## Differential geometry

Lecture 13: Traces, raising and lowering indices, and vector bundles along pseudo-Riemannian submanifolds

David Lindemann

University of Hamburg
Department of Mathematics
Analysis and Differential Geometry \& RTG 1670
7. June 2020

1 Trace and induced scalar product in tensor bundles

2 Raising/Lowering indices

3 Tangent bundle and orthogonal bundle of pseudo-Riemannian submanifolds

## Recap of lecture 12:

- recalled definition of pseudo-Euclidean vector spaces

■ defined pseudo-Riemannian metrics \& pseudo-Riemannian manifolds

- defined arc-length of curves
- described pseudo-Riemannian metrics in local coordinates
- studied examples of pseudo-Riemannian manifolds, in particular Riemannian submanifolds of Riemannian manifolds

Recall the definition of the trace from linear algebra:

## Definition

Let $V$ be a real finite-dimensional vector space and $A \in \operatorname{End}(V) \cong V \otimes V^{*}$, so that for a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of $V$

$$
A=\sum_{i, j=1}^{n} a^{i}{ }_{j} v_{i} \otimes v_{j}^{*}
$$

The trace of $A$ is defined as

$$
\operatorname{tr}(A):=\sum_{i=1}^{n} a^{i}{ }_{i} .
$$

Note: The trace of an endomorphism is independent of the chosen basis.

## Examples

- $\operatorname{tr}\left(\mathrm{id}_{V}\right)=\operatorname{dim}(V)$,
- $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$ for all $A, B \in \operatorname{End}(V)$,
- $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for all $A, B \in \operatorname{End}(V)$,
- $\operatorname{tr}(v \otimes \omega)=\omega(v)$ for all $v \in V, \omega \in V^{*}$.
- if $A: I \rightarrow \mathrm{GL}(n)$ is a smooth curve, we have $\frac{\partial}{\partial t} \operatorname{det}(A)=\operatorname{tr}\left(A^{-1} \frac{\partial A}{\partial t}\right) \operatorname{det}(A)$

If $(V,\langle\cdot, \cdot\rangle)$ is a pseudo-Euclidean vector space, we can calculate the trace as follows:

## Lemma

Let $A \in \operatorname{End}(V)$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of $V$ w.r.t. $\langle\cdot, \cdot\rangle$. Then

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} \varepsilon_{i}\left\langle e_{i}, A e_{i}\right\rangle
$$

where $\varepsilon_{i}:=\left\langle e_{i}, e_{i}\right\rangle \in\{-1,1\}$ for all $1 \leq i \leq n$.

If we have a pseudo-Euclidean vector space $(V,\langle\cdot, \cdot\rangle)$, we can define a scalar product on tensor powers of $V$ and $V^{*}$.

## Definition

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of $(V,\langle\cdot, \cdot\rangle), A \in V^{\otimes r} \otimes\left(V^{*}\right)^{\otimes s}$, and write $\langle\cdot, \cdot\rangle=\sum_{i, j=1}^{n} g_{i j} e_{i}^{*} \otimes e_{j}^{*}$,

$$
A=\sum_{\substack{1 \leq i_{1}, \ldots, i_{i} \leq n \\ 1 \leq j_{1}, \ldots, j_{r} \leq n}} A^{i_{1} \ldots i_{i_{1}}}{ }_{j_{1} \ldots j_{s}} e_{i_{1}} \otimes \ldots \otimes e_{i_{r}} \otimes e_{j_{1}}^{*} \otimes \ldots \otimes e_{j_{s}}^{*} .
$$

Then

$$
\sum_{\substack{1 \leq i_{1}, \ldots, i_{r} \leq n \\ 1 \leq \\ 1 \leq 1 \\ 1 \leq 1_{1}, \ldots, \mu_{r} \leq n \\ 1 \leq J_{1}, \ldots, J_{r} \leq n}}^{\langle A, A\rangle} A^{i_{1} \ldots i_{r}}{ }_{j_{1} \ldots j_{s}} A^{l_{1} \ldots I_{r}}{ }_{J_{1} \ldots J_{s}} g_{i_{1} I_{1}} \cdot \ldots \cdot g_{i r I_{r}} \cdot g^{j_{1} J_{1}} \ldots \ldots g^{j_{s} J_{s}}
$$

defines a possibly indefinite symmetric bilinear form on $V^{\otimes r} \otimes\left(V^{*}\right)^{\otimes s}$. In the above formula the $g$-terms fulfil, when viewed as a symmetric matrix, $\left(g^{i j}\right):=\left(g_{i j}\right)^{-1}$.

