Differential geometry Lecture 15: Connections in vector bundles

David Lindemann

University of Hamburg Department of Mathematics Analysis and Differential Geometry & RTG 1670

15. June 2020

1 Motivation

2 Connections in vector bundles

Recap of lecture 14:

- introduces (local) frames of vector bundles
- described subbundles using local frames of ambient vector bundles, discussed examples
- defined Killing vector fields

Question 1: What is a good choice for a **derivative** of sections in vector bundles, in particular tensor powers of the tangent bundle?

Hint 1: Not the Lie derivative.

Question 2: What is a, in a sense preferred, way to **transport** vectors or, more generally, tensors in a given fibre to some other fibre in $TM \rightarrow M$, respectively $T^{r,s}M \rightarrow M$, along a piecewise smooth curve? What extra data do we need on M to make **our choice** the preferred choice?

Hint 2: Do not attempt to use a coordinate-based approach...

Question 3: Can we somehow **connect** fibres in a vector bundle in the sense that we can **identify** them via a preferred linear isomorphism for each pair of fibres? **Hint 3:** If we can solve Q1 & Q2 and, frankly, work **a lot** more.

Definition

Let $E \rightarrow M$ be a vector bundle. A **connection in** $E \rightarrow M$ is a bilinear map

 $abla : \mathfrak{X}(M) imes \Gamma(E) o \Gamma(E), \quad (X, s) \mapsto
abla_X s,$

that is $C^{\infty}(M)$ -linear in the first entry, i.e.

$$abla_{fX}s = f
abla_X s \quad \forall f \in C^{\infty}(M), X \in \mathfrak{X}(M), s \in \Gamma(E),$$

and fulfils the Leibniz rule

$$abla_X(fs) = X(f)s + f
abla_X s \quad \forall f \in C^\infty(M), X \in \mathfrak{X}(M), s \in \Gamma(E).$$

The last condition can be written as $\nabla(fs) = s \otimes df + f \nabla s$.

Note: A connection can be canonically extended to be defined on **local sections**.

Remark

Recall that for $E = T^{r,s}M$, the Lie derivative is **not** $C^{\infty}(M)$ -linear in the first entry of $(X, A) \mapsto \mathcal{L}_X A, X \in \mathfrak{X}(M)$, $A \in \mathfrak{T}^{r,s}(M)$. Hence, \mathcal{L} **is not a connection** in $T^{r,s}M \to M$ for any r, s.

Question: How do we actually calculate with a given connection in a vector bundle $E \rightarrow M$?

Answer: Use **local frames** of *E* and **local coordinates** on *M*.

Definition

Let ∇ be a connection in $E \to M$ of rank ℓ and $\{s_1, \ldots, s_\ell\}$ be a local frame over $U \subset M$ open, such that there exist local coordinates (x^1, \ldots, x^n) on $U \subset M$. This can always be achieved after possibly shrinking U. Let further dim(M) = n. Define

 $abla s_i := \omega_i, \quad \omega_i(X) = \nabla_X s_i \quad \forall X \in \mathfrak{X}(M),$

for $1 \leq i \leq \ell$. Then each ω_i is an *E*-valued 1-form, that is $\omega_i \in \Gamma(E|_U \otimes T^*M|_U)$ for all $1 \leq i \leq \ell$. (continued on next page)

Definition (continuation)

Thus we have

$$\omega_i = \sum_{j=1}^n \omega_{ij} \otimes dx^j$$

for all $1 \le i \le \ell$, where $\omega_{ij} \in \Gamma(E|_U)$ for all $1 \le i \le \ell$, $1 \le j \le n$. We can further write

$$\omega_{ij} = \sum_{k=1}^{\ell} \omega_{ij}^k s_k,$$

with $\omega_{ij}^k \in C^{\infty}(U)$ for all $1 \le i \le \ell$, $1 \le j \le n$, $1 \le k \le \ell$. Recall that for any **local section** $s \in \Gamma(E|_U)$ we can write $s = \sum_{i=1}^k f^i s_i$ with f^i , $1 \le i \le k$, **uniquely determined** for s. We obtain the general formula

$$abla s = \sum_{i=1}^\ell s_i \otimes df^i + \sum_{j=1}^n \sum_{i,k=1}^\ell f^i \omega_{ij}^k s_k \otimes dx^j.$$
 (1

Definition (continuation)

On the other hand we might write

$$abla s_i = \omega_i = \sum_{k=1}^\ell s_k \otimes \omega_i^k$$

for all $1 \le i \le k$, where $\omega_i^k \in \Omega^1(U)$ for all $1 \le i, k \le \ell$. The ω_i^k are called **connection 1-forms** and determine the connection ∇ in $E|_U$ completely. We can view (ω_i^k) as an $(\ell \times \ell)$ -matrix valued map where each entry is a local 1-form on M.

