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Recap of lecture 10:

defined dual vector bundle E∗ → M for a given vector
bundle E → M, in particular the cotangent bundle
T ∗M → M

studied 1-forms Ω1(M), that is sections in T ∗M → M,
interpreted them as “dual” to vector fields

defined the direct sum of vector bundles, called the
Whitney sum
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Tensor constructions

Last lecture, we described how to construct from the pointwise
dual and the pointwise direct sum of fibres of vector bundles the
dual vector bundle and the Whitney sum, respectively.
Next construction: the tensor product of vector bundles.

Remark

Recall that the tensor product of two real vector spaces V1,
dim(V1) = n, and V2, dim(V2) = m, is a real vector space
V1 ⊗ V2 determined up to linear isomorphy together with a
bilinear map ⊗ : V1 × V2 → V1 ⊗ V2, such that for every real
vector space W and every bilinear map F : V1 × V2 →W ,
there exist a unique linear map F̃ : V1 ⊗ V2 →W making the
diagram

V1 × V2

V1 ⊗ V2 W

F⊗

F̃

commute. This is the defining universal property of the
tensor product. (continued on next page)
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Tensor constructions

Remark (continuation)

The dimension of V1 ⊗ V2 is n ·m. If {v 1
1 , . . . , v

n
1 } and

{v 1
2 , . . . , v

m
2 } are a basis of V1 and V2, respectively, we can

construct a choice of basis for V1 ⊗ V2 explicitly. A basis of
V1 ⊗ V2 is given by {v i

1 ⊗ v j
2, 1 ≤ i ≤ n, 1 ≤ j ≤ m}, and F̃

for a bilinear map F as on the previous slide given by

F̃ : v i
1 ⊗ v j

2 7→ F (v i
1, v

j
2)

on the basis vectors. By considering “⊗” itself as a bilinear
map from V1 × V2 to W = V1 ⊗ V2, we define v ⊗ w for

v =
n∑

i=1

aiv
i
1, w =

m∑
j=1

bjv
i
2, as

v ⊗ w :=
n∑

i=1

m∑
j=1

aibj · v i
1 ⊗ v j

2.

The above equation is consistent with the definition of F̃ . An
element v ∈ V1 ⊗ V2 is called a pure tensor if it can be
written as v = v1 ⊗ v2 for some v1 ∈ V1 and v2 ∈ V2.
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Tensor constructions

Observe that V ⊗ R ∼= V ∼= R ⊗ V . We can, in this special
case, interpret “⊗” as scalar multiplication. Before coming to
tensor products of vector bundles, we need to be aware of the
following facts:

Remark

The real vector space of endomorphisms End(V ) and
V ⊗ V ∗ are isomorphic as real vector spaces via

V ⊗ V ∗ 3 v ⊗ ω 7→ (u 7→ ω(u)v) ∈ End(V ).

For the evaluation map

ev : V × V ∗ → R, (v , ω) 7→ ω(v) ∀v ∈ V , ω ∈ V ∗,

the induced map ẽv : V ⊗ V ∗ → R is called contraction.
By saying that we contract v ⊗ ω we simply mean
sending it to ω(v).

V1 ⊗ (V2 ⊗ V3) and (V1 ⊗ V2)⊗ V3 are isomorphic.

V1 ⊗ V2 and V2 ⊗ V1 are isomorphic.
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Tensor constructions

Remark (continuation)

For tensor products of vector bundles we will pointwise
deal with objects of the form

V⊗r ⊗ V ∗
⊗s

:= V ⊗ . . .⊗ V︸ ︷︷ ︸
r times

⊗V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
s times

.

