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1 Introduction

In this thesis we study properties of projective special real manifolds and their generalisa-
tions. Projective special real manifolds are hyperbolic centro-affine hypersurfaces and thus
they are objects of study in the fields of both Riemannian geometry and affine differential
geometry. While Riemannian geometry is probably to some extent known to any mathemati-
cian, affine and centro-affine differential geometry is a little less common field of study. In
most generality, affine differential geometry is the study of smooth manifolds M equipped
with a torsion-free connection V in TM — M together with a V-parallel volume form w.
Such a triple (M, V,w) is called an equiaffine structure on M [NS]. One is then concerned
with submanifolds of M and their induced geometric data. In particular, if the considered
submanifold N C M is of co-dimension one, it turns out that this study is closely related
to non-vanishing transversal vector fields along N. The term centro-affine geometry is used
when M = R""! equipped with the flat connection and standard parallel volume form
det(:), and N C R™™ is a submanifold (embedded via the inclusion map), such that the
position vector field X € T'(TR™™!), X, = p for all p € R™" with the usual identification
T,R™ = R i transversal along N. Another well studied subject in the field of affine
differential geometry is the theory of Blaschke structures on hypersurfaces, named after Wil-
helm Blaschke (1885-1962). This in particular includes the study of affine hyperspheres, see
[CY] for a completeness theorem about locally strictly convex affine hyperspheres. For a
history of the developments in the field of affine differential geometry (and also for an exce-
lent textbook about affine differential geometry in general) we refer the reader to the book
“Affine Differential Geometry” by Katsumi Nomizu and Takeshi Sasaki [NS], which contains
a historical review in the introduction.

An n-dimensional projective special real manifold H is a hypersurface in R**! that is
contained in the level set {h = 1} of a cubic homogeneous polynomial i : R"*' — R
with the property that the negative Hessian of A restricted to JH is positive definite when
viewed as bilinear form [CHM, Def.1]. Another way to introduce projective special real
manifolds is by defining them to be an open subset of {h = 1} N {hyperbolic points of h},
where p € {h > 0} is called a hyperbolic point of h if —9?h, has Lorentzian signature.
Note that these two definitions of projective special real manifolds are equivalent. The
aforementioned generalisations of projective special real manifolds that we will also study are
defined analogously with the difference that the homogeneous polynomial h is also allowed to
have degree greater than three, e.g. that h is a quartic or quintic homogeneous polynomial.
We will call the manifolds obtained via this type of generalisation generalised projective
special real manifolds. Both projective special real and generalised projective special real
manifolds, equipped with the (automatically) transversal position vector field of R"** along
them, are affine hypersurfaces of R**1. Thus, such manifolds are centro-affine hypersurfaces
of R*™1. Tt turns out that their induced centro-affine fundamental form [NS, Def. 3.2] is always
positive definite. Hence, they naturally carry the structure of a Riemannian manifold.

Projective special real manifolds and our considered generalisation were studied under
different points of view in the mathematics and physics literature. Projective special real
curves and surfaces have been classified in [CHM, Thm. 7] and |[CDL, Thm. 1, Thm. 2], re-
spectively. Independently of their dimension, projective special real manifolds defined by a
reducible cubic polynomial have also been classified, see [CDJL, Thm. 2, Prop.8]. In [CNS|
Thm. 2.5] it was shown that for all n > 0, an n-dimensional projective special real manifold
H C {h =1} C R""! equipped with its centro-affine fundamental form gg; = —%82h|TJ{XT}(
is geodesically complete if and only if it is closed in the ambient space R"™. In [CNS|, Def. 2.2
| projective special real manifolds were defined intrinsically as (intrinsic) centro-affine man-
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ifolds (M, V,g,v) (cf. [CNS, Def.1.5]) with the property that their respective cubic form
C := Vg fulfils

