabla A) \otimes B+A \otimes(\nabla B)
$$

whenever the tensor field $A \otimes B$ is defined,

- the induced connections commute with all possible contraction, meaning that for any contraction $C: \mathcal{T}^{r, s}(M) \rightarrow \mathcal{T}^{r-1, s-1}(M)$ we have

$$
\nabla(C(A))=C(\nabla(A))
$$

for all tensor fields $A \in \mathcal{T}^{r, s}(M)$.

Lemma (continuation)

The so-defined connections in each tensor bundle $T^{r, s} M \rightarrow M$ are uniquely determined by the above properties.

Proof:

■ first define candidates for each connection, then we show that it fulfils all requirements, then prove uniqueness
■ note: to define any connection in $T^{r, s} M \rightarrow M$ it suffices to specify what it does on sections that can be, locally, written as pure tensor products of r local vector fields and s local 1-forms
■ for $T^{1,0} M \rightarrow M$, we simply take ∇ to be our initial connection, which thereby automatically fulfils the first point
■ for $f \in \mathcal{T}^{0,0}(M)=C^{\infty}(M)$ we set $\nabla f=d f$, thereby fulfilling the second point
(continued on next page)
(continuation of proof)
■ \rightsquigarrow define ∇ in $T^{0,1} M \rightarrow M$ in such a way, that the last two points will be satisfied

- define for any local 1-form $\omega \in \Omega^{1}(U), U \subset M$ open,

$$
\left(\nabla_{X} \omega\right)(Y):=X(\omega(Y))-\omega\left(\nabla_{X} Y\right) \quad \forall X, Y \in \mathfrak{X}(U)
$$

- this in fact defines a connection in $T^{0,1} M \rightarrow M$
$■ \rightsquigarrow$ obtain a connection in $T^{r, s} M \rightarrow M$ for all $r \geq 0, s \geq 0$ by requiring the thrid point, i.e. the tensor Leibniz rule, to hold on pure and, hence by linear extension, on all tensor fields
- again, this in fact defines a connection in each $T^{r, s} M \rightarrow M$
■ \rightsquigarrow remains to check that then the forth point, that is the contraction property, holds
(continued on next page)

(continuation of proof)

- This can be done inductively using the third point, the Leibniz rule, after checking that it holds for the only possible contraction in $T^{1,1} M \rightarrow M$, which on pure tensor fields is of the form

$$
C(X \otimes \omega)=\omega(X) \quad \forall X \in \mathfrak{X}(M), \omega \in \Omega^{1}(M)
$$

- find for all $X, Y \in \mathfrak{X}(M)$ and all $\omega \in \Omega^{1}(M)$

$$
\nabla_{Y}(C(X \otimes \omega))=\nabla_{Y}(\omega(X))=Y(\omega(X))
$$

■ by definition of ∇ in $T^{0,1} M \rightarrow M$ and the imposed third point (Leibniz), the above coincides with

$$
\begin{aligned}
& Y(\omega(X))=\left(\nabla_{Y} \omega\right)(X)+\omega\left(\nabla_{Y} X\right) \\
& =C\left(X \otimes\left(\nabla_{Y} \omega\right)+\left(\nabla_{Y} X\right) \otimes \omega\right)=C\left(\nabla_{Y}(X \otimes \omega)\right)
\end{aligned}
$$

(continued on next page)
(continuation of proof)

- remains to show uniqueness of so-defined connections
- suppose there is an other connection $\widetilde{\nabla}$ fulfilling all requirements of this lemma
- linearity in the second argument \rightsquigarrow suffices to show that ∇ and $\widetilde{\nabla}$ coincide on local pure tensor fields
- Leibniz rule and $\nabla=\widetilde{\nabla}$ in $T M \rightarrow M \rightsquigarrow$ suffices to show that ∇ and $\widetilde{\nabla}$ coincide in $T^{0,1} M=T^{*} M \rightarrow M$
- this follows from first $(\nabla=\widetilde{\nabla}$ in $T M \rightarrow M)$, second ($\widetilde{\nabla} f=d f$), and forth (contraction property) point by direct calculation of the left- and right-hand of $\widetilde{\nabla}(C(A))=C(\widetilde{\nabla}(A))$ for $A=X \otimes \omega$ where X is any local vector field and ω is any local 1-form

Remark

Differentiation of tensor fields with respect to a connection induced by a connection in the tangent bundle is sometimes called covariant differentiation. $\nabla_{X} A$ is then called covariant derivative of A in direction X.

END OF LECTURE 15

Next lecture:

- covariant differentiation along curves
- parallel transport

■ torsion tensor of a connection

- metric connections

■ Levi-Civita connection

