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Recap of lecture 12:

recalled definition of pseudo-Euclidean vector spaces

defined pseudo-Riemannian metrics &
pseudo-Riemannian manifolds

defined arc-length of curves

described pseudo-Riemannian metrics in local coordinates

studied examples of pseudo-Riemannian manifolds, in
particular Riemannian submanifolds of Riemannian
manifolds
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Trace and induced scalar product in tensor bundles

Recall the definition of the trace from linear algebra:

Definition

Let V be a real finite-dimensional vector space and
A ∈ End(V ) ∼= V ⊗ V ∗, so that for a basis {v1, . . . , vn} of V

A =
n∑

i,j=1

ai jvi ⊗ v∗j .

The trace of A is defined as

tr(A) :=
n∑

i=1

ai i .

Note: The trace of an endomorphism is independent of the
chosen basis.
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Trace and induced scalar product in tensor bundles

Examples

tr(idV ) = dim(V ),

tr(A + B) = tr(A) + tr(B) for all A,B ∈ End(V ),

tr(AB) = tr(BA) for all A,B ∈ End(V ),

tr(v ⊗ ω) = ω(v) for all v ∈ V , ω ∈ V ∗.

if A : I → GL(n) is a smooth curve, we have
∂
∂t

det(A) = tr
(
A−1 ∂A

∂t

)
det(A)

If (V , 〈·, ·〉) is a pseudo-Euclidean vector space, we can calculate
the trace as follows:

Lemma

Let A ∈ End(V ) and {e1, . . . , en} be an orthonormal basis of
V w.r.t. 〈·, ·〉. Then

tr(A) =
n∑

i=1

εi 〈ei ,Aei 〉,

where εi := 〈ei , ei 〉 ∈ {−1, 1} for all 1 ≤ i ≤ n.
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Trace and induced scalar product in tensor bundles

If we have a pseudo-Euclidean vector space (V , 〈·, ·〉), we can
define a scalar product on tensor powers of V and V ∗.

Definition

Let {e1, . . . , en} be a basis of (V , 〈·, ·〉), A ∈ V⊗r ⊗ (V ∗)⊗s ,

and write 〈·, ·〉 =
n∑

i,j=1

gije
∗
i ⊗ e∗j ,

A =
∑

1≤i1,...,ir≤n
1≤j1,...,jr≤n

Ai1...ir
j1...js ei1 ⊗ . . .⊗ eir ⊗ e∗j1 ⊗ . . .⊗ e∗js .

Then

〈A,A〉 :=∑
1≤i1,...,ir≤n
1≤j1,...,jr≤n
1≤I1,...,Ir≤n
1≤J1,...,Jr≤n

Ai1...ir
j1...jsA

I1...Ir
J1...Jsgi1I1 · . . . · gir Ir · g

j1J1 · . . . · g jsJs

defines a possibly indefinite symmetric bilinear form on
V⊗r ⊗ (V ∗)⊗s . In the above formula the g -terms fulfil, when
viewed as a symmetric matrix, (g ij) := (gij)

−1.
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Trace and induced scalar product in tensor bundles

By switching from pseudo-Euclidean vector spaces to pseudo-
Riemannian manifolds, we get the following fibrewise analogous
definition:

Definition

Let (M, g) be a pseudo-Riemannian manifold, A ∈ T1,1(M) an
endomorphism field, h ∈ T0,2(M) a symmetric (0, 2)-tensor
field, and B ∈ Tr,s(M) for r + s > 0 an arbitrary tensor field.
Then the trace of A is in local coordinates (x1, . . . , xn), so
that A =

∑
Ai

j
∂
∂x i
⊗ dx j , given by

tr(A) :=
∑
i

Ai
i .

