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Recap of lecture 13:

defined trace and induced scalar product in tensor
bundles

explained how to raise and lower indices of tensor fields

defined vector bundles along submanifolds, in particular
tangent and orthogonal bundle for pseudo-Riemannian
submanifolds

erratum: called the position vector field “tangent” to
Hn
ν ⊂ Rn+1, correct would have been “orthogonal”
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Local frames of vector bundles

We know what a basis of a vector space is, and in the example
of the tensor bundles of a smooth manifold T r,sM → M how
to fibrewise obtain a basis of T r,s

p M via a choice of local
coordinates near p ∈ M.

Question: What is the correct local (not just fibrewise)
setting for choosing bases of fibres over an open subset of the
base space of vector bundles, and how does it fit in with what
we already learned?
Answer: Define, locally, for each fibre a basis that varies
smoothly.

Definition

Let E → M be a vector bundle of rank k. A (local) frame of
E over U ⊂ M, U open, is a set of k (local) sections

{si ∈ Γ(E |U), 1 ≤ i ≤ k},

such that for all p ∈ U fixed, the vectors si (p) ∈ Ep, 1 ≤ i ≤ k,
are linearly independent. Equivalently,

spanR{si (p) ∈ Ep | 1 ≤ i ≤ k} = Ep ∀p ∈ U.
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Local frames of vector bundles

Examples

A local frame in TM → M over U ⊂ M is a set of
n = dim(M) local vector fields {X1, . . . ,Xn ∈ X(U)}
such that, pointwise, X1p, . . . ,Xnp ∈ TpM are linearly
independent.

Local coordinates (x1, . . . , xn) on U ⊂ M induce the local
frame { ∂

∂x1 , . . . ,
∂
∂xn
} of local coordinate vector fields in

TM → M over U.

Similarly, the local coordinate 1-forms {dx1, . . . , dxn}
are a frame of T ∗M → M over U.

Local trivializations can be constructed from local frames:

Exercise

Suppose that you are given a local frame of E → M over
U ⊂ M. Construct a local trivialization of E → M using this
data.
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Local frames of vector bundles

Note: Every local section s ∈ Γ(E |U) can be written as a
C∞(U)-linear combination of the elements of a local frame
of E → M over U. The prefactors are uniquely determined for
a given local section.
Local frames are a nice tool in order to check if a fibrewise linear
subspace F ⊂ E of a vector bundle E → M is a subbundle:

Lemma A

Let E → M be a vector bundle of rank k and suppose that for
` ≤ k we are given a linear subspace Fp ⊂ Ep of constant
dimension ` for all p ∈ M. Then

⊔
p∈M

Fp → M is, with all data

necessary induced by E → M, a subbundle of E → M if and
only if for every p ∈ M we can find a local frame {s1, . . . , sk}
of E |U → U, U ⊂ M an open neighbourhood of p, such that
for all q ∈ U, {s1(q), . . . , s`(q)} is a basis of Fq.

Proof: See Lem. 10.32 Riemannian Manifolds – An Introduction
to Curvature, Springer GTM 176, by John M. Lee.
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Local frames of vector bundles

Lemma A implies the following for the local form of subbundles:

Corollary

Let F → M be a subbundle of rank ` of a vector bundle
E → M of rank k > `. For any p ∈ M we can find an open
neighbourhood U ⊂ M of p and a local trivialization of
E → M over U, φ : E |U → U × Rk , such that

φ(ι(F |U)) =

U × {(v 1, . . . , v `, 0, . . . , 0) | (v 1, . . . , v `) ∈ R`} ⊂ U × Rk ,

where ι denotes the inclusion.
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Examples of subbundles

Using the local frames, we will next describe two prominent
subbundles of the (0, 2)-tensor bundle of a smooth manifold.
First, recall the following construction from linear algebra:

Lemma

Let V be a finite-dimensional real vector space with basis
{v1, . . . , vn}. Then

V ⊗ V ∼= Sym2(V )⊕ Λ2V ,

where Sym2(V ) := spanR{vi ⊗ vj + vj ⊗ vi , 1 ≤ i , j ≤ n} and
Λ2V := spanR{vi ⊗ vj − vj ⊗ vi , 1 ≤ i , j ≤ n}.

