Differential geometry

Lecture 10: Dual bundles, 1-forms, and the Whitney sum

David Lindemann

University of Hamburg
Department of Mathematics
Analysis and Differential Geometry \& RTG 1670
22. May 2020

1 Dual vector bundles and 1-forms

2 Direct sum of vector bundles

Recap of lecture 9:

■ defined pushforward \& pullback of vector fields

- locally rectified vector fields

■ proved that $[X, Y]$ measures infinitesimal change of Y along local flow of X

- defined Lie derivative of vector fields
- erratum: mixed up terms one parameter families and one parameter groups

Recall the definition of dual vector spaces from linear algebra: A real (for our purposes finite dimensional) vector space V has dual vector space $V^{*}:=\{\omega: V \rightarrow \mathbb{R} \mid \omega \mathbb{R}$-linear map $\}$. Question: How can we translate this concept to vector bundles? Answer: Use the vector bundle chart lemma!

Definition

Let $\pi_{E}: E \rightarrow M$ be a vector bundle of rank k. The dual vector bundle $\pi_{E^{*}}: E^{*} \rightarrow M$ is pointwise given by

$$
\pi_{E^{*}}^{-1}(p)=E_{p}^{*}:=\operatorname{Hom}_{\mathbb{R}}\left(E_{p}, \mathbb{R}\right)
$$

for all $p \in M$.
The topology, smooth manifold structure, and bundle structure on E^{*} is obtained as follows:

■ let $\left\{\left(\psi_{i}, V_{i}\right) \mid i \in A\right\}$ be a collection of local trivializations of a vector bundle E of rank k, such that there exists an atlas $\mathcal{A}=\left\{\left(\varphi_{i}, \pi_{E}\left(V_{i}\right)\right) \mid i \in A\right\}$ of M
■ note: $\left\{V_{i} \mid i \in A\right\}$ is an open covering of E

(continuation)

- then $\mathcal{B}:=\left\{\left(\left(\varphi_{i} \times \operatorname{id}_{\mathbb{R}^{k}}\right) \circ \psi_{i}, V_{i}\right) \mid i \in A\right\}$ is an atlas on E
- recall: for any finite dimensional real vector space W, $\left(W^{*}\right)^{*}$ and W are isomorphic via

$$
W \ni v \mapsto(\omega \mapsto \omega(v)), \omega \in W^{*} .
$$

- the topology on E^{*} is given by pre-images of open images of the dual local trivializations which are defined by

$$
\widetilde{\psi}_{i}: \pi_{E^{*}}^{-1}\left(\pi_{E}\left(V_{i}\right)\right) \rightarrow \pi_{E}\left(V_{i}\right) \times \mathbb{R}^{k}, \quad \omega_{p} \mapsto(p, w),
$$

where $w \in \mathbb{R}^{k}$ is the unique vector, such that $\omega_{p}\left(v_{p}\right)=\left\langle w, \operatorname{pr}_{\mathbb{R}^{k}}\left(\pi_{E}\left(v_{p}\right)\right)\right\rangle$ for all $v_{p} \in \pi_{E}^{-1}(p)$ and $\langle\cdot, \cdot\rangle$ denotes the Euclidean scalar product on \mathbb{R}^{k} induced by its canonical coordinates

- the dual atlas \mathcal{B}^{*} on E^{*} is then defined by

$$
\mathcal{B}^{*}:=\left\{\left(\left(\varphi_{i} \times \mathrm{id}_{\mathbb{R}^{k}}\right) \circ \widetilde{\psi}_{i}, V_{i}\right) \mid i \in A\right\},
$$

and it follows that $E^{*} \rightarrow M$ is a vector bundle of rank k

Exercise

Show that $E \rightarrow M$ and $\left(E^{*}\right)^{*} \rightarrow M$ are isomorphic as vector bundles.

If we know the transition functions for the local trivializations of $E \rightarrow M$, we also know the transition functions of the dual local trivializations of $E^{*} \rightarrow M$:

Lemma

The transition functions of $E^{*} \rightarrow M$ are given by

$$
\tilde{\psi}_{i} \circ \tilde{\psi}_{j}^{-1}:(p, w) \mapsto\left(p,\left(A_{p}^{-1}\right)^{T} w\right)
$$

for all $p \in \pi_{E}\left(V_{i}\right)$, where $A: \pi_{E}\left(V_{i}\right) \rightarrow \mathrm{GL}(n)$ is given by the transition functions of $E \rightarrow M$,

$$
\psi_{i} \circ \psi_{j}^{-1}:(p, v) \mapsto\left(p, A_{p} v\right)
$$

Proof: Exercise!