A contraction of an element
v1⊗ . . .⊗ vr ⊗ω1⊗ . . .⊗ωs ∈ V ⊗ . . .⊗V ⊗V ∗⊗ . . .⊗V ∗

will stand for a map of the form

v1 ⊗ . . .⊗ vr ⊗ ω1 ⊗ . . .⊗ ωs 7→

ωβ(vα) · v1 ⊗ . . . ⊗̂ vα ⊗ . . . vr ⊗ ω1 ⊗ . . . ⊗̂ ωβ ⊗ . . . ωs

for 1 ≤ α ≤ r and 1 ≤ β ≤ s fixed, where “̂” means
that the element is supposed to be left out. This is
precisely the induced map for the evaluation map in the
(α, β)-th entry.
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Tensor products of vector bundles

Now that we have refreshed our knowledge of the tensor product
we can define the tensor product of vector bundles:

Definition

Let πE : E → M be a vector bundle of rank k and πF : F → M
be a vector bundle of rank ` and, as for the Whitney sum, let
ψE

i and ψF
i , i ∈ I , be local trivializations of E and F ,

respectively, and A a fitting atlas of M with charts (ϕi ,Ui ),
i ∈ I . The tensor product of vector bundles of E and F ,
πE⊗F : E ⊗ F → M, is the vector bundle given pointwise by

(E ⊗ F )p = π−1
E⊗F (p) := Ep ⊗ Fp,

so that E ⊗ F :=
⊔

p∈M
Ep ⊗ Fp.

Remark: By the vector bundle chart lemma, it suffices to con-
struct local trivializations φi : π−1(Ui ) → Ui × Rk ⊗ R` ∼=
Ui ×Rk` covering E ⊗F with smooth vector parts of their tran-
sition functions in order to show that E ⊗ F is in fact a vector
bundle. (continued on next page)
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Tensor products of vector bundles

(continuation of remark)

analogous to construction of Whitney sum we set

φ−1
i := (ψE

i ⊗ ψF
i )−1 ◦ (∆M × idRk`) :

Ui × Rk` ∼= Ui × (Rk ⊗ R`)→
⊔
p∈Ui

(Ep ⊗ Fp),

(p, v ⊗ w) 7→ (ψE
i )−1(p, v)⊗ (ψF

i )−1(p,w)

∀p ∈ Ui , v ∈ Rk , w ∈ R`,

where ∆M : p 7→ (p, p) ∈ M ×M again denotes the
diagonal embedding and φ−1

i on non-pure tensors is
defined by linear extension for any p ∈ Ui fixed

for the transition functions of the vector part in the
change of local trivializations of E ⊗ F → M we obtain for
all i , j ∈ I , such that Ui ∩ Uj 6= ∅,

φi ◦ φ−1
j (p, v ⊗ w) = (p, τEij (p)v ⊗ τFij (p)w),

where τEij and τFij are the transition functions of the
local trivializations of E and F , respectively
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Tensor products of vector bundles

(continuation of remark)

observe: the linear extension of

Rk ⊗ R` 3 v ⊗ w 7→ τEij (p)v ⊗ τFij (p)w ∈ Rk ⊗ R`

is an invertible linear map and conclude with vector
bundle chart lemma that E ⊗ F → M is indeed a vector
bundle of rank k`

Example

The endomorphism bundle of a vector bundle E → M is
given by

End(E) := E ⊗ E∗ → M.

The transition functions of End(E)→ M induced by given
transition functions τij in the vector part on E → M are, in
induced coordinates, of the form

(p,A) 7→ (p, τij(p) · A · τij(p)−1).
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Tensor fields

Having dealt with all technical necessities we can now define
tensor fields.

Definition

Let M be a smooth manifold and let (r , s) ∈ N0 × N0 so that
r + s > 0 [ for now ]. The vector bundle

T r,sM := TM ⊗ . . .⊗ TM︸ ︷︷ ︸
r times

⊗T ∗M ⊗ . . .⊗ T ∗M︸ ︷︷ ︸
s times

→ M

is called the bundle of (r , s)-tensors of M. In this notation,
T 1,0M = TM and T 0,1M = T ∗M. The (local) sections in the
bundle of (r , s)-tensors are called (local) (r , s)-tensor fields,
or simply tensor fields if (r , s) is clear from the context, and
are denoted by

