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Recap of lecture 11:

studied tensor product of vector bundles

defined tensor fields, their possible contractions,
pullback & pushforward

discussed tensor fields as C∞(M)-multilinear maps

defined Lie derivative of tensor fields, showed that it is a
tensor derivation
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Pseudo-Euclidean vector spaces

Recall the following from linear algebra:

Remark

a pseudo-Euclidean scalar product on a
finite-dimensional real vector space V is a nondegenerate
symmetric bilinear map

〈·, ·〉 : V × V → R

nondegenerate := @ proper linear subspace W ⊂ V , such
that 〈·, ·〉|W×V ≡ 0

V , together with 〈·, ·〉 is called pseudo-Euclidean vector
space

the index of 〈·, ·〉 is the number of its negative eigenvalues
when viewed as symmetric dim(V )× dim(V )-matrix

the index of a pseudo-Euclidean scalar product is
basis-independent [Sylvester’s law of inertia]

if the index vanishes, (V , 〈·, ·〉) is called Euclidean vector
space
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Pseudo-Euclidean vector spaces

Examples

Rn together with the Euclidean scalar product that is
given by the dot-product

〈v ,w〉 =
n∑

i=1

v iw i ,

Rn+1 together with the Minkowski scalar product

〈v ,w〉 = −vn+1wn+1 +
n∑

i=1

v iw i .

Pseudo-Euclidean scalar product allow us to define the length
of vectors and characterize vectors based on the sign of the
scalar product with themselves. (next page)
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Pseudo-Euclidean vector spaces

Definition

The length of v ∈ V , (V , 〈·, ·〉) pseudo-Euclidean vector space,
is defined as

‖v‖ :=
√
|〈v , v〉|.

‖ · ‖ is a norm on V if and only if 〈·, ·〉 is Euclidean. One
further says that a vector v is

spacelike if 〈v , v〉 > 0,

timelike if 〈v , v〉 < 0,

null if 〈v , v〉 = 0.

If 〈·, ·〉 is Euclidean, each nonzero vector has positive length.

Recall: Two pseudo-Euclidean vector spaces (V , 〈·, ·〉V ) and
(W , 〈·, ·〉W ) are called isometric if ∃ a linear isomorphism
A : V → W , such that 〈·, ·〉V = 〈A·,A·〉W . A is then called
(linear) isometry.
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Pseudo-Euclidean vector spaces

 have the following classification result:

Proposition

Two finite-dimensional pseudo-Euclidean vector spaces are
isometric if and only if their dimension and index of the scalar
product coincide.

The above proposition means that any given pseudo-Euclidean
vector space (V , 〈·, ·〉), dim(V ) = n, index of 〈·, ·〉 = ν, is iso-
metric to (Rn, 〈·, ·〉ν), where

〈v , v〉ν :=
n−ν∑
i=1

(v i )
2 −

n∑
i=n−ν+1

(v i )
2
.

Note: A pseudo-Euclidean scalar product might be interpreted
as an element in Sym2(V ∗) which denotes the set of symmetric
two-tensors in V ∗ ⊗ V ∗.
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Pseudo-Euclidean vector spaces

For our studies we need the concept of orthogonality.

Definition

Let (V , 〈·, ·〉) be a ps.-E. VS, W ⊂ V a ps.-E. linear subspace,
meaning that 〈·, ·〉|W×W is a pseudo-Euclidean scalar product
on W . Then the orthogonal complement W⊥ ⊂ V of W in
V with respect to 〈·, ·〉 is given by

W⊥ := {v ∈ V | 〈v ,w〉 = 0 ∀w ∈W }.

W⊥ is a linear subspace of V of dimension
dim(W⊥) = dim(V )− dim(W ) and

W ⊕W⊥ = V .

If W ⊂ V is any linear subspace of V , we will also use the
notation W⊥ for its orthogonal complement. Two vectors
v ,w ∈ V are called orthogonal if 〈v ,w〉 = 0, two linear
subspaces V1,V2 of V are called orthogonal to each other if
〈v1, v2〉 = 0 for all v1 ∈ V1, v2 ∈ V2. A basis {v1, . . . , vn} of V
is an orthogonal basis with respect to 〈·, ·〉 if 〈vi , vj〉 = 0 for
all i 6= j , and orthonormal basis if additionally ‖vi‖ = 1 for all
1 ≤ i ≤ n.
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Pseudo-Euclidean vector spaces