The most important example of a dual vector bundle for this course is the dual to the tangent bundle of a smooth manifold:

Definition

The vector bundle

$$
T^{*} M:=(T M)^{*} \rightarrow M
$$

is called the cotangent bundle of M. Pointwise we denote $T_{p}^{*} M=(T M)_{p}^{*}$ for all $p \in M$. As for the tangent bundle we identify for any $U \subset M$ open and $p \in U$ the vector spaces $T_{p}^{*} U \cong T_{p}^{*} M$ via the inclusion map.

In order to gain a better understanding of the cotangent bundle $T^{*} M \rightarrow M$, we must take a deeper look at its local trivializations \& charts of the total space $T^{*} M$ induced by local coordinates on the base manifold M : (see next page)

- let $\varphi=\left(x^{1}, \ldots, x^{n}\right)$ be a local coordinate system on $U \subset M$
$■ \rightsquigarrow$ want to use φ to define a local coordinate system on $\pi_{T^{*} M}^{-1}(U) \subset T^{*} M$ compatible with the bundle structure
■ compatible with bundle structure $:=$ charts of the total space composed with $\varphi^{-1} \times \operatorname{id}_{\mathbb{R}^{n}}$ from the right must be define local trivializations
- define candidates for local coordinate systems
$\widetilde{\psi}: \pi_{T^{*} M}^{-1}(U) \rightarrow \varphi(U) \times \mathbb{R}^{n}$,
$\widetilde{\psi}: \omega_{p} \mapsto\left(\varphi\left(\pi_{T^{*} M}\left(\omega_{p}\right)\right), \omega_{p}\left(\left.\frac{\partial}{\partial x^{1}}\right|_{p}\right), \ldots, \omega_{p}\left(\left.\frac{\partial}{\partial x^{n}}\right|_{p}\right)\right)$
■ verify: with $\psi:=(\varphi \circ \pi, d \varphi)$ induced local coordinate system on $\pi_{T M}^{-1}(U) \subset T M$ [note: interpret codomain of $d \varphi_{p}$ as \mathbb{R}^{n} via canonical identification], obtain
$\omega_{p}\left(v_{p}\right)=\left\langle\operatorname{pr}_{\mathbb{R}^{n}}\left(\widetilde{\psi}\left(\omega_{p}\right)\right), \operatorname{pr}_{\mathbb{R}^{n}}\left(\psi\left(v_{p}\right)\right)\right\rangle \quad \forall \omega_{p} \in T_{p}^{*} M, v_{p} \in T_{p} M$,
$\langle\cdot, \cdot\rangle=$ Euclidean scalar product in canonical coordinates
- hence: transition functions of the $\widetilde{\psi}$ are of the form

$$
\begin{aligned}
& \tilde{\psi}_{i} \circ \tilde{\psi}_{j}^{-1}:(p, w) \mapsto\left(p,\left(d\left(\varphi_{i} \circ \varphi_{j}^{-1}\right)_{p}^{-1}\right)^{T} w\right) \\
& =\left(p,\left(d\left(\varphi_{j} \circ \varphi_{i}^{-1}\right)_{\varphi_{i} \circ \varphi_{j}^{-1}(p)}\right)^{T} w\right),
\end{aligned}
$$

and thus smooth

- furthermore, $\left(\varphi^{-1} \times \mathrm{id}_{\mathbb{R}^{n}}\right) \circ \widetilde{\psi}$ define local trivializations (on level of sets) with smooth matrix part
$■ \rightsquigarrow \widetilde{\psi}$ define smooth structure on total space $T^{*} M$ by vector bundle chart lemma \checkmark
Remark: The right hand side of $\omega_{p}\left(v_{p}\right)=$ $\left\langle\operatorname{pr}_{\mathbb{R}^{n}}\left(\widetilde{\psi}\left(\omega_{p}\right)\right), \operatorname{pr}_{\mathbb{R}^{n}}\left(\psi\left(v_{p}\right)\right)\right\rangle$ is independent of the chosen local coordinate system φ on M covering $p \in M$.

Understanding sections in the cotangent bundle is, as for vector fields, of critical importance when studying differential geometry.

Definition

Sections in $T^{*} M \rightarrow M$ are called 1-forms and denoted by

$$
\Omega^{1}(M):=\Gamma\left(T^{*} M\right)
$$

For $U \subset M$ open, sections in $\Gamma\left(\left.T^{*} M\right|_{U}\right)$ are denoted by $\Omega^{1}(U)$ and called local 1-forms.