T
r,s(M) := Γ(T r,sM).
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Tensor fields

Question: How do tensor fields look locally?
Answer:

Remark

In local coordinates (x1, . . . , xn) on U ⊂ M, tensor fields
A ∈ Tr,s(M) are of the form

A =
∑

1≤i1,...,ir≤n
1≤j1,...,jr≤n

Ai1...ir
j1...js

∂

∂x i1
⊗ . . .⊗ ∂

∂x ir
⊗ dx j1 ⊗ . . .⊗ dx js ,

Ai1...ir
j1...js ∈ C∞(U) ∀1 ≤ i1, . . . , ir , j1, . . . , js ≤ n.

The above local form of tensor fields is commonly called index
notation of tensor fields. This is justified by the fact that
locally A is uniquely determined by the local smooth
functions Ai1...ir

j1...js on chart neighbourhoods of an atlas of M.
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Tensor fields

Recall that pointwise, we can contract elements in vector spaces
of the form V ⊗ . . .⊗ V ⊗ V ∗ ⊗ . . .⊗ V ∗.
Question: What happens if we contract tensor fields at each
point?
Answer:

Remark

If A ∈ Tr,s(M) with r > 0 and s > 0 we can contract A in the
i , j-th index, 1 ≤ i ≤ r , 1 ≤ j ≤ s, which is pointwise in local
coordinates defined as for contractions in
TpM ⊗ . . .⊗ TpM ⊗ T ∗p M ⊗ . . .⊗ T ∗p M, and obtain an

(r − 1, s − 1)-tensor field Ã ∈ Tr−1,s−1(M).

Problem: What if r = s = 1?
Solution: We define

T
0,0(M) := C∞(M).

Question: Is this a good idea?
Answer:Yes! Since: (see next page)
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Tensor fields

Remark

Observe that for any a ∈ Tr,s(M), b ∈ TR,0(M), c ∈ T0,S(M),

b ⊗ a ∈ T
r+R,s(M), a⊗ c ∈ T

r,s+S(M),

where the tensor product is understood over C∞(M) [ means:
pointwise over R ]. This is compatible with
T0,0(M) = C∞(M) since C∞(M)⊗C∞(M) T

r,s(M) ∼= Tr,s(M),
which pointwise corresponds to R⊗ T r,s(M) ∼= T r,s(M), and
the same with tensors from the left. In practice this just means

f ⊗ a = a⊗ f := fa ∀f ∈ C∞(M), a ∈ T
r,s(M),

where the multiplication in fa is understood pointwise.
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Tensor fields

We know that for any real finite dimensional vector space V ,
V⊗r ⊗V ∗⊗s is as a vector space isomorphic to the vector space
of multilinear maps HomR(V ∗×r × V×s ,R).
Question: How does this translate to tensor fields?
Answer:

Proposition

Tr,s(M) is as C∞(M)-module isomorphic to the
C∞(M)-multilinear maps

HomC∞(M)(Ω1(M)×r × X(M)×s ,C∞(M)).

Heuristically: If we are given a tensor field A ∈ Tr,s(M) we can
“plug in” s vector fields from the left and r 1-forms from
the right and obtain a smooth function on M. In the special
case that A is an endomorphism field of TM, these operations
are in coordinate representations just multiplication of a square
matrix valued function, a.k.a. A, with a column vector valued
function from the right, a.k.a. a vector field X , with a row
vector valued function from the left, a.k.a. a 1-form ω.
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Tensor fields

Next, just as for vector fields and 1-forms, we define:

Definition

Let M, N be smooth manifolds and let F : M → N be a
diffeomorphism. The pushforward and pullback of tensor
fields under F are the unique R-linear maps

F∗ : Tr,s(M)→ T
r,s(N), F ∗ : Tr,s(N)→ T

r,s(M),

such that

F∗ : T1,0(M)→ T1,0(N) is the pushforward of vector
fields, F ∗ : T1,0(N)→ T1,0(M) is the pullback of vector
fields,