By switching from pseudo-Euclidean vector spaces to pseudoRiemannian manifolds, we get the following fibrewise analogous definition:

## Definition

Let $(M, g)$ be a pseudo-Riemannian manifold, $A \in \mathcal{T}^{1,1}(M)$ an endomorphism field, $h \in \mathcal{T}^{0,2}(M)$ a symmetric ( 0,2 )-tensor field, and $B \in \mathcal{T}^{r, s}(M)$ for $r+s>0$ an arbitrary tensor field. Then the trace of $A$ is in local coordinates $\left(x^{1}, \ldots, x^{n}\right)$, so that $A=\sum A^{i}{ }_{j} \frac{\partial}{\partial x^{i}} \otimes d x^{j}$, given by

$$
\operatorname{tr}(A):=\sum_{i} A_{i}^{i} .
$$

The above term is invariant under coordinate change, which follows from fibrewise invariance of the choice of basis in $T_{p} M$ and the fact that the coordinate cotangent vector at each point are precisely the dual to the coordinate tangent vectors at that point. This means that $\operatorname{tr}_{g}(A) \in C^{\infty}(M)$.
(continued on next page)

## Definition (continuation)

The trace of $h$ with respect to $g$ is defined in local coordinates as

$$
\operatorname{tr}_{g}(h):=\sum_{i, j} h_{i j} g^{i j}
$$

As for the endomorphism field, $\operatorname{tr}_{g}(h)$ is invariant under coordinate change, but not invariant of the pseudo-Riemannian metric $g$. Furthermore, we define the induced pairing of $B$ with itself with respect to $g$ in the given local coordinates as
$g(B, B):=\sum B^{i_{1} \ldots i_{r}}{ }_{j_{1} \ldots j_{s}} \cdot B^{I_{1} \ldots I_{r}}{ }_{J_{1} \ldots J_{s}} \cdot g_{i_{1} I_{1}} \ldots \cdot g_{i_{r} I_{r}} \cdot g^{j_{1} J_{1}} \ldots . g^{j_{s} J_{s}}$, where

$$
B=\sum B^{i_{1} \ldots i_{r}}{ }_{j_{1} \ldots j_{s}} \frac{\partial}{\partial x^{i_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial x^{i_{r}}} \otimes d x^{j_{1}} \otimes \ldots \otimes d x^{j_{s}}
$$

and $\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}$ at each point when viewed as a symmetric matrix valued map. As for the trace, value of $g(B, B)$ does not depend on the choice of local coordinates which implies $g(B, B) \in C^{\infty}(M)$.

Note: One can similarly define a symmetric pairing $g$ in the bundle $T^{r, s} M \rightarrow M$, and not just for its local sections, which is an example of a possibly indefinite bundle metric.

## Example

For any pseudo-Riemannian manifold $(M, g)$ of dimension $n$ we have

$$
\operatorname{tr}_{g}(g)=g(g, g) \equiv n
$$

Next, we come to a process called raising, respectively lowering, indices of tensor fields. This is a most commonly used utility in theoretical physics, in particular general relativity.

## Proposition A

Let $(M, g)$ be a pseudo-Riemannian manifold. Then $T^{r, s} M \rightarrow M$ and $T^{r^{\prime}, s^{\prime}} M \rightarrow M$ are isomorphic as vector bundles if $r+s=r^{\prime}+s^{\prime}$.

## Proof:

■ first show that $T^{*} M \rightarrow M$ and $T M \rightarrow M$ are isomorphic
■ define $F: T M \rightarrow T^{*} M, \quad v \mapsto g(v, \cdot)$

- obtain $g(v, \cdot) \in T_{p}^{*} M$ for all $v \in T_{p} M$

■ $F$ is smooth, fibre-preserving, and at each point a linear isomorphism
(continued on next page)

## (continuation of proof)

- $F^{-1}$ is given by

$$
F^{-1}: T^{*} M \rightarrow T M, \quad \omega \mapsto g^{-1}(\omega, \cdot)
$$

where we use the pointwise identification $\left(T_{p}^{*} M\right)^{*}=T_{p} M$ and $g^{-1}$ is given in local coordinates by

$$
g^{-1}=\sum g^{i j} \frac{\partial}{\partial x^{i}} \otimes \frac{\partial}{\partial x^{j}}
$$