We can easily obtain examples of 1-forms by taking the differential of smooth functions:

Example

Let $f \in C^{\infty}(M)$. Then the differential of $f, d f \in \Omega^{1}(M)$, is given by

$$
d f: p \mapsto d f_{p}
$$

(continued on next page)

Example (continuation)

In local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ we have $d f\left(\frac{\partial}{\partial x^{i}}\right)=\frac{\partial f}{\partial x^{i}}$ for all $1 \leq i \leq n$. This implies that $d f$ can locally be written as

$$
d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} d x^{i}
$$

In particular it follows for $f=x^{j}$ that the coordinate 1-forms $d x^{j}$ fulfil $d x^{j}\left(\frac{\partial}{\partial x^{i}}\right) \equiv \delta_{i}^{j}$ on the domain of definition of the local coordinates. [this is the "global" (on chart neighbourhoods) version of $d x_{p}^{j}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{p}\right)=\delta_{i}^{j}$]

Recall that we have shown that for local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ of M covering $p \in M$, the set of vectors $\left\{\left.\left.\frac{\partial}{\partial x^{\prime}}\right|_{p} \right\rvert\, 1 \leq i \leq n\right\}$ is a basis of $T_{p} M$. A similar result holds for each covector space $T_{p}^{*} M$.

Lemma

Let $\varphi=\left(x^{1}, \ldots, x^{n}\right)$ be local coordinates defined on $U \subset M$ and let $p \in U$ be arbitrary but fixed. Then

$$
\left\{d x_{p}^{i} \mid 1 \leq i \leq n\right\}
$$

is a basis of $T_{p}^{*} M$. It is precisely the dual basis to the basis $\left\{\left.\left.\frac{\partial}{\partial x^{i}}\right|_{p} \right\rvert\, 1 \leq i \leq n\right\}$ of $T_{p} M$. Any local 1-form $\omega \in \Omega^{1}(U)$ can be written as

$$
\omega=\sum_{i=1}^{n} f_{i} d x^{i}
$$

with uniquely determined smooth functions $f_{i} \in C^{\infty}(U)$ for $1 \leq i \leq n$.

Proof:

■ $\left\{d x_{p}^{i} \mid 1 \leq i \leq n\right\}$ being a basis of $T_{p}^{*} M$ that is dual to $\left\{\left.\left.\frac{\partial}{\partial x^{i}}\right|_{p} \right\rvert\, 1 \leq i \leq n\right\}$ follows from $d x_{p}^{i}\left(\left.\frac{\partial}{\partial x^{j}}\right|_{p}\right)=\delta_{j}^{i}$ (continued on next page)

(continuation of proof)

■ observe: for any $f_{i} \in C^{\infty}(U), 1 \leq i \leq n$, the right hand side of $\omega=\sum_{i=1}^{n} f_{i} d x^{i}$ is a local section of $T^{*} M$

- this follows from the construction of the smooth manifold structure on the total space $T^{*} M$ via charts of the form $\widetilde{\psi}=\left(\varphi \circ \pi, d \varphi^{*}\right)$ where φ is a chart on $M, d \varphi$ denotes the vector part of $d \varphi$, and * the pointwise dual linear map, which in particular implies that each $d x^{i}$ is a local 1 -form
■ on the other hand: for a given local 1-form ω define

$$
\omega_{i}:=\omega\left(\frac{\partial}{\partial x^{i}}\right) \quad \forall 1 \leq i \leq n
$$

■ it now suffices to show that $\omega_{i} \in C^{\infty}(U)$ and, after that, to define $f_{i}:=\omega_{i}$

- ω_{i} being a local smooth function follows from observing that $\omega_{i} \circ \varphi^{-1}$ is precisely the i-th entry in the vector part of $\widetilde{\psi} \circ \omega \circ \varphi^{-1}$ and thereby by definition a smooth map
■ uniqueness of the f_{i} can be shown as follows: (next page)
(continuation of proof)
■ suppose that locally

$$
\omega=\sum_{i=1}^{n} f_{i} d x^{i}=\sum_{i=1}^{n} \widetilde{f}_{i} d x^{i}
$$

such that for at least one $1 \leq j \leq n, f_{j} \neq \widetilde{f}_{j}$

- choose $p \in U$, such that $f_{j}(p) \neq \widetilde{f}_{j}(p)$ and calculate

$$
\left(\sum_{i=1}^{n} f_{i} d x^{i}\right)\left(\left.\frac{\partial}{\partial x^{j}}\right|_{p}\right)=f_{j}(p) \neq \widetilde{f}_{j}(p)=\left(\sum_{i=1}^{n} \widetilde{f}_{i} d x^{i}\right)\left(\left.\frac{\partial}{\partial x^{j}}\right|_{p}\right)
$$

which is a contradiction
We have constructed the dual bundle $T^{*} M \rightarrow M$ to $T M \rightarrow M$, and we have studied their respective local sections.
Question: Can we interpret their sets of sections, that is 1-forms and vector fields, as "dual" to each other in a meaningful way? Answer: Yes! (see next page)

