Differential geometry

Lecture 12: Pseudo-Riemannian manifolds

David Lindemann

University of Hamburg
Department of Mathematics
Analysis and Differential Geometry \& RTG 1670

5. June 2020

1 Pseudo-Euclidean vector spaces

2 Pseudo-Riemannian manifolds

Recap of lecture 11:

- studied tensor product of vector bundles
- defined tensor fields, their possible contractions, pullback \& pushforward
■ discussed tensor fields as $C^{\infty}(M)$-multilinear maps
■ defined Lie derivative of tensor fields, showed that it is a tensor derivation

Recall the following from linear algebra:

Remark

- a pseudo-Euclidean scalar product on a finite-dimensional real vector space V is a nondegenerate symmetric bilinear map

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}
$$

■ nondegenerate $:=\nexists$ proper linear subspace $W \subset V$, such that $\langle\cdot, \cdot\rangle \mid w \times v \equiv 0$
■ V, together with $\langle\cdot, \cdot\rangle$ is called pseudo-Euclidean vector space
■ the index of $\langle\cdot, \cdot\rangle$ is the number of its negative eigenvalues when viewed as symmetric $\operatorname{dim}(V) \times \operatorname{dim}(V)$-matrix

■ the index of a pseudo-Euclidean scalar product is basis-independent [Sylvester's law of inertia]
■ if the index vanishes, $(V,\langle\cdot, \cdot\rangle)$ is called Euclidean vector space

Examples

■ \mathbb{R}^{n} together with the Euclidean scalar product that is given by the dot-product

$$
\langle v, w\rangle=\sum_{i=1}^{n} v^{i} w^{i}
$$

■ \mathbb{R}^{n+1} together with the Minkowski scalar product

$$
\langle v, w\rangle=-v^{n+1} w^{n+1}+\sum_{i=1}^{n} v^{i} w^{i}
$$

Pseudo-Euclidean scalar product allow us to define the length of vectors and characterize vectors based on the sign of the scalar product with themselves. (next page)

Definition

The length of $v \in V,(V,\langle\cdot, \cdot\rangle)$ pseudo-Euclidean vector space, is defined as

$$
\|v\|:=\sqrt{|\langle v, v\rangle|} .
$$

$\|\cdot\|$ is a norm on V if and only if $\langle\cdot, \cdot\rangle$ is Euclidean. One further says that a vector v is

- spacelike if $\langle v, v\rangle>0$,
- timelike if $\langle v, v\rangle<0$,

■ null if $\langle v, v\rangle=0$.
If $\langle\cdot, \cdot\rangle$ is Euclidean, each nonzero vector has positive length.
Recall: Two pseudo-Euclidean vector spaces ($V,\langle\cdot, \cdot\rangle_{V}$) and $\left(W,\langle\cdot, \cdot\rangle_{W}\right)$ are called isometric if \exists a linear isomorphism $A: V \rightarrow W$, such that $\langle\cdot, \cdot\rangle_{V}=\langle A \cdot, A \cdot\rangle_{W} . A$ is then called (linear) isometry.
\rightsquigarrow have the following classification result:

Proposition

Two finite-dimensional pseudo-Euclidean vector spaces are isometric if and only if their dimension and index of the scalar product coincide.

The above proposition means that any given pseudo-Euclidean vector space $(V,\langle\cdot, \cdot\rangle), \operatorname{dim}(V)=n$, index of $\langle\cdot, \cdot\rangle=\nu$, is isometric to $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle_{\nu}\right)$, where

$$
\langle v, v\rangle_{\nu}:=\sum_{i=1}^{n-\nu}\left(v^{i}\right)^{2}-\sum_{i=n-\nu+1}^{n}\left(v^{i}\right)^{2}
$$

Note: A pseudo-Euclidean scalar product might be interpreted as an element in $\operatorname{Sym}^{2}\left(V^{*}\right)$ which denotes the set of symmetric two-tensors in $V^{*} \otimes V^{*}$.

For our studies we need the concept of orthogonality.