■ to show that $T^{r, s} M \rightarrow M$ and $T^{r^{\prime}, s^{\prime}} M \rightarrow M$ are isomorphic for arbitrary $r, s, r^{\prime}, s^{\prime}$ with $r+s=r^{\prime}+s^{\prime}$ one inductively uses entrywise isomorphisms
■ note: there are usually choices involved which vector or covector parts to change into covector and vector parts, respectively

## Remark

Proposition A is, in local coordinates, known as the process of lowering and raising indices. The isomorphisms of vector bundles $T^{r, s} M \rightarrow T^{r+1, s-1} M$ are denoted by $\sharp$ (read: sharp), and the isomorphisms $T^{r, s} M \rightarrow T^{r-1, s+1} M$ are denoted by $b$ (read: flat). Hence the name musical isomorphisms.

Our first application of the above is the generalization of the gradient of a function to pseudo-Riemannian manifolds:

## Definition

Let $(M, g)$ be a pseudo-Riemannian mfd. \& $f \in C^{\infty}(M)$. The gradient vector field of $f$ w.r.t. $g, \operatorname{grad}_{g}(f) \in \mathfrak{X}(M)$, is defined as

$$
\operatorname{grad}_{g}(f):=g^{-1}(d f) \in \mathfrak{X}(M) .
$$

In local coordinates $\left(x^{1}, \ldots, x^{n}\right), \operatorname{grad}_{g}(f)=\sum_{i, j=1}^{n} \frac{\partial f}{\partial x^{i}} g^{i j} \frac{\partial}{\partial x^{j}}$.

Gradient vector fields are important tools in the study of pseudo-Riemannian submanifolds:

## Lemma A

Let $(\bar{M}, g)$ be a pseudo-Riemannian manifold, $M \subset \bar{M}$ a pseudo-Riemannian submanifold of codimension $k$, and identify $T_{q} M=\iota_{*}\left(T_{q} M\right) \subset T_{q} \bar{M}$ for all $q \in M$, where $\iota$ is the inclusion. For $p \in M$ fixed let $f=\left(f^{1}, \ldots, f^{k}\right): U \rightarrow \mathbb{R}^{k}$, $U \subset \bar{M}$ open, $p \in U$, be any smooth map of maximal rank such that

$$
M \cap U=\{f=0\} \subset \bar{M}
$$

Then

$$
T_{q} M=\operatorname{ker}\left(d f_{q}^{1}\right) \cap \ldots \cap \operatorname{ker}\left(d f_{q}^{k}\right) \subset T_{q} \bar{M}
$$

and

$$
\left(T_{q} M\right)^{\perp}=\operatorname{span}_{\mathbb{R}}\left\{\operatorname{grad}_{g}\left(f^{1}\right)_{q}, \ldots, \operatorname{grad}_{g}\left(f^{k}\right)_{q}\right\} \subset T_{q} \bar{M}
$$

for all $q \in M \cap U$. In particular, $T_{q} M \oplus\left(T_{q} M\right)^{\perp}=T_{q} \bar{M}$ for all $q \in M \cap U$.

Proof: (next page)

## (continuation of proof)

- fix $q \in M \cap U$ and $v \in T_{q} M$

■ for any smooth curve $\gamma: I \rightarrow M \subset \bar{M}, \gamma^{\prime}(t)$ is tangential to $M \forall t \in I$, follows by using adapted coordinates

- choose a smooth curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow M \subset \bar{M}$ fulfilling $\gamma^{\prime}(0)=v$
■ $\rightsquigarrow \forall 1 \leq i \leq k$ :

$$
d f^{i}(v)=\left.\frac{\partial}{\partial t}\right|_{t=0}(f \circ \gamma)=\left.\frac{\partial}{\partial t}\right|_{t=0}(0)=0
$$