(VxC) (Y, Z,W) = g(X,Y)g(Z, W) + g(X, Z)g(W,Y) + g(X, W)g(Y, Z)

forall XY, Z, W € I'(T'M). It was then shown [CNS, Thm 2.3] that every projective special
real manifold is also an intrinsic projective special real manifold in that sense, and on the
other hand that every intrinsic projective special real manifold is isomorphic (as a centro-
affine manifold) to a projective special real manifold. [CNS, Thm 2.3] is thus an analogue to
the fundamental theorem of affine differential geometry [NS, Thm. 8.1, p. 73] in the setting
of projective special real manifolds. Another connection to affine differential geometry is
based upon the constructions of the supergravity r- and c-map which originate in the the-
ory of supergravity |[GST, [FS| [DV], [CHM]. The supergravity r-map associates to a given
n-dimensional projective special real manifold a projective special Kéhler manifold of real
dimension 2n + 2, and the supergravity c-map associates to such a Kahler manifold a quater-
nionic Kéhler manifold of real dimension 4n + 8. In [CHM] it was proven that the r- and
c-map preserver geodesic completeness. This fact was used in [CDJL, Thm. 3] to obtain an
explicit series of inhomogeneous complete quaternionic Kahler manifolds with negative scalar
curvature of real dimension 4n + 8 for n > 1. More precisely, manifolds in this series have
the property that their respective isometry group acts with co-homogeneity one. Apart from
the theory of supergravity, another connection of projective special real manifolds and their
generalisations with physics is geometric scattering theory, see the discussion after [CNS|
Thm. 1.18] and [Me]. Projective special real manifolds and related geometric objects have
also been studied in the setting of affine differential geometry, which we will review now.
In order to properly define projective special Kéahler manifolds, we need the concept of an
affine special Kéhler manifold. An affine special Kéhler manifold [F] is a (pseudo-)Kahler
manifold (M, g, J, V) with Kahler metric ¢ = w(+, J-) equipped with a torsionfree, flat con-
nection V, such that d¥J = 0. The latter means that d¥J(X,Y) = (VxJ)Y —(VyJ) X =0
for all X,Y € I'(TM). Note that ¢ is allowed to be indefinite. Simply connected affine
special Kahler manifolds have the property that they can be described by a holomorphic
Lagrangian immersion [ACDlL Thm.4]. They can also be viewed as parabolic (also called
improper) affine hyperspheres [NS, Def. 3.3], as it was shown in [BCI1, Thm.3.1] that for a
given such manifold of real dimension 2n there exists a Blaschke immersion [NS| Def. 3.2]
¢+ M — R*! with induced Blaschke metric and Blaschke connection [NS, Def. 3.3] co-
inciding with the given metric ¢ and connection V, such that ¢(M) is a parabolic affine
hypersphere. In [ACD] a subclass of affine special Kéhler manifolds is introduced and stud-
ied, namely conic affine special Kédhler manifolds. A conic affine special Kédhler manifold is
an affine special Kéahler manifold (M, g, J, V) equipped with a local holomorphic C*-action
ox: M — M, X =re® € C, fulfilling (©)).X = rcos(t)X + rsin(t)JX for all V-parallel
vector fields X € I'(TM) (cf. [BC2, Sect.1.2] and for the setting of the supergravity r-map
also [CHM, Def.3]). Under the assumption that the action lifts to a global C*-action on
M, the orbit space M := M/C* equipped with the metric, almost complex structure, and
connection induced by the projection M — M is a Kihler manifold and will be called a
projective special Kahler manifold. Under the additional assumption that M is a conic affine
special Kihler domain, cf. [BC2| Sect. 2], the corresponding manifold M is called a projective
special Kdahler domain. A conical affine special Kdhler domain M is by definition a subset of
C™ and has a globally defined Kéhler potential k : M — R of the form
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for some holomorphic function F' : M — C which is homogeneous of degree two. The function
F is called the holomorphic prepotential of the associated projective special Kéhler domain M
defined by M. With the knowledge of the Kahler potential k£ : M — R one can study the level
sets M. :={z € M | |k(z)| = ¢}, ¢ > 0, which are hypersurfaces in M C C". For any ¢ > 0,
M, is an S*-principle bundle over M, and for ¢ = § the projection map 7. : (M., g) — (M, g)
is a pseudo-Riemannian submersion [BC2, Prop.1]. Here g denotes the restricted Kéhler
metric of M to M, and ¢ is the induced projective special Kéhler metric on M. Hypersurfaces
of the form M are also connected to affine differential geometry. In [BC2, Thm.6] it is

demonstrated that in certain special coordinates, one can view M% C M cCCrR™ as
a proper affine hypersphere M 1 C R?" with affine mean curvature sgn(k). Summarising,