Notation: vivj := 1
2
(vi⊗vj +vj⊗vi ), vi ∧vj := vi⊗vj−vj⊗vi ,

so that vi ⊗ vj = vivj + 1
2
vi ∧ vj and vi ⊗ vi = vivi for all i , j

Question: How do we formulate a similar statement for
T 0,2M → M?
Answer: Fibrewise using local frames! (next page)
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Examples of subbundles

Definition

Let M be a smooth manifold and (x1, . . . , xn) be local
coordinates on U ⊂ M. The bundle of symmetric
(0, 2)-tensors on M is the subbundle

Sym2(T ∗M) ⊂ T 0,2M

with local frame over U given by{
dx idx j = 1

2
(dx i ⊗ dx j + dx j ⊗ dx i ), 1 ≤ i , j ≤ n

}
. Sections

of Sym2(T ∗M) are precisely symmetric (0, 2)-tensor fields,
which in particular include all possible pseudo-Riemannian
metrics on M. On the other hand we have the anti-symmetric
(0, 2)-tensors on M,

Λ2T ∗M ⊂ T 0,2M,

with local frame over U given by{
dx i ∧ dx j = dx i ⊗ dx j − dx j ⊗ dx i , 1 ≤ i , j ≤ n

}
. Sections in

Λ2T ∗M → M are called 2-forms and are denoted by Ω2(M).
Local sections in Λ2T ∗M → M over U ⊂ M, U open, are
denoted by Ω2(U).
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Examples of subbundles

Remark

Any pseudo-Riemannian metric g on M can be written locally
as

g =
∑
i,j

gijdx
i ⊗ dx j =

∑
i,j

gijdx
idx j .

Warning: The above notation is standard, but has a certain error
potential. Make absolutely sure to e.g. understand the equality

dx dy “ = ”

(
0 1

2
1
2

0

)
,

where in the above equation dx dy is written on the right hand
side in (in actual calculations commonly used) matrix nota-
tion.

David Lindemann DG lecture 14 12. June 2020 10 / 21



Examples of subbundles

Suppose you are given a symmetric, fibrewise nondegenerate,
(0, 2)-tensor field on a connected manifold.
Question: How do you, realistically, check whether it is a
pseudo-Riemannian metric or not?
Answer: Check that its index is constant!

Definition

The index of a symmetric (0, 2)-tensor field g ∈ T0,2(M) at
p ∈ M is defined as

ν(p) := number of negative eigenvalues of gp,

where gp is viewed as symmetric matrix in local coordinates, i.e.

gp =
∑
ij

gij(p)dx i ⊗ dx j .
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Examples of subbundles

Proposition

Let M be a connected smooth manifold and g ∈ T0,2(M) a
symmetric (0, 2)-tensor field that is nondegenerate in all
fibres TpM, p ∈ M. Then g is a pseudo-Riemannian metric.

Proof:

suffices to show that the index of g , ν : M → N0, is
continuous

for this it suffices to prove that the number of negative
eigenvalues of any smooth function with values in the
symmetric n × n-matrices,

A : I → Sym2((R∗)n), t 7→ A(t) ∈ Sym2((R∗)n),

such that A(t) is nondegenerate for all t ∈ I , is locally
constant

this follows from the continuity of the eigenvalues of
A(t) viewed each as functions of t

(continued on next page)
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Examples of subbundles

(continuation of proof)

[more precisely: There exists a choice of n nowhere
vanishing continuous functions λn : I → R \ {0}, such that
for all t ∈ I , the set {(1, λ1(t)), . . . , (n, λn(t))} is precisely
the set of (indexed) eigenvalues of A(t)]

consider the characteristic polynomial of A(t) in
dependence of t ∈ I ,

Pt(λ) := det(A(t)− λ1)

Pt(λ) is of the form

Pt(λ) =
n∑

i=0

ai (t)λi ,

where ai : I → R is smooth for all 0 ≤ i ≤ n and
an(t) ≡ (−1)n

(continued on next page)

David Lindemann DG lecture 14 12. June 2020 13 / 21



Examples of subbundles

(continuation of proof)

hence: suffices to prove continuous dependence of roots
of a polynomial of fixed degree with smoothly varying
prefactors and fixed highest order monomial

we know that the eigenvalues must be real by the
symmetry condition of A(t) and can use the main result
in Continuity and Location of Zeroes of Linear
Combinations of Polynomials (M. Zedek), Proc. Amer.
Math. Soc. 16 (1965)
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Killing vector fields

Recall the definition of isometries of pseudo-Riemannian mani-
folds and note that the identity map is an isometry in any case.
Question: How can we describe isometries infinitesimally, as in
infinitesimal perturbations of the identity?
Answer: Use local flows and the Lie derivative of tensor fields!