Warning: Even though connection 1-forms have "1-form" in their name, they **do not** transform like *E*-valued 1-forms when changing the **local frame** in *E*, e.g. via a change of coordinates on *M* when $E = T^{r,s}M$. (details on next page)

Question: Does every manifold **admit** a connection in its tangent bundle?

Answer: Yes! [Exercise! Alternatively, wait until we define the so-called Levi-Civita connection.]

Lemma

Let ∇ be a connection in a vector bundle $E \to M$ of rank ℓ . Let $\{s_1, \ldots, s_\ell\}$ and $\{\tilde{s}_1, \ldots, \tilde{s}_\ell\}$ be local frames of E over a chart neighbourhood $U \subset M$, equipped with local coordinates (x^1, \ldots, x^n) , that are related by the $(\ell \times \ell)$ -matrix valued smooth map

$$A: U \to \operatorname{GL}(\ell), \quad (s_1, \ldots, s_\ell) \cdot A = (\widetilde{s}_1, \ldots, \widetilde{s}_\ell).$$

Let (ω_i^k) denote the matrix of connection 1-forms with respect to the local frame $\{s_1, \ldots, s_\ell\}$ and $(\widetilde{\omega}_i^k)$ the matrix of connection 1-forms with respect to the local frame $\{\widetilde{s}_1, \ldots, \widetilde{s}_\ell\}$. Then

$$(\widetilde{\omega}_i^k) = A^{-1} dA + A^{-1}(\omega_i^k) A.$$

In the above equation, dA denotes the differential of the map $A: U \to \operatorname{GL}(\ell)$, where we identify $T\operatorname{GL}(\ell) \cong \operatorname{GL}(\ell) \times \operatorname{End}(\mathbb{R}^{\ell})$.

Connections, like tangent vectors, are local objects:

Lemma A

Let ∇ be a connection in a vector bundle $E \to M$ of rank ℓ . Let $U \subset M$ be open and suppose that for two vector fields $X, Y \in \mathfrak{X}(M)$ and two sections in $E \to M$, s, \tilde{s} , we have

$$X|_U = Y|_U, \quad s|_U = \widetilde{s}|_U.$$

Then $\nabla_X s$ and $\nabla_Y \tilde{s}$ coincide on U.

Proof:

- $\nabla_X s|_U = \nabla_Y s|_U$ follows from the **tensoriality property** in the first argument of any connection
- \rightsquigarrow suffices to show $\nabla_X s|_U = \nabla_X \widetilde{s}|_U$
- by the linearity in the second argument, $\nabla_X s$ and $\nabla_X \tilde{s}$ coincide in U if and only if $\nabla_X (s \tilde{s})|_U \equiv 0$
- \rightsquigarrow suffices to prove $\nabla_X s|_U = 0$ if $s|_U = 0$

- fix $p \in U$, choose a bump function $b \in C^{\infty}(M)$ and an open nbh. of $p, V \subset U$, that is precompact in U, such that $b|_{V} \equiv 1$ and $\operatorname{supp}(b) \subset U$
- the Leibniz rule implies

$$|0=
abla_X 0|_
ho=
abla_X (bs)|_
ho=X(b)s|_
ho+b(
ho)
abla_X s|_
ho=
abla_X s|_
ho$$

since $p \in U$ was **arbitrary**, above completes the proof **Note:** Lemma A means that $(\nabla_X s)(p)$ for any $p \in M$ depends only on $X_p \in T_p M$ and the restriction of s to an **arbitrary small** open neighbourhood of p in M