for each projective special Kahler manifold M, thus in particular for those obtained via the
supergravity r-map applied to a projective special real manifold, we have its defining conic
affine special Kahler manifold M which (under the assumption that it is simply connected)
can be studied as a parabolic (or improper) affine sphere, and we also have an S'-principle
bundle over M (under the additional assumption that M is a conic affine Kéhler domain),
which can be understood as a proper affine hypersphere. The structure of projective real
manifolds and their generalisations also appear in the study of the index cone of Kéahler
manifolds [Will,Wi2, [Ma]. The index cone W of a M of a real 2n-dimensional Kéahler manifold
is defined to be the subset of the positive cone {w € HY'(M,R) | w™ > 0} that contains all
elements w, such that the induced quadratic form HY'(M,R) 3 a — w?** 2 U a? € R has
signature (1, %' — 1). Here, w™ denotes the n-fold cup product and At = dim H%'(M,R).
In the case of complex 3-dimensional Kahler manifolds, e.g. complex 3-dimensional Calabi-
Yau manifolds, the level set w® = 1 in the index cone can thus be interpreted as to be
contained in some projective special real manifold of dimension h'' — 1. Historically, real
plane cubic curves have already been studied by Newton [N], for a modern introduction
see [BK]. The relation to projective special real surfaces H is that the boundary of their
respective cone Ry - H C R3, intersected with an affine plane in R? that does not contain
the origin, is a real plane cubic curve.

Almost all of our studies in this thesis are from a mathematical point of view, although we
will mention possible applications of our results to the theory of supergravity. Our main focus
will be the study of projective special real manifolds and quartic generalised projective special
real manifolds, the latter corresponding to quartic homogeneous polynomials, although some
of our results hold for all generalised special real manifolds. Additionally, we will study
examples and curvature properties of manifolds in the image of the (generalised) supergravity
r-map. Before giving a summary of the contents of this thesis, we will highlight some of our
main results and afterwards mention some of the open problems that we will discuss in this
thesis.

Main results:

One of the subjects of this thesis is the scalar curvature of projective special real manifolds
and their generalisations. Our first main result is Theorem [£.13] We prove that the scalar
curvature of an n > 2-dimensional closed connected projective special real manifold is globally
bounded by constants from above and from below. The corresponding bounds (see equation
(4.15)) depend only on the dimension n and are independent of the specific considered closed
connected projective special real manifold.

The second main result of this thesis, Theorem is concerned with properties of the
moduli space of closed connected projective special real manifolds. It says that given a maxi-
mal connected projective special real manifold H C {h = 1} in standard form (cf. Proposition
B.18 ie. h = 2® — 2(y,y) + Ps(y), maximal means that H C {h = 1} C R"*! coincides
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with a connected component of hyperbolic points of the defining polynomial &), H is closed
in the ambient space R"*! if and only if the polynomial A fulfils the maximality condition

|I|nHa_X1 Ps(z) < %, independent of the dimension of J{. This implies in particular that the

moduli space of closed connected projective special real manifolds in any dimension n € N is
generated by a convex compact subset of an affine subset of Sym® (R"*1)", see Proposition
[5.8] This allows us to define a deformation theory of closed connected projective special
real manifolds as described in Section [o} Furthermore, Theorem [5.6| also has applications for
curvature bounds of closed connected projective special real manifolds. We use it in Propo-
sition to calculate global bounds of the scalar curvature of closed connected special real
surfaces which are sharp, meaning that they not only improve the bounds in Theorem [4.13
(which we do not expect to be sharp in any dimension) but are also the best possible choices
for such bounds. The results of Proposition [5.8| provide a partial answer to Conjecture [5.14
which is a statement about possible sectional curvature bounds of level sets in the Kéhler
cones of Calabi-Yau three-folds formulated by P.M.H. Wilson in [Wi2].

Our third main result, Theorem [7.2] is about quartic generalisations of closed connected
projective special real curves. We classify all quartic generalised projective special real curves
H C {h =1} up to linear equivalence and determine in each case the automorphism group
of the corresponding polynomial A. In comparison with the classification of closed connected
projective special real curves found in [CHM| Thm.8a),b)], which states that there are pre-
cisely two distinct such curves up to linear equivalence with one being homogeneous under
the action of the respective linear automorphism group, it turned out that in the quartic
case we have up to linear equivalence two homogeneous curves (Thm. @ and @[), one
inhomogeneous curve (Thm. , and a one-parameter family of pairwise inequivalent

inhomogeneous curves (Thm. [7.2][d)).