Proposition

Let (M, g) be a pseudo-Riemannian manifold and let
X ∈ X(M). Suppose that for every local flow ϕ : I × U → M
of X , ϕt : U → M is an isometry for all t ∈ I . Then LXg = 0.
The converse statement also holds true.

Proof:

“⇒”: a local flow ϕ : I × U → M of X is an isometry of
(M, g) for all t ∈ I if and only if

gp(v ,w) = gϕt (p)(dϕt(v), dϕt(w))

for all t ∈ I , p ∈ M, v ,w ∈ TpM

(continued on next page)
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Killing vector fields

(continuation of proof)

hence:

(LXg)(v ,w) =

(
∂

∂t

∣∣∣∣
t=0

(ϕ∗t g)p

)
(v ,w)

=
∂

∂t

∣∣∣∣
t=0

(
gϕt (p)(dϕt(v), dϕt(w))

)
=

∂

∂t

∣∣∣∣
t=0

gp(v ,w) = 0

since p ∈ M, v ,w ∈ TpM were arbitrary, this shows that
LXg = 0

“⇐”: note: dϕt0 : TpM → Tϕt0
(p)M is a linear

isomorphism for all t0 ∈ I and, by the group property of
local flows, that dϕt+t0 = dϕtdϕt0 for t small enough

(continued on next page)
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Killing vector fields

(continuation of proof)

we obtain ∀t0 ∈ I , v ,w ∈ TpM

0 = (LXg)(dϕt0 (v), dϕt0 (w))

=
∂

∂t

∣∣∣∣
t=0

(
gϕt (ϕt0

(p))(dϕtdϕt0 (v), dϕtdϕt0 (w))
)

=
∂

∂t

∣∣∣∣
t=0

(
gϕt+t0

(p)(dϕt+t0 (v), dϕt+t0 (w))
)

=
∂

∂s

∣∣∣∣
s=t0

(
gϕs (p)(dϕs(v), dϕs(w))

)
this shows that the smooth function

I 3 s 7→ gϕs (p)(dϕs(v), dϕs(w)) ∈ R

is constant for all v ,w ∈ TpM and, hence, that the local
flow of X consists of isometries for any fixed time
parameter
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Killing vector fields

Definition

Vector fields X ∈ X(M) on a pseudo-Riemannian manifold
(M, g) with LXg = 0 are called Killing vector fields.

The set of Killing vector fields on a pseudo-Riemannian manifold
has the following algebraic structure:

Lemma

Let (M, g) be a pseudo-Riemannian manifold. Killing vector
fields form a Lie subalgebra of (X(M), [·, ·]), meaning that for
any Killing vector fields X ,Y ∈ X(M), [X ,Y ] is also a Killing
vector field.

Proof: Exercise! [Hint: Use the Jacobi identity L[X ,Y ]Z =
LX (LYZ)− LY (LXZ)]

David Lindemann DG lecture 14 12. June 2020 18 / 21



Killing vector fields

One can prove the following theorem about a dimensional bound
of the Lie algebra of Killing vector fields, but the proof goes far
beyond the scope of this course, cf. Thm 3.3 in Foundations of
Differential Geometry Vol. I (S. Kobayashi, K. Nomizu), Wiley
Classics Library (1996)

Theorem

Let (M, g) be a connected Riemannian manifold of
dimension n. The the Lie algebra of Killing vector fields is
finite dimensional of dimension at most 1

2
n(n + 1).

Next, let us look at some examples of Killing vector fields. (next
page)
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Killing vector fields

Examples

Consider (M, g) = (Rn, 〈·, ·〉ν) for any 0 ≤ ν ≤ n. Then
X ∈ X(Rn), X =

∑
i

c i ∂
∂ui

, is a Killing vector field.

Let (M, g) and (N, h) be pseudo-Riemannian manifolds,
X a Killing vector field on (M, g), and Y a Killing vector
field on (N, h). Then X + Y is a Killing vector field on
(M × N, g ⊕ h).

Question: How can we determine Killing vector fields if we are
not magically presented with them?
Answer: In local coordinates, have the following result:

Lemma

X ∈ X(M) on a pseudo-Riemannian manifold (M, g) is a
Killing vector field if and and only if it fulfils

n∑
k=1

(
X k ∂gij

∂xk
+
∂X k

∂x i
gjk +

∂X k

∂x j
gik

)
= 0 ∀1 ≤ i , j ≤ n

for all local coordinates (x1, . . . , xn) on M.

Proof: Exercise!
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END OF LECTURE 14

Next lecture:

connections in vector bundles
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