Definition

Let $(V,\langle\cdot, \cdot\rangle)$ be a ps.-E. VS, $W \subset V$ a ps.-E. linear subspace, meaning that $\langle\cdot, \cdot\rangle \mid w \times w$ is a pseudo-Euclidean scalar product on W. Then the orthogonal complement $W^{\perp} \subset V$ of W in V with respect to $\langle\cdot, \cdot\rangle$ is given by

$$
W^{\perp}:=\{v \in V \mid\langle v, w\rangle=0 \quad \forall w \in W\}
$$

W^{\perp} is a linear subspace of V of dimension $\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}(V)-\operatorname{dim}(W)$ and

$$
W \oplus W^{\perp}=V
$$

If $W \subset V$ is any linear subspace of V, we will also use the notation W^{\perp} for its orthogonal complement. Two vectors $v, w \in V$ are called orthogonal if $\langle v, w\rangle=0$, two linear subspaces V_{1}, V_{2} of V are called orthogonal to each other if $\left\langle v_{1}, v_{2}\right\rangle=0$ for all $v_{1} \in V_{1}, v_{2} \in V_{2}$. A basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V is an orthogonal basis with respect to $\langle\cdot, \cdot\rangle$ if $\left\langle v_{i}, v_{j}\right\rangle=0$ for all $i \neq j$, and orthonormal basis if additionally $\left\|v_{i}\right\|=1$ for all $1 \leq i \leq n$.

Some facts:

- every pseudo-Euclidean vector space admits an orthonormal basis
■ the index ν of a pseudo-Euclidean scalar product coincides with the number of elements in $\left\{i \mid\left\langle v_{i}, v_{i}\right\rangle=-1\right\}$ for any given orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of $(V,\langle\cdot, \cdot\rangle)$
■ $\left(W^{\perp}\right)^{\perp}=W$ for all linear subspaces $W \subset V$
■ W is a pseudo-Euclidean linear subspace \Leftrightarrow $W \cap W^{\perp}=\{0\} \Leftrightarrow V=W \oplus W^{\perp}$
■ linear isometries map orthonormal (orthogonal) bases to orthonormal (orthogonal) bases
Question: How do we, conceptually, go from pseudo-Euclidean vector spaces to smooth manifolds?
Answer: For each point p in a given manifold M define a pseudoEuclidean scalar product on $T_{p} M$, such that this assignment varies smoothly on M !

Definition

A pseudo-Riemannian metric with index $0 \leq \nu \leq \operatorname{dim}(M)$ on a smooth $\mathrm{mfd} . ~ M$ is a symmetric $(0,2)$-tensor field $g \in \mathcal{T}^{0,2}(M), g: p \mapsto g_{p} \in \operatorname{Sym}^{2}\left(T_{p}^{*} M\right)$, such that for all $p \in M g_{p}$ is a pseudo-Euclidean scalar product of index ν on $T_{p} M$. This in particular means that

$$
g(X, Y)=g(Y, X) \in C^{\infty}(M)
$$

for all vector fields $X, Y \in \mathfrak{X}(M)$. If $\nu=0, g$ is called Riemannian metric. In local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ on $U \subset M, g$ is of the form

$$
g=\sum_{i, j=1}^{n} g_{i j} d x^{i} \otimes d x^{j}
$$

where

$$
g_{i j}:=g\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right) \in C^{\infty}(U) \quad \forall 1 \leq i, j \leq n
$$

Remark

- The symmetry condition for g is equivalent to requiring that in all local coordinates $g_{i j}=g_{j i}$. This means that ($g_{i j}$), viewed as a $n \times n$-matrix valued smooth map on the coordinate domain, is at each point a symmetric matrix.
- If we write in local coordinates $X=\sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}$, $Y=\sum_{i=1}^{n} Y^{i} \frac{\partial}{\partial x^{i}}$, we obtain the local formula for $g(X, Y)$

$$
g(X, Y)=\sum_{i, j=1}^{n} g_{i j} X^{i} Y^{j}
$$

■ Heuristically: Plug in X in the left half and Y in the right half of the tensor terms in g.

Now we can finally define the objects of main interest of this course:

Definition

A smooth manifold M equipped with a (pseudo)-Riemannian metric g is called (pseudo)-Riemannian manifold.