Some facts:

every pseudo-Euclidean vector space admits an
orthonormal basis

the index ν of a pseudo-Euclidean scalar product coincides
with the number of elements in {i | 〈vi , vi 〉 = −1} for any
given orthonormal basis {v1, . . . , vn} of (V , 〈·, ·〉)
(W⊥)⊥ = W for all linear subspaces W ⊂ V

W is a pseudo-Euclidean linear subspace ⇔
W ∩W⊥ = {0} ⇔ V = W ⊕W⊥

linear isometries map orthonormal (orthogonal) bases to
orthonormal (orthogonal) bases

Question: How do we, conceptually, go from pseudo-Euclidean
vector spaces to smooth manifolds?
Answer: For each point p in a given manifold M define a pseudo-
Euclidean scalar product on TpM, such that this assignment
varies smoothly on M!
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Pseudo-Riemannian manifolds

Definition

A pseudo-Riemannian metric with index 0 ≤ ν ≤ dim(M) on
a smooth mfd. M is a symmetric (0, 2)-tensor field
g ∈ T0,2(M), g : p 7→ gp ∈ Sym2(T ∗p M), such that for all
p ∈ M gp is a pseudo-Euclidean scalar product of index ν on
TpM. This in particular means that

g(X ,Y ) = g(Y ,X ) ∈ C∞(M)

for all vector fields X ,Y ∈ X(M). If ν = 0, g is called
Riemannian metric. In local coordinates (x1, . . . , xn) on
U ⊂ M, g is of the form

g =
n∑

i,j=1

gijdx
i ⊗ dx j ,

where

gij := g

(
∂

∂x i
,
∂

∂x j

)
∈ C∞(U) ∀1 ≤ i , j ≤ n.
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Pseudo-Riemannian manifolds

Remark

The symmetry condition for g is equivalent to requiring
that in all local coordinates gij = gji . This means that
(gij), viewed as a n × n-matrix valued smooth map on
the coordinate domain, is at each point a symmetric
matrix.

If we write in local coordinates X =
n∑

i=1

X i ∂
∂x i

,

Y =
n∑

i=1

Y i ∂
∂x i

, we obtain the local formula for g(X ,Y )

g(X ,Y ) =
n∑

i,j=1

gijX
iY j .

Heuristically: Plug in X in the left half and Y in the right
half of the tensor terms in g .
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Pseudo-Riemannian manifolds

Now we can finally define the objects of main interest of this
course:

Definition

A smooth manifold M equipped with a (pseudo)-Riemannian
metric g is called (pseudo)-Riemannian manifold.

An immediate use of a Riemannian metric is:

Definition

Let (M, g) be a Riemannian manifold and γ : I → M a smooth
curve. Then the arc-length, or simply length, of γ is defined as

L(γ) =

∫
I

√
g(γ′, γ′)dt.

Note that L(γ) =∞ is allowed.
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Pseudo-Riemannian manifolds

Let us take a look at examples of pseudo-Riemannian manifolds:

Examples

Any pseudo-Euclidean vector space (V , 〈·, ·〉) is, viewed
as a smooth manifold with gp := 〈·, ·〉 for all p ∈ V . If
V = Rn equipped with its canonical coordinates and
Euclidean scalar product at each tangent space, the
induced Riemannian metric in canonical coordinates
(u1, . . . , un) is given by

g =
n∑

i=1

dui ⊗ dui .

Any smooth submanifold M ⊂ Rn equipped with

g ∈ T
0,2(M), gp = 〈·, ·〉|TpM×TpM ,

for all p ∈ M, that is the restriction of the Euclidean
scalar product at origin p ∈ Rn to the tangent space of
M at p.

(continued on next page)
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Pseudo-Riemannian manifolds

Examples (continuation)

More generally, any smooth submanifold of a smooth
Riemannian manifold is by restriction of the metric to
the tangent bundle of the smooth submanifold a
Riemannian manifold.

If (M, gM) and (N, gN) are pseudo-Riemannian manifolds
and gM , gN , have index νM , νN , respectively, the product
M × N is a pseudo-Riemannian manifold of index
νM + νN . The metric on M × N is given by

gM×N := gM + gN ,

gM×N((v ,w), (v ,w)) = gM(v , v) + gN(w ,w),

for all (v ,w) ∈ TM ⊕ TN ∼= T (M × N). The metric
gM×N is called product metric.
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Pseudo-Riemannian manifolds

When studying submanifolds of pseudo-Riemannian manifolds
with index 1 ≤ ν < dim(M), one has to be very careful as the
restriction of the metric might not be a pseudo-Riemannian
metric on the submanifold, e.g. the diagonal line in the 2-dim.
Minkowski space. However, we have the following definition:

Definition

Let (N, g) be a pseudo-Riemannian manifold and M ⊂ N a
smooth submanifold. M is called pseudo-Riemannian
submanifold of N if

g := g |TM×TM

is a pseudo-Riemannian metric on M.

