Differential geometry Lecture 12: Pseudo-Riemannian manifolds

David Lindemann

University of Hamburg Department of Mathematics Analysis and Differential Geometry & RTG 1670

5. June 2020

Pseudo-Euclidean vector spaces

2 Pseudo-Riemannian manifolds

Recap of lecture 11:

- studied tensor product of vector bundles
- defined tensor fields, their possible contractions, pullback & pushforward
- discussed tensor fields as $C^{\infty}(M)$ -multilinear maps
- defined Lie derivative of tensor fields, showed that it is a tensor derivation

Recall the following from linear algebra:

Remark

 a pseudo-Euclidean scalar product on a finite-dimensional real vector space V is a nondegenerate symmetric bilinear map

$$\langle \cdot, \cdot
angle : {m V} imes {m V}
ightarrow {\mathbb R}$$

- nondegenerate := \nexists proper linear subspace $W \subset V$, such that $\langle \cdot, \cdot \rangle|_{W \times V} \equiv 0$
- *V*, together with $\langle \cdot, \cdot \rangle$ is called **pseudo-Euclidean vector** space
- the index of (·, ·) is the number of its negative eigenvalues when viewed as symmetric dim(V) × dim(V)-matrix
- the index of a pseudo-Euclidean scalar product is basis-independent [Sylvester's law of inertia]
- if the index vanishes, $(V, \langle \cdot, \cdot \rangle)$ is called Euclidean vector space

Examples

 Rⁿ together with the Euclidean scalar product that is given by the dot-product

$$\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{i=1}^{n} \mathbf{v}^{i} \mathbf{w}^{i},$$

• \mathbb{R}^{n+1} together with the **Minkowski scalar product**

$$\langle \mathbf{v}, \mathbf{w} \rangle = -\mathbf{v}^{n+1}\mathbf{w}^{n+1} + \sum_{i=1}^{n} \mathbf{v}^{i}\mathbf{w}^{i}.$$

Pseudo-Euclidean scalar product allow us to define the **length of vectors** and characterize vectors based on the **sign** of the scalar product with themselves. (next page)

Definition

The **length** of $v \in V$, $(V, \langle \cdot, \cdot \rangle)$ pseudo-Euclidean vector space, is defined as

$$\|\mathbf{v}\| := \sqrt{|\langle \mathbf{v}, \mathbf{v} \rangle|}.$$

 $\|\cdot\|$ is a **norm** on V if and only if $\langle\cdot,\cdot\rangle$ is Euclidean. One further says that a vector v is

- **spacelike** if $\langle v, v \rangle > 0$,
- **timelike** if $\langle v, v \rangle < 0$,
- **null** if $\langle v, v \rangle = 0$.

If $\langle \cdot, \cdot \rangle$ is **Euclidean**, each nonzero vector has **positive length**.

Recall: Two pseudo-Euclidean vector spaces $(V, \langle \cdot, \cdot \rangle_V)$ and $(W, \langle \cdot, \cdot \rangle_W)$ are called **isometric** if \exists a linear isomorphism $A : V \to W$, such that $\langle \cdot, \cdot \rangle_V = \langle A \cdot, A \cdot \rangle_W$. A is then called **(linear) isometry**.

→ have the following classification result:

Proposition

Two finite-dimensional pseudo-Euclidean vector spaces are isometric if and only if their **dimension** and **index** of the scalar product **coincide**.

The above proposition means that any given pseudo-Euclidean vector space $(V, \langle \cdot, \cdot \rangle)$, dim(V) = n, index of $\langle \cdot, \cdot \rangle = \nu$, is isometric to $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\nu})$, where

$$\langle v, v \rangle_{\nu} := \sum_{i=1}^{n-\nu} (v^i)^2 - \sum_{i=n-\nu+1}^n (v^i)^2$$

Note: A pseudo-Euclidean scalar product might be interpreted as an element in $\text{Sym}^2(V^*)$ which denotes the set of symmetric two-tensors in $V^* \otimes V^*$.

For our studies we need the concept of orthogonality.