An immediate use of a Riemannian metric is:

Definition

Let (M, g) be a Riemannian manifold and $\gamma: I \rightarrow M$ a smooth curve. Then the arc-length, or simply length, of γ is defined as

$$
L(\gamma)=\int_{I} \sqrt{g\left(\gamma^{\prime}, \gamma^{\prime}\right)} d t
$$

Note that $L(\gamma)=\infty$ is allowed.

Let us take a look at examples of pseudo-Riemannian manifolds:

Examples

- Any pseudo-Euclidean vector space $(V,\langle\cdot, \cdot\rangle)$ is, viewed as a smooth manifold with $g_{p}:=\langle\cdot, \cdot\rangle$ for all $p \in V$. If $V=\mathbb{R}^{n}$ equipped with its canonical coordinates and Euclidean scalar product at each tangent space, the induced Riemannian metric in canonical coordinates $\left(u^{1}, \ldots, u^{n}\right)$ is given by

$$
g=\sum_{i=1}^{n} d u^{i} \otimes d u^{i}
$$

- Any smooth submanifold $M \subset \mathbb{R}^{n}$ equipped with

$$
g \in \mathcal{T}^{0,2}(M), \quad g_{p}=\left.\langle\cdot, \cdot\rangle\right|_{T_{p} M \times T_{p} M}
$$

for all $p \in M$, that is the restriction of the Euclidean scalar product at origin $p \in \mathbb{R}^{n}$ to the tangent space of M at p.
(continued on next page)

Examples (continuation)

■ More generally, any smooth submanifold of a smooth Riemannian manifold is by restriction of the metric to the tangent bundle of the smooth submanifold a Riemannian manifold.

- If $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$ are pseudo-Riemannian manifolds and g_{M}, g_{N}, have index ν_{M}, ν_{N}, respectively, the product $M \times N$ is a pseudo-Riemannian manifold of index $\nu_{M}+\nu_{N}$. The metric on $M \times N$ is given by

$$
\begin{aligned}
& g_{M \times N}:=g_{M}+g_{N} \\
& g_{M \times N}((v, w),(v, w))=g_{M}(v, v)+g_{N}(w, w)
\end{aligned}
$$

for all $(v, w) \in T M \oplus T N \cong T(M \times N)$. The metric $g_{M \times N}$ is called product metric.

When studying submanifolds of pseudo-Riemannian manifolds with index $1 \leq \nu<\operatorname{dim}(M)$, one has to be very careful as the restriction of the metric might not be a pseudo-Riemannian metric on the submanifold, e.g. the diagonal line in the 2-dim. Minkowski space. However, we have the following definition:

Definition

Let (N, \bar{g}) be a pseudo-Riemannian manifold and $M \subset N$ a smooth submanifold. M is called pseudo-Riemannian submanifold of N if

$$
g:=\left.\bar{g}\right|_{T M \times T M}
$$

is a pseudo-Riemannian metric on M.
Note: Restricting g to $T M \times T M$ means that we restrict the basepoint of \bar{g} to $M \subset N$ and the vectors we are allowed to plug in to vectors in $T M \subset T N$.

While not every manifold admits a pseudo-Riemannian metric for any given index, we have the following existence result for Riemannian metrics:

Proposition

Let M be a smooth manifold. Then there exists a Riemannian metric g on M.

Proof:

- choose countable atlas $\left\{\left(\varphi_{i}, U_{i}\right) \mid i \in I\right\}$ of M and countable locally finite subordinate partition of unity $\left\{b_{i}, i \in I\right\}$ of M
■ define $g:=\sum_{i \in I} b_{i}\langle d \varphi \cdot, d \varphi \cdot\rangle=\sum_{i \in I} b_{i} \varphi^{*}\langle\cdot, \cdot\rangle$, where $\langle\cdot, \cdot\rangle$ denotes standard Riemannian metric on $\mathbb{R}^{\operatorname{dim}(M)}$
- check that g well-defined since sum locally finite and at each point positive definite
Note: g is far from unique!