The above term is invariant under coordinate change, which
follows from fibrewise invariance of the choice of basis in TpM
and the fact that the coordinate cotangent vector at each
point are precisely the dual to the coordinate tangent vectors
at that point. This means that trg (A) ∈ C∞(M).
(continued on next page)
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Trace and induced scalar product in tensor bundles

Definition (continuation)

The trace of h with respect to g is defined in local coordinates
as

trg (h) :=
∑
i,j

hijg
ij .

As for the endomorphism field, trg (h) is invariant under
coordinate change, but not invariant of the
pseudo-Riemannian metric g . Furthermore, we define the
induced pairing of B with itself with respect to g in the given
local coordinates as

g(B,B) :=
∑

B i1...ir
j1...js ·B

I1...Ir
J1...Js ·gi1I1 ·. . .·gir Ir ·g

j1J1 ·. . .·g jsJs ,

where

B =
∑

B i1...ir
j1...js

∂

∂x i1
⊗ . . .⊗ ∂

∂x ir
⊗ dx j1 ⊗ . . .⊗ dx js

and (g ij) = (gij)
−1 at each point when viewed as a symmetric

matrix valued map. As for the trace, value of g(B,B) does
not depend on the choice of local coordinates which implies
g(B,B) ∈ C∞(M).
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Trace and induced scalar product in tensor bundles

Note: One can similarly define a symmetric pairing g in the
bundle T r,sM → M, and not just for its local sections, which is
an example of a possibly indefinite bundle metric.

Example

For any pseudo-Riemannian manifold (M, g) of dimension n we
have

trg (g) = g(g , g) ≡ n.
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Raising/Lowering indices

Next, we come to a process called raising, respectively lowering,
indices of tensor fields. This is a most commonly used utility in
theoretical physics, in particular general relativity.

Proposition A

Let (M, g) be a pseudo-Riemannian manifold. Then

T r,sM → M and T r′,s′M → M are isomorphic as vector
bundles if r + s = r ′ + s ′.

Proof:

first show that T ∗M → M and TM → M are isomorphic

define F : TM → T ∗M, v 7→ g(v , ·)
obtain g(v , ·) ∈ T ∗p M for all v ∈ TpM

F is smooth, fibre-preserving, and at each point a
linear isomorphism

(continued on next page)
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Raising/Lowering indices

(continuation of proof)

F−1 is given by

F−1 : T ∗M → TM, ω 7→ g−1(ω, ·),

where we use the pointwise identification
(T ∗p M)∗ = TpM and g−1 is given in local coordinates by

g−1 =
∑

g ij ∂

∂x i
⊗ ∂

∂x j

to show that T r,sM → M and T r′,s′M → M are
isomorphic for arbitrary r , s, r ′, s ′ with r + s = r ′ + s ′ one
inductively uses entrywise isomorphisms

note: there are usually choices involved which vector or
covector parts to change into covector and vector parts,
respectively
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Raising/Lowering indices

Remark

Proposition A is, in local coordinates, known as the process of
lowering and raising indices. The isomorphisms of vector
bundles T r,sM → T r+1,s−1M are denoted by ] (read: sharp),
and the isomorphisms T r,sM → T r−1,s+1M are denoted by [
(read: flat). Hence the name musical isomorphisms.

Our first application of the above is the generalization of the
gradient of a function to pseudo-Riemannian manifolds:

Definition

Let (M, g) be a pseudo-Riemannian mfd. & f ∈ C∞(M). The
gradient vector field of f w.r.t. g , gradg (f ) ∈ X(M), is
defined as

gradg (f ) := g−1(df ) ∈ X(M).

In local coordinates (x1, . . . , xn), gradg (f ) =
n∑

i,j=1

∂f
∂x i

g ij ∂
∂x j

.
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Tangent bundle and orthogonal bundle of pseudo-Riemannian submanifolds

Gradient vector fields are important tools in the study of
pseudo-Riemannian submanifolds:

Lemma A

Let (M, g) be a pseudo-Riemannian manifold, M ⊂ M a
pseudo-Riemannian submanifold of codimension k, and
identify TqM = ι∗(TqM) ⊂ TqM for all q ∈ M, where ι is the
inclusion. For p ∈ M fixed let f = (f 1, . . . , f k) : U → Rk ,
U ⊂ M open, p ∈ U, be any smooth map of maximal rank
such that

M ∩ U = {f = 0} ⊂ M.