- hence: $T_{q} M \subset \operatorname{ker}\left(d f_{q}^{1}\right) \cap \ldots \cap \operatorname{ker}\left(d f_{q}^{k}\right)$
- for other direction: $f$ being of maximal rank implies $d f_{q}^{1}, \ldots, d f_{q}^{k}$ are linearly independent
- this implies
$\operatorname{dim}\left(\operatorname{ker}\left(d f_{q}^{1}\right) \cap \ldots \operatorname{ker}\left(d f_{q}^{k}\right)\right)=\operatorname{dim}\left(T_{q} \bar{M}\right)-k=\operatorname{dim}\left(T_{q} M\right)$.
- by comparing dimensions, obtain
$T_{q} M \supset \operatorname{ker}\left(d f_{q}^{1}\right) \cap \ldots \cap \operatorname{ker}\left(d f_{q}^{k}\right)$ (continued on next page)
(continuation of proof)
$\square$ for $\left(T_{q} M\right)^{\perp}=\operatorname{span}_{\mathbb{R}}\left\{\operatorname{grad}_{g}\left(f^{1}\right)_{q}, \ldots, \operatorname{grad}_{g}\left(f^{k}\right)_{q}\right\}$ use that $g$ is pointwise nondegenerate
- obtain that each nonzero vector in $\operatorname{span}_{\mathbb{R}}\left\{\operatorname{grad}_{g}\left(f^{1}\right)_{q}, \ldots, \operatorname{grad}_{g}\left(f^{k}\right)_{q}\right\}$ is not contained in $T_{q} M=\operatorname{ker}\left(d f_{q}^{1}\right) \cap \ldots \cap \operatorname{ker}\left(d f_{q}^{k}\right)$
- by $T_{q} M \oplus\left(T_{q} M\right)^{\perp}=T_{q} \bar{M}$ and comparing dimensions, the above claim follows

Question: How can we make sense of $T_{q} M \oplus\left(T_{q} M\right)^{\perp}=T_{q} \bar{M}$ in a coordinate free, global statement?
Answer: Introduce vector bundles along submanifolds and subbundles!

## Lemma B

Let $\pi_{E}: E \rightarrow \bar{M}$ be a vector bundle of rank $k$ and $M$ be a submanifold of $\bar{M}$. Then

$$
\begin{aligned}
& \pi_{\left.E\right|_{M}}:\left.E\right|_{M} \rightarrow M, \quad\left(\left.E\right|_{M}\right)_{p}:=\pi_{\left.E\right|_{M}}^{-1}(p):=\pi_{E}^{-1}(p) \quad \forall p \in M \\
& \left.E\right|_{M}:=\bigsqcup_{p \in M}\left(\left.E\right|_{M}\right)_{p}
\end{aligned}
$$

is a vector bundle of rank $k$ over $M$. It is called vector bundle along $M$.

## Proof:

- suffices to work in local coordinates
- w.l.o.g. assume that locally, $M$ is given by an open set in $\mathbb{R}^{\ell}, \ell \leq \operatorname{dim}(\bar{M})$, and the inclusion $M \subset \bar{M}$ is of the form $\iota:\left(x^{1}, \ldots, x^{\ell}\right) \mapsto\left(x^{1}, \ldots, x^{\ell}, 0, \ldots, 0\right) \in \mathbb{R}^{\operatorname{dim}(\bar{M})}$
■ next, apply vector bundle chart lemma to the restriction of, after possibly shrinking $U$, the transition functions of $E \rightarrow \bar{M}$ in local coordinates to $U \subset \mathbb{R}^{\operatorname{dim}(\bar{M})}$
■ obtain that the vector parts are, still, smooth

Heuristically, Lemma B means that we make the base manifold smaller but keep all possible vectors at each point in the vector bundle. Combining Lemma $A \& B$, we get the following:

## Definition

Let $(\bar{M}, g)$ be a pseudo-Riemannian manifold and $M \subset \bar{M}$ a pseudo-Riemannian submanifold of codimension $k$. Then the normal bundle of $M, T M^{\perp} \rightarrow M$, is defined as

$$
T M^{\perp}:=\bigsqcup_{p \in M}\left(T_{p} M\right)^{\perp}
$$

with projection induced by the tangent bundle of $\bar{M}$ along $M$, $\left.T \bar{M}\right|_{M} \rightarrow M$. In particular we have

$$
\left.T \bar{M}\right|_{M}=T M \oplus T M^{\perp},
$$

and the above direct sum is orthogonal with respect to $g$.
The above definition can be put into a more general context, namely that of subbundles. (next page)

## Definition

Let $\pi_{E}: E \rightarrow M$ be a vector bundle. Another vector bundle $\pi_{F}: F \rightarrow M$ is called subbundle of $E \rightarrow M$ if for all $p \in M$, $F_{p}$ is a linear subspace of $E_{p}$, the canonical injection

$$
F \hookrightarrow E,
$$

given fibrewise by the inclusion $F_{p} \subset E_{p}$, is an embedding, $\pi_{F}=\left.\pi_{E}\right|_{F}$, and for all local trivializations $\phi$ of $E$ the restrictions $\left.\phi\right|_{F}$ are local trivializations of $F$. This means that the bundle structure of $F \rightarrow M$ and the smooth manifold structure of the total space $F$ are induced by the bundle structure of $E \rightarrow M$ and the smooth manifold structure of the total space $E$, respectively.