During the preparation of this thesis we encountered some interesting open problems that
are related to our studies. One of them is Open problem [7.1] that is the question whether all
quartic generalised projective special real manifolds H C {h = 1} C R""! of arbitrary dimen-
sion dim(H) = n are geodesically complete with respect to their centro-affine fundamental
form gy = —i82h|Tgfng{ if and only if they are closed as a subset of the ambient space R"*1.
During the preparation of this thesis, which was mainly motivated by the tasks to better
understand global curvature properties of closed projective special real manifolds, to study
properties of their moduli space, and to find possible generalisations of their properties to
closed generalised projective special real manifolds, we also studied the latter open problem.
Note that the completeness of closed projective special real manifolds has first been proven in
[CNS, Thm. 2.5], and it is described therein after [CNS| Open problem 2.10] why their proof
cannot easily be extended to quartic closed generalised projective special real manifolds. In
Proposition [4.17] and Proposition [5.17] we find two different new ways to show that closed
projective special real manifolds are complete, and in Section |7| we describe properties of
quartic closed generalised projective special real manifolds that illustrate why these two new
proofs also cannot be generalised in any obvious way to quartic closed generalised projec-
tive special real manifolds, see the related discussion in Section [0} Apart from this specific
open problem we also discuss open questions for generalised projective special real manifolds
independent of the corresponding homogeneity-degree 7 > 3 of their corresponding defining
polynomial (Open problems and , and in Open problem we propose a way to
study the curvature properties of manifolds in the image of the supergravity g-map, which is
the composition of the r- and c-map, by employing our technical tools developed in Section

3l
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Summary of this thesis:

In the preliminaries, that is Section [2| we explain the notation used in this work and give
a short overview of pseudo-Riemannian and centro-affine geometry. We will then introduce
hyperbolic centro-affine hypersurfaces of which projective special real manifolds are a special
case and review some known results about them which we will use later.

In Section [3| we will develop the mathematical machinery that is needed for our study of
(generalised) projective special real manifolds. We will in particular find a “standard form”
for homogeneous polynomials corresponding to such manifolds and use this result to find
formulas for their different curvature tensors. The main results of Section [3] are:

o Proposition [3.18 which allows us to find for any chosen point p € H in a connected
(generalised) projective special real manifold H C {h = 1} C R""| i of homogeneity-
degree 7 > 3, a linear transformation A € GL(n + 1) of the ambient space R"™!, which
maps (1,0,...,0)T € R*™ to p and fulfils

W(A-(3) =" — a2 (y.y) + 3 Pily).

=3

Here y = (y1,...,%,)" and (-, -) denotes the Euclidean standard scalar product induced
on R” via the choice of the y-coordinates, and P; : R" — R is a homogeneous polynomial
of degree 7 for all 3 < ¢ < 7. This result in particular gives a mathematical proof for the
concept of “canonical parametrisation” of h in the context of supergravity theory where
h is a cubic homogeneous polynomial, see the discussion in Remark Our result
however holds for all possible degrees 7 > 3 of h and furthermore tells us explicitly how
the polynomials P;, 3 <1 < 7, depend on the choice of the reference point p € H.

« Propositions [3.29] and Lemma [3.31] which are formulas for the scalar curvature,
the first derivative of the scalar curvature, and the Riemannian, Ricci, and sectional
curvature tensors of (generalised) projective special real manifolds at one particular
point. While having a formula at one point might not appear to be too useful at first,
when combined with the aforementioned Proposition |3.18 and under the assumption
that the considered (generalised) projective special real manifold is closed this will allow
us to find curvature bounds for these manifolds in the next section.