Then
TqM = ker(df 1

q ) ∩ . . . ∩ ker(df kq ) ⊂ TqM

and

(TqM)⊥ = spanR{gradg (f 1)q, . . . , gradg (f k)q} ⊂ TqM

for all q ∈ M ∩U. In particular, TqM ⊕ (TqM)⊥ = TqM for all
q ∈ M ∩ U.

Proof: (next page)
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Tangent bundle and orthogonal bundle of pseudo-Riemannian submanifolds

(continuation of proof)

fix q ∈ M ∩ U and v ∈ TqM

for any smooth curve γ : I → M ⊂ M, γ′(t) is tangential
to M ∀t ∈ I , follows by using adapted coordinates

choose a smooth curve γ : (−ε, ε)→ M ⊂ M fulfilling
γ′(0) = v

 ∀1 ≤ i ≤ k:

df i (v) =
∂

∂t

∣∣∣∣
t=0

(f ◦ γ) =
∂

∂t

∣∣∣∣
t=0

(0) = 0

hence: TqM ⊂ ker(df 1
q ) ∩ . . . ∩ ker(df kq )

for other direction: f being of maximal rank implies
df 1

q , . . . , df
k
q are linearly independent

this implies

dim(ker(df 1
q )∩. . .∩ker(df kq )) = dim(TqM)−k = dim(TqM).

by comparing dimensions, obtain
TqM ⊃ ker(df 1

q )∩ . . .∩ ker(df kq ) (continued on next page)
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Tangent bundle and orthogonal bundle of pseudo-Riemannian submanifolds

(continuation of proof)

for (TqM)⊥ = spanR{gradg (f 1)q, . . . , gradg (f k)q} use
that g is pointwise nondegenerate

obtain that each nonzero vector in
spanR{gradg (f 1)q, . . . , gradg (f k)q} is not contained in

TqM = ker(df 1
q ) ∩ . . . ∩ ker(df kq )

by TqM ⊕ (TqM)⊥ = TqM and comparing dimensions,
the above claim follows

Question: How can we make sense of TqM ⊕ (TqM)⊥ = TqM
in a coordinate free, global statement?
Answer: Introduce vector bundles along submanifolds and
subbundles!
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Tangent bundle and orthogonal bundle of pseudo-Riemannian submanifolds

Lemma B

Let πE : E → M be a vector bundle of rank k and M be a
submanifold of M. Then

πE |M : E |M → M, (E |M)p := π−1
E |M (p) := π−1

E (p) ∀p ∈ M,

E |M :=
⊔
p∈M

(E |M)p,

is a vector bundle of rank k over M. It is called vector bundle
along M.

Proof:

suffices to work in local coordinates

w.l.o.g. assume that locally, M is given by an open set in
R`, ` ≤ dim(M), and the inclusion M ⊂ M is of the form

ι : (x1, . . . , x`) 7→ (x1, . . . , x`, 0, . . . , 0) ∈ Rdim(M)

next, apply vector bundle chart lemma to the restriction
of, after possibly shrinking U, the transition functions of

E → M in local coordinates to U ⊂ Rdim(M)

obtain that the vector parts are, still, smooth
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Tangent bundle and orthogonal bundle of pseudo-Riemannian submanifolds

Heuristically, Lemma B means that we make the base manifold
smaller but keep all possible vectors at each point in the vector
bundle. Combining Lemma A & B, we get the following:

Definition

Let (M, g) be a pseudo-Riemannian manifold and M ⊂ M a
pseudo-Riemannian submanifold of codimension k. Then the
normal bundle of M, TM⊥ → M, is defined as

TM⊥ :=
⊔
p∈M

(TpM)⊥,

with projection induced by the tangent bundle of M along M,
TM|M → M. In particular we have

TM|M = TM ⊕ TM⊥,

and the above direct sum is orthogonal with respect to g .