Proposition

$\Omega^{1}(M)$ is isomorphic as a $C^{\infty}(M)$-module to the $C^{\infty}(M)$-module dual to $\mathfrak{X}(M)$, i.e.

$$
\Omega^{1}(M) \cong \operatorname{Hom}_{C^{\infty}(M)}\left(\mathfrak{X}(M), C^{\infty}(M)\right)
$$

Proof (sketch):

- similar to the proof of $\operatorname{Der}\left(C^{\infty}(M)\right) \cong \mathfrak{X}(M)$ explicitly start with candidates $C^{\infty}(M)$-module isomorphism, given by

$$
\begin{aligned}
\alpha \mapsto & \left(A_{\alpha}: \mathfrak{X}(M) \rightarrow C^{\infty}(M),\right. \\
& \left.X \mapsto \alpha(X), A(X)(p):=\alpha_{p}\left(X_{p}\right) \quad \forall p \in M\right)
\end{aligned}
$$

for any given $\alpha \in \Omega^{1}(M)$
■ then need to show above is well defined, use bump functions subordinate to local charts

- also need to describe its inverse
- for details see lecture notes!

Remark

In practice, 1-forms are much easier to deal with than vector fields. This is due to how they transform under a change of local coordinates, which in "typical" calculations has the effect that the Jacobi matrix of the coordinate transformation does not need to be inverted.
Let us for example consider polar coordinates on \mathbb{R}^{2} : (next page)

Example

The change of coordinates from polar coordinates (r, φ) to Cartesian coordinates (x, y) on $\mathbb{R}^{n} \backslash\{y=0, x \leq 0\}$ is given by

$$
\binom{x}{y}=\binom{r \cos (\varphi)}{r \sin (\varphi)} .
$$

Any 1-form ω on \mathbb{R}^{2} can be (globally) written as $\omega=f(x, y) d x+g(x, y) d y$, where f, g are smooth functions [careful: in a more general setting we would be precise and state that f and g are coordinate representations of smooth functions, so that $f \circ(x, y)$ resp. $g \circ(x, y)$ are smooth functions on the manifold $\left.\mathbb{R}^{2}\right]$. Then ω is in polar coordinates of the form

$$
\begin{aligned}
\omega & =f(r \cos (\varphi), r \sin (\varphi)) d(r \cos (\varphi)) \\
& +g(r \cos (\varphi), r \sin (\varphi)) d(r \sin (\varphi)) \\
& =f(r \cos (\varphi), r \sin (\varphi))(\cos (\varphi) d r-r \sin (\varphi) d \varphi) \\
& +g(r \cos (\varphi), r \sin (\varphi))(\sin (\varphi) d r+r \cos (\varphi) d \varphi) \\
& =\widetilde{f}(r, \varphi) d r+\widetilde{g}(r, \varphi) d \varphi
\end{aligned}
$$

As with vector fields, we can also push forward and pull back 1-forms:

Definition

Let $F: M \rightarrow N$ be a diffeomorphism and let $\alpha \in \Omega^{1}(M)$, $\beta \in \Omega^{1}(N)$. The pushforward of α under F is the 1 -form $F_{*} \alpha \in \Omega^{1}(N)$ given by

$$
\left(F_{*} \alpha\right)_{q}:=\alpha_{F^{-1}(q)} \circ d\left(F^{-1}\right)_{q} \quad \forall q \in N
$$

The pullback of β under F is the 1-form $F^{*} \beta \in \Omega^{1}(M)$ given by

$$
\left(F^{*} \beta\right)_{p}:=\beta_{F(p)} \circ d F_{p} \quad \forall p \in M
$$

The above compositions denote compositions of linear maps which are given locally as matrix multiplications.

Note: An important difference to the pullback of vector fields is that the pullback of 1 -forms in $\Omega^{1}(N)$ is well defined even if $F: M \rightarrow N$ is not a diffeomorphism, but an arbitrary smooth map.

Next we will generalize the vector space constructions of the direct sum and the tensor product to vector bundles.