Definition

Let $(V, \langle \cdot, \cdot \rangle)$ be a ps.-E. VS, $W \subset V$ a ps.-E. linear subspace, meaning that $\langle \cdot, \cdot \rangle|_{W \times W}$ is a pseudo-Euclidean scalar product on W. Then the **orthogonal complement** $W^{\perp} \subset V$ of W in V with respect to $\langle \cdot, \cdot \rangle$ is given by

 $W^{\perp} := \{ v \in V \mid \langle v, w \rangle = 0 \quad \forall w \in W \}.$

 W^{\perp} is a linear subspace of V of dimension $\dim(W^{\perp}) = \dim(V) - \dim(W)$ and

 $W \oplus W^{\perp} = V.$

If $W \subset V$ is any linear subspace of V, we will also use the notation W^{\perp} for its orthogonal complement. Two vectors $v, w \in V$ are called **orthogonal** if $\langle v, w \rangle = 0$, two linear subspaces V_1, V_2 of V are called **orthogonal** to each other if $\langle v_1, v_2 \rangle = 0$ for all $v_1 \in V_1$, $v_2 \in V_2$. A basis $\{v_1, \ldots, v_n\}$ of V is an **orthogonal basis** with respect to $\langle \cdot, \cdot \rangle$ if $\langle v_i, v_j \rangle = 0$ for all $i \neq j$, and **orthonormal basis** if additionally $||v_i|| = 1$ for all $1 \leq i \leq n$.

Some facts:

- every pseudo-Euclidean vector space admits an orthonormal basis
- the index ν of a pseudo-Euclidean scalar product coincides with the number of elements in $\{i \mid \langle v_i, v_i \rangle = -1\}$ for any given orthonormal basis $\{v_1, \ldots, v_n\}$ of $(V, \langle \cdot, \cdot \rangle)$
- $(W^{\perp})^{\perp} = W$ for all linear subspaces $W \subset V$
- W is a pseudo-Euclidean linear subspace \Leftrightarrow $W \cap W^{\perp} = \{0\} \Leftrightarrow V = W \oplus W^{\perp}$
- linear isometries map orthonormal (orthogonal) bases to orthonormal (orthogonal) bases

Question: How do we, conceptually, go from pseudo-Euclidean vector spaces to smooth manifolds?

Answer: For each point p in a given manifold M define a pseudo-Euclidean scalar product on T_pM , such that this assignment **varies smoothly** on M!

Definition

A pseudo-Riemannian metric with index $0 \le \nu \le \dim(M)$ on a smooth mfd. *M* is a symmetric (0,2)-tensor field $g \in T^{0,2}(M), g : p \mapsto g_p \in \text{Sym}^2(T_p^*M)$, such that for all $p \in M g_p$ is a pseudo-Euclidean scalar product of index ν on T_pM . This in particular means that

 $g(X,Y) = g(Y,X) \in C^{\infty}(M)$

for all vector fields $X, Y \in \mathfrak{X}(M)$. If $\nu = 0, g$ is called **Riemannian metric**. In local coordinates (x^1, \ldots, x^n) on $U \subset M, g$ is of the form

$$g = \sum_{i,j=1}^n g_{ij} dx^i \otimes dx^j,$$

where

$$g_{ij} := g\left(rac{\partial}{\partial x^i}, rac{\partial}{\partial x^j}
ight) \in C^\infty(U) \hspace{1em} orall 1 \leq i,j \leq n.$$

Remark

- The symmetry condition for g is equivalent to requiring that in all local coordinates g_{ij} = g_{jj}. This means that (g_{ij}), viewed as a n × n-matrix valued smooth map on the coordinate domain, is at each point a symmetric matrix.
- If we write in local coordinates $X = \sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}$,

$$Y = \sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial x^{i}}$$
, we obtain the **local formula** for $g(X, Y)$

$$g(X,Y) = \sum_{i,j=1}^{n} g_{ij} X^{i} Y^{j}.$$

• Heuristically: Plug in X in the left half and Y in the right half of the tensor terms in g.