Example A

Consider \mathbb{R}^n with canonical coordinates (u^1, \ldots, u^n) and induced global frame $\{\frac{\partial}{\partial u^1}, \ldots, \frac{\partial}{\partial u^n}\}$ of $T\mathbb{R}^n \to \mathbb{R}^n$. Vector fields on \mathbb{R}^n can be viewed as smooth vector valued functions. So a reasonable approach for a connection, defined in our choice of coordinates, is

$$abla_X Y := \sum_i X(Y^i) \frac{\partial}{\partial u^i} \in \mathfrak{X}(\mathbb{R}^n)$$

for all vector fields $X = \sum_{i} X^{i} \frac{\partial}{\partial u^{i}}$ and $Y = \sum_{i} Y^{i} \frac{\partial}{\partial u^{i}}$. This means that, in canonical coordinates, we **differentiate** Y**entrywise in** *X*-direction. One verifies that the so-defined ∇ **in fact is a connection** in $T\mathbb{R}^{n} \to \mathbb{R}^{n}$. This **construction** is, however, **not coordinate-independent**, meaning that in **different coordinates**, $\nabla_{X} Y$ will **not be the entrywise differentiation** of Y in *X*-direction. Note that all connection 1-forms of the above connection **identically vanish**. **Question:** How does the connection in Example A look like in **different coordinates**, e.g. in polar coordinates? **Answer:** To formalise this **type** of question, first define the following:

Definition

Let ∇ be a connection in $TM \to M$ and (x^1, \ldots, x^n) be local coordinates on $U \subset M$. Then in the induced local frame of TM,

$$\nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{j}} = \sum_{k=1}^{n} \Gamma_{ij}^{k} \frac{\partial}{\partial x^{k}},$$

where $\Gamma_{ij}^k \in C^{\infty}(M)$, $1 \leq i, j, k \leq n$. The terms Γ_{ij}^k are called **Christoffel symbols** of the connection ∇ with respect to the chosen local coordinates (x^1, \ldots, x^n) .

Note: The Christoffel symbols specify the connection ∇ in $TM|_U \rightarrow U$ completely, meaning in particular that two connections in $TM \rightarrow M$ coincide if they have the same Christoffel symbols for all local coordinates on M.

In comparison with the most general case, the Christoffel symbols are for the **special case** of the tangent bundle with induced local frame precisely the terms ω_{ii}^k on page 7.

Question: How do Christoffel symbols behave under a change of coordinates? Answer:

Lemma

Let M be an n-dimensional smooth manifold, ∇ a connection in $TM \to M$. Let further $\varphi = (x^1, \ldots, x^n)$ and $\psi = (y^n, \ldots, y^n)$ local coordinate systems on an open set $U \subset M$. Let Γ_{ij}^k denote the **Christoffel symbols** of ∇ with respect to φ and $\widetilde{\Gamma}_{ij}^k$ denote the **Christoffel symbols** of ∇ with respect to ψ . Then the following identity holds:

$$\Gamma^{k}_{ij} = \sum_{\rho} \frac{\partial^{2} y^{\rho}}{\partial x^{i} \partial x^{j}} \frac{\partial x^{k}}{\partial y^{\rho}} + \sum_{\mu,\nu,\rho} \frac{\partial y^{\mu}}{\partial x^{i}} \frac{\partial y^{\nu}}{\partial x^{j}} \frac{\partial x^{k}}{\partial y^{\rho}} \widetilde{\Gamma}^{\rho}_{\mu\nu}.$$

Proof: (on the right)

Example

In polar coordinates (r, φ) , the connection ∇ in $\mathcal{T}(\mathbb{R}^2 \setminus \{(x, 0), x \leq 0\}) \rightarrow \mathbb{R}^2 \setminus \{(x, 0), x \leq 0\}$ as in Example *A* has the following Christoffel symbols:

$$\Gamma^{r}_{\varphi\varphi} = -r, \quad \Gamma^{\varphi}_{r\varphi} = \Gamma^{\varphi}_{\varphi r} = \frac{1}{r}, \quad 0 \text{ else.}$$

Recall that knowing the Lie derivative on vector fields and functions allowed us to make sense of $\mathcal{L}_X A$ for $X \in \mathfrak{X}(M)$ and any type of tensor field $A \in \mathfrak{T}^{r,s}(M)$, turning it into a **tensor** derivative for X fixed.

Question: Can we similarly define a **connection in** $T^{r,s}M \rightarrow M$ if we have a connection in the tangent bundle? Do we get a similar **Leibniz rule** for the tensor product? **Answer:** Yes! (see next page)

Lemma

Let ∇ be a connection in $TM \to M$. Then ∇ induces a **connection** ∇ **in each tensor bundle** $T^{r,s}M \to M$, $r \ge 0$, $s \ge 0$, such that

• the induced connection in $T^{1,0}M \cong TM \to M$ coincides with ∇ ,

• $\nabla f = df$ for all $f \in \mathcal{T}^{0,0}(M) = C^{\infty}(M)$,

the induced connection is a tensor derivation in the second argument, meaning that

 $\nabla(A \otimes B) = (\nabla A) \otimes B + A \otimes (\nabla B)$

whenever the tensor field $A \otimes B$ is defined,

■ the induced connections commute with all possible contraction, meaning that for any contraction C : T^{r,s}(M) → T^{r-1,s-1}(M) we have

 $\nabla(C(A)) = C(\nabla(A))$

for all tensor fields $A \in \mathfrak{T}^{r,s}(M)$.