Definition

Let $\pi_{E}: E \rightarrow M$ be a vector bundle of rank k and $\pi_{F}: F \rightarrow M$ a vector bundle of rank ℓ over an n-dimensional smooth manifold M. The Whitney ${ }^{a}$ sum of E and F is the the direct sum of the two vector bundles $\pi_{E \oplus F}: E \oplus F \rightarrow M$ with fibres

$$
(E \oplus F)_{p}=\pi_{E \oplus F}^{-1}(p):=E_{p} \oplus F_{p}
$$

${ }^{\text {a }}$ Hassler Whitney (1907-1989)
Remark: The structure of a vector bundle on

$$
E \oplus F=\bigsqcup_{p \in M}\left(E_{p} \oplus F_{p}\right)
$$

is then explained by the vector bundle chart lemma and the requirement that the following maps are local trivializations of $E \oplus F$: (continued on next page)

(continuation of remark)

- let $\left\{\left(\psi_{i}^{E}, V_{i}^{E}\right) \mid i \in I\right\}$ and $\left\{\left(\psi_{i}^{F}, V_{i}^{F}\right) \mid i \in I\right\}$ be coverings of local trivializations of E and F, respectively, such that $U_{i}:=\pi_{E}\left(V_{i}^{E}\right)=\pi_{F}\left(V_{i}^{F}\right)$ for all $i \in I$ and such that there exists an atlas $\mathcal{A}=\left\{\left(\varphi_{i}, U_{i}\right) \mid i \in I\right\}$ of M
- we require now require that with

$$
\begin{aligned}
& \phi_{i}^{-1}:=\left(\psi_{i}^{E} \oplus \psi_{i}^{F}\right)^{-1} \circ\left(\Delta_{M} \times \operatorname{id}_{\mathbb{R}^{k+\ell}}\right): \\
& U_{i} \times \mathbb{R}^{k+\ell} \cong U_{i} \times\left(\mathbb{R}^{k} \times \mathbb{R}^{\ell}\right) \rightarrow \bigsqcup_{p \in U_{i}}\left(E_{p} \oplus F_{p}\right), \\
& (p, v, w) \mapsto\left(\psi_{i}^{E}\right)^{-1}(p, v) \oplus\left(\psi_{i}^{F}\right)^{-1}(p, w) \\
& \forall p \in U_{i}, \quad v \in \mathbb{R}^{k}, w \in \mathbb{R}^{\ell},
\end{aligned}
$$

where $\Delta_{M}: p \mapsto(p, p) \in M \times M$ denotes the diagonal embedding and

$$
\mathbb{R}^{k} \times \mathbb{R}^{\ell} \ni(v, w) \mapsto\binom{v}{w} \in \mathbb{R}^{k+\ell}
$$

the linear isomorphism, all $\phi_{i}, i \in I$, are the inverses of local trivializations covering $E \oplus F$
(continuation of remark)
■ in order to use the vector bundle chart lemma we need to check that the transition functions have the required form, i.e. are smooth in the vector part with image in $\mathrm{GL}(k+\ell)$

- obtain that for all $i, j \in I$, such that $U_{i} \cap U_{j} \neq \emptyset$,

$$
\phi_{i} \circ \phi_{j}^{-1}(p, v, w)=\left(p, \tau_{i j}^{E}(p) v, \tau_{i j}^{F}(p) w\right)
$$

where $\tau_{i j}^{E}$ and $\tau_{i j}^{F}$ are the transition functions of the local trivializations of E and F, respectively

- lastly, we simply need to define

$$
\tau_{i j}^{E \oplus F}(p):=\left(\begin{array}{c|c}
\tau_{i j}^{E}(p) & 0 \\
\hline 0 & \tau_{i j}^{F}(p)
\end{array}\right) \in \mathrm{GL}(k+\ell)
$$

so that we can write $\phi_{i} \circ \phi_{j}^{-1}\left(p,\binom{v}{w}\right)=\left(p, \tau_{i j}^{E \oplus F}(p)\binom{v}{w}\right)$
■ \rightsquigarrow all requirements of the vector bundle chart lemma are fulfilled and we conclude that $E \oplus F \rightarrow M$ is, indeed, a vector bundle of rank $k+\ell$

Example

The tangent bundle of products of smooth manifolds fulfils $T(M \times N) \cong T M \oplus T N$.

Note: This is not the only example of the Whitney sum we will encounter. [Hint: Recall that $\operatorname{Hom}_{\mathbb{R}}(V \times V, \mathbb{R}) \cong$ $\operatorname{Sym}^{2}\left(V^{*}\right) \oplus \Lambda^{2}\left(V^{*}\right)$ for finite dimensional real vector spaces V.]

Next lecture we will, similar to the direct sum, generalize the concept of the tensor product of vector spaces to vector bundles.

END OF LECTURE 10

Next lecture:

■ tensor products of bundles
■ tensor fields