Now we can finally define the objects of **main interest** of this course:

Definition

A smooth manifold M equipped with a (pseudo)-Riemannian metric g is called **(pseudo)-Riemannian manifold**.

An immediate use of a Riemannian metric is:

Definition

Let (M, g) be a Riemannian manifold and $\gamma : I \to M$ a smooth curve. Then the **arc-length**, or simply **length**, of γ is defined as

$$L(\gamma) = \int_{I} \sqrt{g(\gamma', \gamma')} dt.$$

Note that $L(\gamma) = \infty$ is allowed.

Let us take a look at examples of pseudo-Riemannian manifolds:

Examples

• Any pseudo-Euclidean vector space $(V, \langle \cdot, \cdot \rangle)$ is, viewed as a smooth manifold with $g_p := \langle \cdot, \cdot \rangle$ for all $p \in V$. If $V = \mathbb{R}^n$ equipped with its canonical coordinates and Euclidean scalar product at **each** tangent space, the induced Riemannian metric in canonical coordinates (u^1, \ldots, u^n) is given by

$$g=\sum_{i=1}^n du^i\otimes du^i.$$

Any smooth submanifold $M \subset \mathbb{R}^n$ equipped with

$$g \in \mathfrak{T}^{0,2}(M), \quad g_{P} = \langle \cdot, \cdot \rangle |_{T_{P}M \times T_{P}M},$$

for all $p \in M$, that is the **restriction of the Euclidean** scalar product at origin $p \in \mathbb{R}^n$ to the tangent space of M at p.

(continued on next page)

Examples (continuation)

- More generally, any smooth submanifold of a smooth Riemannian manifold is by restriction of the metric to the tangent bundle of the smooth submanifold a Riemannian manifold.
- If (M, g_M) and (N, g_N) are pseudo-Riemannian manifolds and g_M , g_N , have index ν_M , ν_N , respectively, the **product** $M \times N$ is a pseudo-Riemannian manifold of index $\nu_M + \nu_N$. The metric on $M \times N$ is given by

 $g_{M \times N} := g_M + g_N,$ $g_{M \times N}((v, w), (v, w)) = g_M(v, v) + g_N(w, w),$ for all $(v, w) \in TM \oplus TN \cong T(M \times N)$. The metric $g_{M \times N} \text{ is called product metric.}$ When studying submanifolds of pseudo-Riemannian manifolds with index $1 \le \nu < \dim(M)$, one has to be very careful as the restriction of the metric **might not be a pseudo-Riemannian metric** on the submanifold, e.g. the diagonal line in the 2-dim. Minkowski space. However, we have the following definition:

Definition

Let (N,\overline{g}) be a pseudo-Riemannian manifold and $M \subset N$ a smooth submanifold. *M* is called pseudo-Riemannian submanifold of *N* if

$$g := \overline{g}|_{TM \times TM}$$

is a pseudo-Riemannian metric on M.

Note: Restricting g to $TM \times TM$ means that we restrict the **basepoint** of \overline{g} to $M \subset N$ and the **vectors** we are allowed to plug in to vectors in $TM \subset TN$.

While not every manifold admits a pseudo-Riemannian metric for any given index, we have the following existence result for **Riemannian metrics**:

Proposition

Let M be a smooth manifold. Then there **exists** a Riemannian metric g on M.

Proof:

choose countable atlas {(φ_i, U_i) | i ∈ I} of M and countable locally finite subordinate partition of unity {b_i, i ∈ I} of M

• define
$$g := \sum_{i \in I} b_i \langle d\varphi \cdot, d\varphi \cdot \rangle = \sum_{i \in I} b_i \varphi^* \langle \cdot, \cdot \rangle$$
, where $\langle \cdot, \cdot \rangle$

denotes standard Riemannian metric on $\mathbb{R}^{\dim(M)}$

 check that g well-defined since sum locally finite and at each point positive definite

Note: *g* is **far** from unique!

