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Recap of lecture 9:

defined pushforward & pullback of vector fields

locally rectified vector fields

proved that [X ,Y ] measures infinitesimal change of Y
along local flow of X

defined Lie derivative of vector fields

erratum: mixed up terms one parameter families and
one parameter groups
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Dual vector bundles and 1-forms

Recall the definition of dual vector spaces from linear algebra:
A real (for our purposes finite dimensional) vector space V
has dual vector space V ∗ := {ω : V → R | ω R-linear map}.
Question: How can we translate this concept to vector bundles?
Answer: Use the vector bundle chart lemma!

Definition

Let πE : E → M be a vector bundle of rank k. The dual
vector bundle πE∗ : E∗ → M is pointwise given by

π−1
E∗ (p) = E∗p := HomR(Ep,R)

for all p ∈ M.

The topology, smooth manifold structure, and bundle struc-
ture on E∗ is obtained as follows:

let {(ψi ,Vi ) | i ∈ A} be a collection of local
trivializations of a vector bundle E of rank k, such that
there exists an atlas A = {(ϕi , πE (Vi )) | i ∈ A} of M

note: {Vi | i ∈ A} is an open covering of E
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Dual vector bundles and 1-forms

(continuation)

then B := {((ϕi × idRk ) ◦ ψi ,Vi ) | i ∈ A} is an atlas on E

recall: for any finite dimensional real vector space W ,
(W ∗)∗ and W are isomorphic via

W 3 v 7→ (ω 7→ ω(v)), ω ∈W ∗.

the topology on E∗ is given by pre-images of open images
of the dual local trivializations which are defined by

ψ̃i : π−1
E∗ (πE (Vi ))→ πE (Vi )× Rk , ωp 7→ (p,w),

where w ∈ Rk is the unique vector, such that
ωp(vp) = 〈w ,prRk (πE (vp))〉 for all vp ∈ π−1

E (p) and 〈·, ·〉
denotes the Euclidean scalar product on Rk induced by its
canonical coordinates

the dual atlas B∗ on E∗ is then defined by

B
∗ := {((ϕi × idRk ) ◦ ψ̃i ,Vi ) | i ∈ A},

and it follows that E∗ → M is a vector bundle of rank k
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Dual vector bundles and 1-forms

Exercise

Show that E → M and (E∗)∗ → M are isomorphic as vector
bundles.

If we know the transition functions for the local trivializations of
E → M, we also know the transition functions of the dual local
trivializations of E∗ → M:

Lemma

The transition functions of E∗ → M are given by

ψ̃i ◦ ψ̃j
−1

: (p,w) 7→
(
p, (A−1

p )Tw
)

for all p ∈ πE (Vi ), where A : πE (Vi )→ GL(n) is given by the
transition functions of E → M,

ψi ◦ ψ−1
j : (p, v) 7→ (p,Apv).

Proof: Exercise!
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Dual vector bundles and 1-forms

The most important example of a dual vector bundle for this
course is the dual to the tangent bundle of a smooth manifold:

Definition

The vector bundle

T ∗M := (TM)∗ → M

is called the cotangent bundle of M. Pointwise we denote
T ∗p M = (TM)∗p for all p ∈ M. As for the tangent bundle we
identify for any U ⊂ M open and p ∈ U the vector spaces
T ∗p U ∼= T ∗p M via the inclusion map.

In order to gain a better understanding of the cotangent bundle
T ∗M → M, we must take a deeper look at its local trivializations
& charts of the total space T ∗M induced by local coordinates
on the base manifold M: (see next page)
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Dual vector bundles and 1-forms

let ϕ = (x1, . . . , xn) be a local coordinate system on
U ⊂ M

 want to use ϕ to define a local coordinate system on
π−1
T∗M(U) ⊂ T ∗M compatible with the bundle structure

compatible with bundle structure := charts of the total
space composed with ϕ−1 × idRn from the right must be
define local trivializations

define candidates for local coordinate systems

ψ̃ : π−1
T∗M(U)→ ϕ(U)× Rn,

ψ̃ : ωp 7→

(
ϕ(πT∗M(ωp)), ωp

(
∂

∂x1

∣∣∣∣
p

)
, . . . , ωp

(
∂

∂xn

∣∣∣∣
p

))

verify: with ψ := (ϕ ◦ π, dϕ) induced local coordinate
system on π−1

TM(U) ⊂ TM [note: interpret codomain of
dϕp as Rn via canonical identification], obtain