We know what diffeomorphic means for manifolds, and isometric for pseudo-Euclidean vector spaces. For pseudo-Riemannian manifolds, the two definitions are combined:

Definition

Let (M, g) and (N, h) be pseudo-Riemannian manifolds and $F: M \rightarrow N$ a diffeomorphism. Then F is called an isometry if $F^{*} h=g$ or, equivalently, $F_{*} g=h$. One checks that the first condition is equivalent to

$$
g_{p}\left(X_{p}, Y_{p}\right)=h_{F(p)}\left(d F_{p}\left(X_{p}\right), d F_{p}\left(Y_{p}\right)\right)
$$

for all $X, Y \in \mathfrak{X}(M)$ and all $p \in M$, meaning that pointwise $d F_{p}$ is a linear isometry. The two pseudo-Riemannian manifolds (M, g) and (N, h) are then called isometric.

Note: The isometries $F: M \rightarrow M$ for (M, g) form a group, the isometry group of (M, g), which is denoted by $\operatorname{Isom}(M, g)$.

Examples

- Every orthogonal transformation $A \in \mathrm{O}(n+1)$ is, by definition, an isometry of \mathbb{R}^{n+1} equipped with the standard Riemannian metric given pointwise by the Euclidean scalar product $\langle\cdot, \cdot\rangle$.
- Since each $A \in \mathrm{O}(n+1)$ restricts to a diffeomorphism of $S^{n} \subset \mathbb{R}^{n+1}$, it is an isometry of $\left(S^{n},\left.\langle\cdot, \cdot\rangle\right|_{T S^{n} \times T S^{n}}\right)$. The Riemannian metric $\left.\langle\cdot, \cdot\rangle\right|_{T S^{n} \times T S^{n}}$ is sometimes called the round metric.
- The upper half plane $H:=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ equipped with the Riemannian Poincaré metric

$$
g=\frac{1}{y^{2}}\left(d x^{2}+d y^{2}\right)
$$

is called the Poincaré half-plane model.
(continued on next page)

Examples (continuation)

When viewed as a subset of \mathbb{C} via $H \ni(x, y) \mapsto x+i y \in \mathbb{C}$, one obtains an isometric action of

$$
\operatorname{PSL}(2, \mathbb{R})=\mathrm{SL}(2, \mathbb{R}) / \sim, \quad A \sim B: \Leftrightarrow A= \pm B
$$

on $H \subset \mathbb{C}$ defined by

$$
\mu: \operatorname{PSL}(2, \mathbb{R}) \times H \rightarrow H, \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z:=\frac{a z+b}{c z+d}
$$

coordinate change in $M \rightsquigarrow$ pointwise change of basis in $T M$ We obtain the following transformation rule for ps.-R. metrics:

Lemma

Let (M, g) be a pseudo-Riemannian manifold and $\varphi=\left(x^{1}, \ldots, x^{n}\right), \psi=\left(y^{1}, \ldots, y^{n}\right)$, be local coordinate systems on $U \subset M$, respectively $V \subset M$, such that $U \cap V \neq \emptyset$. Denote on $U \cap V$

$$
g=\sum_{i, j} g_{i j} d x^{i} \otimes d x^{j}=\sum_{i, j} \widetilde{g}_{i j} d y^{i} \otimes d y^{j}
$$

φ and ψ are related by $\left(x^{1}, \ldots, x^{n}\right)=F\left(y^{1}, \ldots, y^{n}\right)$ on $U \cap V$, where $F: \psi(U \cap V) \rightarrow \varphi(U \cap V)$. Then the matrix valued maps $\left(g_{i j}\right)$ and $\left(\widetilde{g}_{i j}\right)$ in the above equation are related by

$$
\left.\left(\widetilde{g}_{i j}\right)\right|_{p}=\left.d F_{\psi(p)}^{\top} \cdot\left(g_{i j}\right)\right|_{\varphi^{-1}(F(\psi(p)))} \cdot d F_{\psi(p)}
$$

Proof: Follows by considering coordinate representations of $\left(g_{i j}\right)$ and $\left(\widetilde{g}_{i j}\right)$, writing down the pullback of $\left(g_{i j}\right)$ with respect to F, and comparing the prefactors.

END OF LECTURE 12

Next lecture:

- trace with respect to a pseudo-Riemannian metric

■ induced tensor bundle metric

- raising/lowering indices

■ subbundles, in particular tangent bundles of submanifolds