We know what **diffeomorphic** means for manifolds, and **isometric** for pseudo-Euclidean vector spaces. For pseudo-Riemannian manifolds, the two definitions are combined:

Definition

Let (M, g) and (N, h) be pseudo-Riemannian manifolds and $F: M \to N$ a **diffeomorphism**. Then F is called an **isometry** if $F^*h = g$ or, equivalently, $F_*g = h$. One checks that the first condition is equivalent to

 $g_{\rho}(X_{\rho}, Y_{\rho}) = h_{F(\rho)}(dF_{\rho}(X_{\rho}), dF_{\rho}(Y_{\rho}))$

for all $X, Y \in \mathfrak{X}(M)$ and all $p \in M$, meaning that pointwise dF_p is a **linear isometry**. The two pseudo-Riemannian manifolds (M, g) and (N, h) are then called **isometric**.

Note: The isometries $F : M \to M$ for (M, g) form a group, the isometry group of (M, g), which is denoted by Isom(M, g).

Examples

- Every orthogonal transformation $A \in O(n + 1)$ is, by definition, an isometry of \mathbb{R}^{n+1} equipped with the standard Riemannian metric given pointwise by the Euclidean scalar product $\langle \cdot, \cdot \rangle$.
- Since each A ∈ O(n + 1) restricts to a diffeomorphism of Sⁿ ⊂ ℝⁿ⁺¹, it is an isometry of (Sⁿ, ⟨·, ·⟩|_{TSⁿ×TSⁿ}). The Riemannian metric ⟨·, ·⟩|_{TSⁿ×TSⁿ} is sometimes called the round metric.
- The upper half plane $H := \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$ equipped with the Riemannian **Poincaré metric**

$$g=\frac{1}{y^2}(dx^2+dy^2),$$

is called the Poincaré half-plane model.

(continued on next page)

Examples (continuation)

When viewed as a subset of \mathbb{C} via $H \ni (x, y) \mapsto x + iy \in \mathbb{C}$, one obtains an **isometric action** of

$$\mathrm{PSL}(2,\mathbb{R}) = \mathrm{SL}(2,\mathbb{R})/_{\sim}, \quad A \sim B : \Leftrightarrow A = \pm B$$

on $H \subset \mathbb{C}$ defined by

$$\mu: \mathrm{PSL}(2,\mathbb{R}) imes H o H, \quad \begin{pmatrix} \mathsf{a} & b \\ \mathsf{c} & d \end{pmatrix} \cdot \mathsf{z} := rac{\mathsf{a} \mathsf{z} + b}{\mathsf{c} \mathsf{z} + d}.$$

coordinate change in $M \rightsquigarrow$ pointwise change of basis in TMWe obtain the following transformation rule for ps.-R. metrics:

Lemma

Let (M, g) be a pseudo-Riemannian manifold and $\varphi = (x^1, \ldots, x^n), \ \psi = (y^1, \ldots, y^n)$, be **local coordinate** systems on $U \subset M$, respectively $V \subset M$, such that $U \cap V \neq \emptyset$. Denote on $U \cap V$

$$g = \sum_{i,j} g_{ij} dx^i \otimes dx^j = \sum_{i,j} \widetilde{g}_{ij} dy^i \otimes dy^j.$$

 φ and ψ are related by $(x^1, \ldots, x^n) = F(y^1, \ldots, y^n)$ on $U \cap V$, where $F : \psi(U \cap V) \to \varphi(U \cap V)$. Then the **matrix valued maps** (g_{ij}) and (\tilde{g}_{ij}) in the above equation are related by

 $(\widetilde{g}_{ij})|_{arphi}=d\mathcal{F}_{\psi(arphi)}^{\,\mathcal{T}}\cdot(g_{ij})|_{arphi^{-1}(\mathcal{F}(\psi(arphi)))}\cdot d\mathcal{F}_{\psi(arphi)}.$

Proof: Follows by considering **coordinate representations** of (g_{ij}) and (\tilde{g}_{ij}) , writing down the pullback of (g_{ij}) with respect to F, and comparing the prefactors.

END OF LECTURE 12

Next lecture:

- trace with respect to a pseudo-Riemannian metric
- induced tensor bundle metric
- raising/lowering indices
- subbundles, in particular tangent bundles of submanifolds