ωp(vp) = 〈prRn (ψ̃(ωp)),prRn (ψ(vp))〉 ∀ωp ∈ T ∗p M, vp ∈ TpM,

〈·, ·〉 = Euclidean scalar product in canonical coordinates
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Dual vector bundles and 1-forms

hence: transition functions of the ψ̃ are of the form

ψ̃i ◦ ψ̃j
−1

: (p,w) 7→
(
p, (d(ϕi ◦ ϕ−1

j )−1
p )Tw

)
=
(
p, (d(ϕj ◦ ϕ−1

i )
ϕi◦ϕ

−1
j (p)

)Tw
)
,

and thus smooth

furthermore, (ϕ−1 × idRn ) ◦ ψ̃ define local trivializations
(on level of sets) with smooth matrix part

 ψ̃ define smooth structure on total space T ∗M by
vector bundle chart lemma X

Remark: The right hand side of ωp(vp) =

〈prRn (ψ̃(ωp)), prRn (ψ(vp))〉 is independent of the chosen
local coordinate system ϕ on M covering p ∈ M.
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Dual vector bundles and 1-forms

Understanding sections in the cotangent bundle is, as for vector
fields, of critical importance when studying differential geometry.

Definition

Sections in T ∗M → M are called 1-forms and denoted by

Ω1(M) := Γ(T ∗M).

For U ⊂ M open, sections in Γ(T ∗M|U) are denoted by Ω1(U)
and called local 1-forms.

We can easily obtain examples of 1-forms by taking the differ-
ential of smooth functions:

Example

Let f ∈ C∞(M). Then the differential of f , df ∈ Ω1(M), is
given by

df : p 7→ dfp.

(continued on next page)
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Dual vector bundles and 1-forms

Example (continuation)

In local coordinates (x1, . . . , xn) we have df
(
∂
∂x i

)
= ∂f

∂x i
for all

1 ≤ i ≤ n. This implies that df can locally be written as

df =
n∑

i=1

∂f

∂x i
dx i .

In particular it follows for f = x j that the coordinate 1-forms
dx j fulfil dx j

(
∂
∂x i

)
≡ δji on the domain of definition of the local

coordinates. [ this is the “global” (on chart neighbourhoods)

version of dx j
p

(
∂
∂x i

∣∣
p

)
= δji ]

Recall that we have shown that for local coordinates (x1, . . . , xn)

of M covering p ∈ M, the set of vectors
{

∂
∂x i

∣∣
p

∣∣∣ 1 ≤ i ≤ n
}

is a basis of TpM. A similar result holds for each covector space
T ∗p M.

David Lindemann DG lecture 10 22. May 2020 11 / 23



Dual vector bundles and 1-forms

Lemma

Let ϕ = (x1, . . . , xn) be local coordinates defined on U ⊂ M
and let p ∈ U be arbitrary but fixed. Then

{dx i
p | 1 ≤ i ≤ n}

is a basis of T ∗p M. It is precisely the dual basis to the basis{
∂
∂x i

∣∣
p

∣∣∣ 1 ≤ i ≤ n
}

of TpM. Any local 1-form ω ∈ Ω1(U)

can be written as

ω =
n∑

i=1

fidx
i

with uniquely determined smooth functions fi ∈ C∞(U) for
1 ≤ i ≤ n.