Lemma (continuation)

The so-defined connections in each tensor bundle $T^{r,s}M \rightarrow M$ are **uniquely determined** by the above properties.

Proof:

- first define candidates for each connection, then we show that it fulfils all requirements, then prove uniqueness
- note: to define any connection in $T^{r,s}M \rightarrow M$ it suffices to specify what it does on sections that can be, locally, written as **pure tensor products** of *r* local vector fields and *s* local 1-forms
- for T^{1,0} M → M, we simply take ∇ to be our initial connection, which thereby automatically fulfils the first point
- for $f \in \mathcal{T}^{0,0}(M) = C^{\infty}(M)$ we set $\nabla f = df$, thereby fulfilling the second point

(continuation of proof)

- \rightsquigarrow define ∇ in $T^{0,1}M \rightarrow M$ in such a way, that **the last two points** will be satisfied
- define for any local 1-form $\omega \in \Omega^1(U)$, $U \subset M$ open,

$$(
abla_X\omega)(Y):=X(\omega(Y))-\omega(
abla_XY)\quad orall X,Y\in\mathfrak{X}(U)$$

- this in fact defines a connection in $T^{0,1}M \to M$
- \rightsquigarrow obtain a connection in $T^{r,s}M \rightarrow M$ for all $r \ge 0$, $s \ge 0$ by requiring the thrid point, i.e. the tensor Leibniz rule, to hold on pure and, hence by linear extension, on all tensor fields
- \blacksquare again, this in fact defines a connection in each $T^{r,s} M \to M$
- ~> remains to check that then the forth point, that is the contraction property, holds

(continuation of proof)

• This can be done **inductively using** the third point, **the Leibniz rule**, after checking that it holds for the **only possible contraction in** $T^{1,1}M \rightarrow M$, which on pure tensor fields is of the form

$$C(X \otimes \omega) = \omega(X) \quad \forall X \in \mathfrak{X}(M), \omega \in \Omega^{1}(M)$$

find for all $X, Y \in \mathfrak{X}(M)$ and all $\omega \in \Omega^{1}(M)$

$$abla_Y(C(X\otimes\omega))=
abla_Y(\omega(X))=Y(\omega(X))$$

by definition of ∇ in $T^{0,1}M \rightarrow M$ and the **imposed** third point (Leibniz), the above coincides with

$$\begin{aligned} Y(\omega(X)) &= (\nabla_Y \omega)(X) + \omega(\nabla_Y X) \\ &= C(X \otimes (\nabla_Y \omega) + (\nabla_Y X) \otimes \omega) = C(\nabla_Y (X \otimes \omega)) \end{aligned}$$

(continuation of proof)

- remains to show uniqueness of so-defined connections
- suppose there is an other connection
 v
 v
 fulfilling all requirements of this lemma
- Inearity in the second argument \rightsquigarrow suffices to show that ∇ and $\widetilde{\nabla}$ coincide on local pure tensor fields
- Leibniz rule and $\nabla = \widetilde{\nabla}$ in $TM \to M \rightsquigarrow$ suffices to show that ∇ and $\widetilde{\nabla}$ coincide in $T^{0,1}M = T^*M \to M$

• this follows from first $(\nabla = \widetilde{\nabla} \text{ in } TM \to M)$, second $(\widetilde{\nabla}f = df)$, and forth (contraction property) point by direct calculation of the left- and right-hand of $\widetilde{\nabla}(C(A)) = C(\widetilde{\nabla}(A))$ for $A = X \otimes \omega$ where X is any local vector field and ω is any local 1-form

Remark

Differentiation of tensor fields with respect to a **connection** induced by a connection in the tangent bundle is sometimes called **covariant differentiation**. $\nabla_X A$ is then called **covariant derivative of** A **in direction** X.

END OF LECTURE 15

Next lecture:

- covariant differentiation along curves
- parallel transport
- torsion tensor of a connection
- metric connections
- Levi-Civita connection