F∗ : T0,1(M)→ T0,1(N) is the pushforward of 1-forms,
F ∗ : T0,1(N)→ T0,1(M) is the pullback of 1-forms,

F∗(b ⊗ a) = (F∗b)⊗ (F∗a) and
F ∗(b ⊗ a) = (F ∗b)⊗ (F ∗a) for all a ∈ Tr,s(M),
b ∈ TR,0(M),

F∗(a⊗ c) = (F∗a)⊗ (F∗c) and F ∗(a⊗ c) = (F ∗a)⊗ (F ∗c)
for all a ∈ Tr,s(M), c ∈ T0,S(M).

(continued on next page)
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Tensor fields

Definition (continuation)

For f ∈ C∞(M), g ∈ C∞(N), we set

F∗(f ) := f ◦ F−1, F ∗g := g ◦ F

so that F∗(fa) = F∗(f )F∗(a) and F ∗(gb) = F ∗(g)F ∗(b) for all
f ∈ C∞(M), g ∈ C∞(N), a ∈ Tr,s(M), b ∈ Tr,s(N).

Note: The above definition looks worse than it actually is.
Locally, (r , s)-tensor fields are summations of smooth functions
times tensor fields of the form

∂

∂x i1
⊗ . . .⊗ ∂

∂x ir
⊗ dx j1 ⊗ . . .⊗ dx js

Hence, for, say, the pullback of the above expression under some
smooth map we only need to calculate the pullback of all possible
coordinate vector fields ∂

∂x i
and coordinate one forms dx j and

then use the C∞(M)-linearity of the tensor product, e.g.

∂

∂x
⊗ (fdx + gdy) = f

∂

∂x
⊗ dx + g

∂

∂x
⊗ dy .
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Tensor fields

Remark

Just like for 1-forms, the pullback of (0, r)-tensor fields
(“pointwise only covectors tensored together”) under a
smooth map F is defined regardless of whether F is a
diffeomorphism or not.

The pushforward and pullback of tensor fields has the follow-
ing important property that justifies calculating without coor-
dinates whenever possible:

Lemma

Contractions of tensor fields commute with the pushforward
and with the pullback defined above.

Proof: It suffices to prove this statement for endomorphism
fields which have only one possible contraction.
[Details: Exercise!]
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Tensor fields

Lastly, we will study the Lie derivative of tensor fields, which
is defined analogously to the Lie derivative of vector fields:

Definition

Let M be a smooth manifold, X ∈ X(M) a vector field, and
A ∈ Tr,s(M) a tensor field. Then the Lie derivative of A in
direction of X , LXA ∈ Tr,s(M), is defined as

(LXA)p :=
∂

∂t

∣∣∣∣
t=0

(ϕ∗t A)p ∀p ∈ M,

where ϕ : I × U → M is any local flow of X near p ∈ M.

Question 1: What is the Lie derivative of A ∈ T0,0(M) =
C∞(M)?
Question 2: Is the above definition as tedious to work with as
it looks to be?
Answer 1: LXA = X (A), meaning that for smooth functions
the Lie derivative is simply the action of the vector field.
Answer 2: No! Because: (next page)
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Tensor fields

Proposition

The Lie derivative of tensor fields is a tensor derivation, i.e. it
is compatible with all possible contractions and fulfils the
Leibniz rule

LX (A⊗ B) = LXA⊗ B + A⊗ LXB

for all vector fields X and all tensor fields A, B, such that
A⊗ B is defined.