» Proposition , which yields a necessary and sufficient condition for a (generalised)
projective special real manifold to be a Riemannian homogeneous space under the action
of its linear isometry group and allows us to avoid calculating the said linear isometry
group when we want to show that some (generalised) projective special real manifold
fulfils that condition. To obtain this result we have to study the infinitesimal changes
of the polynomials P;, 3 <i < 7, as defined in Proposition [3.18] see Definition [3.27]

In Section [4] we restrict our studies to projective special real manifolds. We are concerned
with the scalar and sectional curvature and will determine upper and lower bounds for them
that hold for all closed projective special real manifold of fixed dimension. It turns out that
the technicalities that are needed for these results can also be used to find an alternative proof
(in comparison with [CNS| Thm. 2.5]) that a projective special real manifold 5 C {h =1} C
R™* equipped with its centro-affine fundamental form g3 = —%82h|m{xm{ is geodesically
complete if and only if H C R""! is closed. The main results of Section {4| are:

o Theorem .13 where we show that the scalar curvature of an n > 2-dimensional closed
projective special real manifold H is always bounded from above and from below, where
the upper and lower bound depend only on the dimension dim(H) = n of X.
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e Proposition 4.15, which is an analogous result for the sectional curvature instead of the
scalar curvature.

« Proposition in which we give a proof that closed projective special real manifolds
are geodesically complete. This new proof might be useful when studying the still open
question whether a closed generalised projective special real manifold H C {h =1} C
R™*1 h of homogeneity degree 7 > 4, is automatically geodesically complete.

In the next section, that is Section [}] we are again concerned with projective special
real manifolds and develop a deformation theory of closed connected projective special real
manifolds. The results characterise the moduli space of n-dimensional closed connected
projective special real manifolds under the action of GL(n + 1) for all n > 1 and allow us to
find sharp lower and upper bounds for the scalar curvature of closed projective special real
surfaces (for a discussion why the bounds constructed in Theorem are not expected to
be sharp see Remark . In order to obtain these results we study regularity of closed
projective special real manifolds in the sense of [CNS, Def. 1.7], respectively Definition .
Altogether, this allows us to find a second alternative proof of the statement that closed
projective special real manifolds are complete. The main results of Section || are:

o Theorem|[5.3] in which we prove that a closed connected projective special real manifold
H C {h =1} C R"*! is not singular at infinity (cf. Definition [3.16), that is there exists
no point p € AU \ {0}, where U = R, - H C R""! denotes the cone spanned by K,
such that dh, = 0, if and only if H has regular boundary behaviour in the sense of
Definition [5.1]

o Theorem [5.6, where we show that the connected component 3 C {h = 1} C R"!
that contains the point (1,0,...,0)" € {h =1} C R™"! h of the form (3.12)) found in

Proposition [3.18] that is
h=a"—x(y,y) + Ps(y),

is a closed connected projective special real manifold if and only if the cubic homoge-

neous polynomial P3 : R" — R fulfils max Ps(z) < 3—23 Thus, we do not need to check

by hand that every point p € H is a hyperbolic point of A, but instead it suffices to
study the maxima of Py on S" ' ={z € R" | (z,z) = 1}.

» Proposition [5.8] which states that the moduli space of n-dimensional closed connected
projective special real manifolds is generated by the convex compact uniformly bounded
subset

3 2

Cn {;1: z(y,y) + Ps(y) ﬁl”a:)i P3(z) < 3\/5}
which is affinely embedded in Sym® (R"*1)* (when equipped with the topology induced
by the real vector space structure). Furthermore, we find that closed connected pro-
jective special real manifolds which are singular at infinity correspond precisely to the
GL(n + 1)-orbits of 0C,. Here, a closed connected projective special real manifold
H C {h = 1} being singular at infinity means that there exists a point p € 9 (Rsq - H)
such that dh, = 0.

o Together, Theorem and Proposition |5.8 can be interpreted as a deformation theory
of closed connected projective special real manifolds in the following sense. Whenever
H c {h =1} C R* is a closed connected projective special real manifold, & is of
the form (3.12), that is h = 2® — 2(y,y) + P(y), (1,0,...,0)7 € H (note: this is
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not a restriction of generality, cf. Proposition [3.18), and V : R" — R is any given
cubic homogeneous polynomial, we now have a precise answer to the question when the
connected component

H. € {he =2 —aly,9) + P(y) +Vy) =1}, (1,0,...,0)" € %,

is also a closed connected projective special real manifold, namely if and only if

2
max(Ps(z) +eVi(z)) < ——.
max (Fs(2) (2)) 373
Furthermore, we have found a way to connect two closed connected projective special
real manifolds with a curve consisting pointwise of closed connected projective special
real manifolds since C,, is a convex and thus in particular path-connected set.