Note: Restricting g to TM × TM means that we restrict the
basepoint of g to M ⊂ N and the vectors we are allowed to
plug in to vectors in TM ⊂ TN.
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Pseudo-Riemannian manifolds

While not every manifold admits a pseudo-Riemannian metric
for any given index, we have the following existence result for
Riemannian metrics:

Proposition

Let M be a smooth manifold. Then there exists a Riemannian
metric g on M.

Proof:

choose countable atlas {(ϕi ,Ui ) | i ∈ I} of M and
countable locally finite subordinate partition of unity
{bi , i ∈ I} of M

define g :=
∑
i∈I

bi 〈dϕ·, dϕ·〉 =
∑
i∈I

biϕ
∗〈·, ·〉, where 〈·, ·〉

denotes standard Riemannian metric on Rdim(M)

check that g well-defined since sum locally finite and at
each point positive definite

Note: g is far from unique!
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Pseudo-Riemannian manifolds

We know what diffeomorphic means for manifolds, and isomet-
ric for pseudo-Euclidean vector spaces. For pseudo-Riemannian
manifolds, the two definitions are combined:

Definition

Let (M, g) and (N, h) be pseudo-Riemannian manifolds and
F : M → N a diffeomorphism. Then F is called an isometry if
F ∗h = g or, equivalently, F∗g = h. One checks that the first
condition is equivalent to

gp(Xp,Yp) = hF (p)(dFp(Xp), dFp(Yp))

for all X ,Y ∈ X(M) and all p ∈ M, meaning that pointwise
dFp is a linear isometry. The two pseudo-Riemannian
manifolds (M, g) and (N, h) are then called isometric.

Note: The isometries F : M → M for (M, g) form a group, the
isometry group of (M, g), which is denoted by Isom(M, g).
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Pseudo-Riemannian manifolds

Examples

Every orthogonal transformation A ∈ O(n + 1) is, by
definition, an isometry of Rn+1 equipped with the standard
Riemannian metric given pointwise by the Euclidean scalar
product 〈·, ·〉.
Since each A ∈ O(n + 1) restricts to a diffeomorphism of
Sn ⊂ Rn+1, it is an isometry of (Sn, 〈·, ·〉|TSn×TSn ). The
Riemannian metric 〈·, ·〉|TSn×TSn is sometimes called the
round metric.

The upper half plane H := {(x , y) ∈ R2 | y > 0} equipped
with the Riemannian Poincaré metric

g =
1

y 2
(dx2 + dy 2),

is called the Poincaré half-plane model.

(continued on next page)
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Pseudo-Riemannian manifolds

Examples (continuation)

When viewed as a subset of C via H 3 (x , y) 7→ x + iy ∈ C,
one obtains an isometric action of

PSL(2,R) = SL(2,R)/∼, A ∼ B :⇔ A = ±B

on H ⊂ C defined by

µ : PSL(2,R)× H → H,

(
a b
c d

)
· z :=

az + b

cz + d
.
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Pseudo-Riemannian manifolds

coordinate change in M  pointwise change of basis in TM
We obtain the following transformation rule for ps.-R. metrics:

Lemma

Let (M, g) be a pseudo-Riemannian manifold and
ϕ = (x1, . . . , xn), ψ = (y 1, . . . , yn), be local coordinate
systems on U ⊂ M, respectively V ⊂ M, such that
U ∩ V 6= ∅. Denote on U ∩ V

g =
∑
i,j

gijdx
i ⊗ dx j =

∑
i,j

g̃ijdy
i ⊗ dy j .

ϕ and ψ are related by (x1, . . . , xn) = F (y 1, . . . , yn) on U ∩ V ,
where F : ψ(U ∩ V )→ ϕ(U ∩ V ).Then the matrix valued
maps (gij) and (g̃ij) in the above equation are related by

(g̃ij)|p = dFT
ψ(p) · (gij)|ϕ−1(F (ψ(p))) · dFψ(p).

Proof: Follows by considering coordinate representations of
(gij) and (g̃ij), writing down the pullback of (gij) with respect to
F , and comparing the prefactors.
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END OF LECTURE 12

Next lecture:

trace with respect to a pseudo-Riemannian metric

induced tensor bundle metric

raising/lowering indices

subbundles, in particular tangent bundles of submanifolds
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