Proof:

it suffices to prove this proposition for endomorphism
fields A ∈ T1,1(M) as all other possible cases will follow
by induction and the Leibniz rule

 first need to prove that LX fulfils Leibniz rule

fix p ∈ M & A, B tensor fields, such that A⊗ B is defined

first assume that (A⊗ B)p = Ap ⊗ Bp 6= 0, and let
X ∈ X(M) be arbitrary, denote by ϕ : I ×U → M its local
flow near p with U ⊂ M contained in a chart
neighbourhood for some local coordinates on M
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Tensor fields

(continuation of proof)

choose interval (−ε, ε) ⊂ I for ε > 0 small enough, such
that in the local coordinates on U and the induced
coordinates on the fitting (r , s)-tensor bundles ψ and φ,
the pullbacks of A and B w.r.t. the local flow of X are of
the form

ψ((ϕ∗t A)p) = (p, a(t)v), φ((ϕ∗t B)p) = (p, b(t)w)

∀t ∈ (−ε, ε)

in the above equation, 0 6= v ∈ RN1 and 0 6= w ∈ RN2 are
fixed nonzero vectors and N1, N2, depend on the type of
tensor field that A and B are

the expressions a(t) and b(t) stand for smooth and
uniquely defined maps

a : (−ε, ε)→ GL(N1), b : (−ε, ε)→ GL(N2),

with a(0) = idRN1 and b(0) = idRN2
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Tensor fields

(continuation of proof)

 in order to prove that the Leibniz is fulfilled, it suffices
to show that for any finite dimensional real vector
spaces V , dim(V ) = N1, and W , dim(W ) = N2, and any
smooth maps a and b as above,

∂

∂t

∣∣∣∣
t=0

((a(t)v)⊗ (b(t)w)) = (a′(0)v)⊗ w + v ⊗ (b′(0))

(1)
for all v ∈ V , w ∈W

follows from the defining universal property of the
tensor product of vector spaces:

let L : V ×W → R be any bilinear map and
L̃ : V ⊗W → R the corresponding linear map, so that
L(a(t)v , b(t)w) = L̃((a(t)v)⊗ (b(t)w)) for all v ∈ V ,
w ∈W , t ∈ (−ε, ε)
by taking the t-derivative at t = 0 on both sides we
obtain

∂

∂t

∣∣∣∣
t=0

L̃((a(t)v)⊗(b(t)w)) = L̃((a′(0)v)⊗w+v⊗(b′(0)w))
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Tensor fields

(continuation of proof)

since L and thus L̃ were arbitrary, the above statement
hold in particular for all component functions

this shows equation (1) and, hence, proves the Leibniz
rule for LX

for compatibility with contractions it is enough to
consider V = W ∗ and L = ev the evaluation map

 L̃ is precisely the contraction X

now assume (A⊗ B)p = 0 and that there exists a
convergent sequence {pn}n∈N with pn → p as n→∞,
such that (A⊗ B)pn 6= 0 for all n ∈ N

 the statement of this proposition follows with a
continuity argument similar to the one used in Proposition
B, Lecture 9 [which is this proposition for (r , s) = (1, 0)]

lastly assume (A⊗ B)p = 0 and A⊗ B vanishes
identically on an open neighbourhood U ⊂ M of p

 A or B must already vanish identically on U
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Tensor fields

(continuation of proof)

w.l.o.g. assume that U is a chart neighbourhood, choose
a fitting bump function b with supp(b) ⊂ U compactly
embedded, so that the locally defined prefactors in the
local forms of A and B, multiplied with b, are globally
defined smooth functions

now use that bA or bB vanish identically and in some
smaller open neighbourhood V ⊂ U coincide with A and
B, respectively

on V we obtain if bA ≡ 0 LX (A) = LX (bA) = LX (0) = 0
and a similar identity for B and A⊗ B

The result of the latter proposition tells us how to actually cal-
culate LXA for given X ∈ X(M), A ∈ Tr,s(M). All that remains
is to understand how the Lie derivative of 1-forms looks like:

Corollary

(LXα)(Y ) = X (α(Y ))− α([X ,Y ]) for all X ,Y ∈ X(M) and
all α ∈ Ω1(M).

Proof: Follows from compatibility with contractions, that is
X (α(Y )) = LX (α(Y )) = (LXα)(Y ) + α(LXY ).
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END OF LECTURE 11

Next lecture:

pseudo-Euclidean vector spaces

pseudo-Riemannian metrics
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