Proof:

{dx i
p | 1 ≤ i ≤ n} being a basis of T ∗p M that is dual to{
∂
∂x i

∣∣
p

∣∣∣ 1 ≤ i ≤ n
}

follows from dx i
p

(
∂
∂x j

∣∣
p

)
= δij

(continued on next page)
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Dual vector bundles and 1-forms

(continuation of proof)

observe: for any fi ∈ C∞(U), 1 ≤ i ≤ n, the right hand

side of ω =
n∑

i=1

fidx
i is a local section of T ∗M

this follows from the construction of the smooth manifold
structure on the total space T ∗M via charts of the form
ψ̃ = (ϕ ◦π, dϕ∗) where ϕ is a chart on M, dϕ denotes the
vector part of dϕ, and ∗ the pointwise dual linear map,
which in particular implies that each dx i is a local 1-form

on the other hand: for a given local 1-form ω define

ωi := ω

(
∂

∂x i

)
∀1 ≤ i ≤ n

it now suffices to show that ωi ∈ C∞(U) and, after that,
to define fi := ωi

ωi being a local smooth function follows from observing
that ωi ◦ϕ−1 is precisely the i-th entry in the vector part
of ψ̃ ◦ ω ◦ ϕ−1 and thereby by definition a smooth map

uniqueness of the fi can be shown as follows: (next page)
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Dual vector bundles and 1-forms

(continuation of proof)

suppose that locally

ω =
n∑

i=1

fidx
i =

n∑
i=1

f̃idx
i

such that for at least one 1 ≤ j ≤ n, fj 6= f̃j

choose p ∈ U, such that fj(p) 6= f̃j(p) and calculate(
n∑

i=1

fidx
i

)(
∂

∂x j

∣∣∣∣
p

)
= fj(p) 6= f̃j(p) =

(
n∑

i=1

f̃idx
i

)(
∂

∂x j

∣∣∣∣
p

)

which is a contradiction

We have constructed the dual bundle T ∗M → M to TM → M,
and we have studied their respective local sections.
Question: Can we interpret their sets of sections, that is 1-forms
and vector fields, as “dual” to each other in a meaningful way?
Answer: Yes! (see next page)
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Dual vector bundles and 1-forms

Proposition

Ω1(M) is isomorphic as a C∞(M)-module to the
C∞(M)-module dual to X(M), i.e.

Ω1(M) ∼= HomC∞(M)(X(M),C∞(M)).

Proof (sketch):

similar to the proof of Der(C∞(M)) ∼= X(M) explicitly
start with candidates C∞(M)-module isomorphism, given
by

α 7→ (Aα : X(M)→ C∞(M),

X 7→ α(X ), A(X )(p) := αp(Xp) ∀p ∈ M)

for any given α ∈ Ω1(M)

then need to show above is well defined, use bump
functions subordinate to local charts

also need to describe its inverse

for details see lecture notes!
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Dual vector bundles and 1-forms

Remark

In practice, 1-forms are much easier to deal with than vector
fields.This is due to how they transform under a change of
local coordinates, which in “typical” calculations has the effect
that the Jacobi matrix of the coordinate transformation does
not need to be inverted.

Let us for example consider polar coordinates on R2: (next page)
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Dual vector bundles and 1-forms

Example

The change of coordinates from polar coordinates (r , ϕ) to
Cartesian coordinates (x , y) on Rn \ {y = 0, x ≤ 0} is given
by (

x
y

)
=

(
r cos(ϕ)
r sin(ϕ)

)
.

Any 1-form ω on R2 can be (globally) written as
ω = f (x , y)dx + g(x , y)dy , where f , g are smooth functions
[careful: in a more general setting we would be precise and
state that f and g are coordinate representations of smooth
functions, so that f ◦ (x , y) resp. g ◦ (x , y) are smooth
functions on the manifold R2]. Then ω is in polar coordinates
of the form

ω = f (r cos(ϕ), r sin(ϕ))d(r cos(ϕ))

+ g(r cos(ϕ), r sin(ϕ))d(r sin(ϕ))

= f (r cos(ϕ), r sin(ϕ))(cos(ϕ)dr − r sin(ϕ)dϕ)

+ g(r cos(ϕ), r sin(ϕ))(sin(ϕ)dr + r cos(ϕ)dϕ)

= f̃ (r , ϕ)dr + g̃(r , ϕ)dϕ.
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Dual vector bundles and 1-forms

As with vector fields, we can also push forward and pull back
1-forms:

Definition

Let F : M → N be a diffeomorphism and let α ∈ Ω1(M),
β ∈ Ω1(N). The pushforward of α under F is the 1-form
F∗α ∈ Ω1(N) given by

(F∗α)q := αF−1(q) ◦ d(F−1)q ∀q ∈ N.