The above definition can be put into a more general context,
namely that of subbundles. (next page)
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Tangent bundle and orthogonal bundle of pseudo-Riemannian submanifolds

Definition

Let πE : E → M be a vector bundle. Another vector bundle
πF : F → M is called subbundle of E → M if for all p ∈ M,
Fp is a linear subspace of Ep, the canonical injection

F ↪→ E ,

given fibrewise by the inclusion Fp ⊂ Ep, is an embedding,
πF = πE |F , and for all local trivializations φ of E the
restrictions φ|F are local trivializations of F . This means that
the bundle structure of F → M and the smooth manifold
structure of the total space F are induced by the bundle
structure of E → M and the smooth manifold structure of the
total space E , respectively.

Note: In the above sense, TM → M and TM⊥ → M of a
pseudo-Riemannian submanifold M ⊂ M are both subbundles
of TM|M → M.
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Tangent bundle and orthogonal bundle of pseudo-Riemannian submanifolds

Examples

Let f : Rn+1 → R, f (u1, . . . , un) =
∑
i

(ui )2 and consider

the ambient space Rn+1 equipped with its standard
Riemannian metric, denoted simply by 〈·, ·〉. Then

Sn = {f = 1} ⊂ Rn+1

is a Riemannian submanifold of (Rn+1, 〈·, ·〉) with
induced Riemannian metric

g := 〈·, ·〉|TSn×TSn .

The normal bundle of Sn ⊂ Rn+1, TSn⊥, is spanned by
the position vector field ξ ∈ X(Rn+1) along Sn,

ξ : p 7→ p ∀p ∈ Rn+1.

The tangent bundle of TSn, viewed as a subbundle of
TRn+1|Sn , is thus fibrewise given by

TpS
n = ker(〈ξp, ·〉) ⊂ TpRn+1.

(continued on next page)
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Tangent bundle and orthogonal bundle of pseudo-Riemannian submanifolds

Examples (continuation)

This means that a vector field X along Sn is tangential to
Sn if and only if 〈ξ,X 〉 ≡ 0. Note that the function f used
to define Sn fulfils f = 〈ξ, ξ〉.
Next consider Rn+1 but now equipped with a
pseudo-Riemannian metric given in canonical
coordinates by

〈·, ·〉ν :=
n−ν∑
i=1

dui ⊗ dui −
n∑

i=n−ν+1

dui ⊗ dui .

Let ξ ∈ X(Rn+1) denote the position vector field and
define f : Rn+1 → R, f := 〈ξ, ξ〉. Then the level sets
{f = −1} are called hyperboloids,

Hn
ν :=

{
〈ξ, ξ〉 =

n−ν+1∑
i=1

(ui )
2 −

n+1∑
i=n−ν+2

(ui )
2

= −1

}
⊂ Rn+1.

Hyperboloids in (Rn+1, 〈·, ·〉ν) are n-dimensional ps.-R.
manifolds with induced metric of index ν − 1.
(continued on next page)
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Tangent bundle and orthogonal bundle of pseudo-Riemannian submanifolds

Examples (continuation)

As for Sn,

TpH
n
ν = ker(〈ξp, ·〉ν) ⊂ TpRn+1

and
TpH

n
ν
⊥ = Rξp,

where Rξp is another commonly used notation for the
linear span of one vector, that is spanR{ξp}. In the case
n = 3, ν = 1, H3

1 is known as two-sheeted hyperboloid,
and for n = 3, ν = 2, H3

2 is the one-sheeted hyperboloid.

David Lindemann DG lecture 13 7. June 2020 21 / 22



END OF LECTURE 13

Next lecture:

frames of vector bundles

more subbundles

Killing vector fields
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