Note: In the above sense, $T M \rightarrow M$ and $T M^{\perp} \rightarrow M$ of a pseudo-Riemannian submanifold $M \subset \bar{M}$ are both subbundles of $\left.T \bar{M}\right|_{M} \rightarrow M$.

## Examples

■ Let $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}, f\left(u^{1}, \ldots, u^{n}\right)=\sum_{i}\left(u^{i}\right)^{2}$ and consider the ambient space $\mathbb{R}^{n+1}$ equipped with its standard Riemannian metric, denoted simply by $\langle\cdot, \cdot\rangle$. Then

$$
S^{n}=\{f=1\} \subset \mathbb{R}^{n+1}
$$

is a Riemannian submanifold of $\left(\mathbb{R}^{n+1},\langle\cdot, \cdot\rangle\right)$ with induced Riemannian metric

$$
g:=\left.\langle\cdot, \cdot\rangle\right|_{T S^{n} \times T S^{n}} .
$$

The normal bundle of $S^{n} \subset \mathbb{R}^{n+1}, T S^{n \perp}$, is spanned by the position vector field $\xi \in \mathfrak{X}\left(\mathbb{R}^{n+1}\right)$ along $S^{n}$,

$$
\xi: p \mapsto p \quad \forall p \in \mathbb{R}^{n+1} .
$$

The tangent bundle of $T S^{n}$, viewed as a subbundle of $\left.T \mathbb{R}^{n+1}\right|_{S^{n}}$, is thus fibrewise given by

$$
T_{p} S^{n}=\operatorname{ker}\left(\left\langle\xi_{p}, \cdot\right\rangle\right) \subset T_{p} \mathbb{R}^{n+1}
$$

(continued on next page)

## Examples (continuation)

- This means that a vector field $X$ along $S^{n}$ is tangential to $S^{n}$ if and only if $\langle\xi, X\rangle \equiv 0$. Note that the function $f$ used to define $S^{n}$ fulfils $f=\langle\xi, \xi\rangle$.
- Next consider $\mathbb{R}^{n+1}$ but now equipped with a pseudo-Riemannian metric given in canonical coordinates by

$$
\langle\cdot, \cdot\rangle_{\nu}:=\sum_{i=1}^{n-\nu} d u^{i} \otimes d u^{i}-\sum_{i=n-\nu+1}^{n} d u^{i} \otimes d u^{i}
$$

Let $\xi \in \mathfrak{X}\left(\mathbb{R}^{n+1}\right)$ denote the position vector field and define $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}, f:=\langle\xi, \xi\rangle$. Then the level sets $\{f=-1\}$ are called hyperboloids,
$H_{\nu}^{n}:=\left\{\langle\xi, \xi\rangle=\sum_{i=1}^{n-\nu+1}\left(u^{i}\right)^{2}-\sum_{i=n-\nu+2}^{n+1}\left(u^{i}\right)^{2}=-1\right\} \subset \mathbb{R}^{n+1}$
Hyperboloids in $\left(\mathbb{R}^{n+1},\langle\cdot, \cdot\rangle_{\nu}\right)$ are $n$-dimensional ps.-R. manifolds with induced metric of index $\nu-1$.
(continued on next page)

## Examples (continuation)

- As for $S^{n}$,

$$
T_{p} H_{\nu}^{n}=\operatorname{ker}\left(\left\langle\xi_{p}, \cdot\right\rangle_{\nu}\right) \subset T_{p} \mathbb{R}^{n+1}
$$

and

$$
T_{p} H_{\nu}^{n \perp}=\mathbb{R} \xi_{p}
$$

where $\mathbb{R} \xi_{p}$ is another commonly used notation for the linear span of one vector, that is $\operatorname{span}_{\mathbb{R}}\left\{\xi_{p}\right\}$. In the case $n=3, \nu=1, H_{1}^{3}$ is known as two-sheeted hyperboloid, and for $n=3, \nu=2, H_{2}^{3}$ is the one-sheeted hyperboloid.

## END OF LECTURE 13

## Next lecture:

- frames of vector bundles
- more subbundles

■ Killing vector fields