The pullback of β under F is the 1-form F ∗β ∈ Ω1(M) given
by

(F ∗β)p := βF (p) ◦ dFp ∀p ∈ M.

The above compositions denote compositions of linear maps
which are given locally as matrix multiplications.

Note: An important difference to the pullback of vector fields
is that the pullback of 1-forms in Ω1(N) is well defined even if
F : M → N is not a diffeomorphism, but an arbitrary smooth
map.
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Direct sum of vector bundles

Next we will generalize the vector space constructions of the
direct sum and the tensor product to vector bundles.

Definition

Let πE : E → M be a vector bundle of rank k and πF : F → M
a vector bundle of rank ` over an n-dimensional smooth
manifold M. The Whitneya sum of E and F is the the direct
sum of the two vector bundles πE⊕F : E ⊕ F → M with fibres

(E ⊕ F )p = π−1
E⊕F (p) := Ep ⊕ Fp.

aHassler Whitney (1907 – 1989)

Remark: The structure of a vector bundle on

E ⊕ F =
⊔
p∈M

(Ep ⊕ Fp)

is then explained by the vector bundle chart lemma and the
requirement that the following maps are local trivializations of
E ⊕ F : (continued on next page)
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Direct sum of vector bundles

(continuation of remark)

let {(ψE
i ,V

E
i ) | i ∈ I} and {(ψF

i ,V
F
i ) | i ∈ I} be

coverings of local trivializations of E and F , respectively,
such that Ui := πE (V E

i ) = πF (V F
i ) for all i ∈ I and such

that there exists an atlas A = {(ϕi ,Ui ) | i ∈ I} of M

we require now require that with

φ−1
i := (ψE

i ⊕ ψF
i )−1 ◦ (∆M × idRk+`) :

Ui × Rk+` ∼= Ui × (Rk × R`)→
⊔
p∈Ui

(Ep ⊕ Fp),

(p, v ,w) 7→ (ψE
i )−1(p, v)⊕ (ψF

i )−1(p,w)

∀p ∈ Ui , v ∈ Rk , w ∈ R`,

where ∆M : p 7→ (p, p) ∈ M ×M denotes the diagonal
embedding and

Rk × R` 3 (v ,w) 7→
(
v
w

)
∈ Rk+`

the linear isomorphism, all φi , i ∈ I , are the inverses of
local trivializations covering E ⊕ F
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Direct sum of vector bundles

(continuation of remark)

in order to use the vector bundle chart lemma we need to
check that the transition functions have the required form,
i.e. are smooth in the vector part with image in GL(k + `)

obtain that for all i , j ∈ I , such that Ui ∩ Uj 6= ∅,

φi ◦ φ−1
j (p, v ,w) = (p, τEij (p)v , τFij (p)w),

where τEij and τFij are the transition functions of the
local trivializations of E and F , respectively

lastly, we simply need to define

τE⊕F
ij (p) :=

 τEij (p) 0

0 τFij (p)

 ∈ GL(k + `)

so that we can write φi ◦ φ−1
j (p, ( v

w )) =
(
p, τE⊕F

ij (p) ( v
w )
)

 all requirements of the vector bundle chart lemma are
fulfilled and we conclude that E ⊕ F → M is, indeed, a
vector bundle of rank k + `
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Direct sum of vector bundles

Example

The tangent bundle of products of smooth manifolds fulfils
T (M × N) ∼= TM ⊕ TN.

Note: This is not the only example of the Whitney sum we
will encounter. [ Hint: Recall that HomR(V × V ,R) ∼=
Sym2(V ∗) ⊕ Λ2(V ∗) for finite dimensional real vector spaces
V . ]

Next lecture we will, similar to the direct sum, generalize the
concept of the tensor product of vector spaces to vector bun-
dles.
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END OF LECTURE 10

Next lecture:

tensor products of bundles

tensor fields
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