Proposition [5.12] Here we derive a sharp estimate for the scalar curvature of closed
connected projective special real surfaces. More specifically, we will show that the scalar
curvature Sy of a closed connected projective special real surface H equipped with its
centro-affine fundamental form g4 is globally bounded by

9
—— < 554 <0
4= H =Y

independently of which closed connected projective special real surface H is considered.
This estimate being sharp means in this case that there exists precisely one homoge-
neous closed connected projective special real surface with constant scalar curvature
equal to —% (Thm. b)), and another homogeneous closed connected projective spe-
cial real surface with constant scalar curvature equal to 0 (Thm. a)). Recall that
we do not expect the bounds found in Theorem to be sharp, and we will indeed
see that they are not sharp for dimension two. This is an application of Theorem to
a low-dimensional question and the proof makes use of the already known classification
of closed connected projective special real surfaces found in [CDL, Thm. 1] (see also
Theorem a)-f) for the statement of this classification).

An application of Proposition is Corollary [5.15] where we give a partial answer to
Conjecture [5.14} which is a statement for bounds of the sectional curvatures of level sets
in the Kéahler cone of complex 3-dimensional Calabi-Yau manifolds stated by P.M.H.
Wilson in [Wi2].

Finally, we will use the result of Proposition to find another alternative proof of the
statement that closed projective special real manifolds are complete, see Proposition
[5.17] This approach might be extendable to generalised projective special real manifolds
with corresponding polynomial h of homogeneity-degree 7 > 4, see Section [J] for a
discussion on how such a generalisation might look like (and why it is most likely worth
a try at least for quartic closed connected generalised projective special real manifolds).

In Section |§| we will study two examples of (n — 2)-parameter families of pairwise in-
equivalent n-dimensional closed connected projective special real manifolds for each n > 3.

Pairwise inequivalent means that two distinct elements of one of these families are not related

by a linear transformation of the ambient space R"*!. Some of the results of this section

are part of [CDJL], namely Theorem Corollary [6.5] and in part Corollary [6.7 A one-

parameter family of pairwise inequivalent closed connected projective special real surfaces

corresponding to the Weierstraf§ cubics has been studied in [CDL], but until the results in
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[CDJL] no pairwise inequivalent multi-parameter family of complete projective special real
manifolds has been known, albeit the existence of such a family in high enough dimension
was expected from the fact that the dimension of the vector space of cubic homogeneous
polynomials in n + 1 variables grows cubically in n, while the dimension of GL(n + 1) grows
only quadratically in n. This was the initial motivation for finding such a multi-parameter
family. The main results of Section [f] are:

e Theorem , the existence of two (n—2)-parameter families of pairwise inequivalent n >
3-dimensional closed connected projective special real manifolds. The corresponding
cubic homogeneous polynomials are given in & and G , respectively. (This
result is a part of [CDJL].)

o Corollary [6.5] in which we list the possible automorphism groups for all h € FU §.
(This result is a part of [CDJL].)

« Proposition [6.6] where we show that each closed connected projective special real man-
ifold H(h) corresponding to h € FU G as in equation and equation , respec-
tively, is singular at infinity in the sense that the boundary of the cone U = R+o-H(h) C
R™ ! excluding the origin contains a point p € U \ {0}, such that dh, = 0 (cf. Defini-

tion .

« Proposition [6.9] where we show that each closed connected projective special real man-
ifold H(h) is inhomogeneous for all h € F U G.

o Lemmal6.10] in which we calculate the scalar curvature of the two homogeneous projec-
tive special real manifolds H; ,, = Ry X R ! (6.44) and Hyp = %w 6.45
for n > 3.

Next, in Section [7]we will switch our focus from projective special real manifolds to quartic
generalised projective special real manifolds. We will give a classification of quartic closed
connected generalised projective special real curves and we will find analogues to some results
from Section {4] to quartic generalised projective special real manifolds. We will also discuss
explicit examples of closed connected generalised projective special real manifolds. The main
results of Section [ are:

e Theorem in which we classify all quartic closed connected generalised projective
special real curves H C {h = 1} C R? up to linear equivalence. Furthermore, we
determine the hyperbolic closed connected components of {h > 0} C R? and the
automorphism group of h in each case.

e Proposition which can be understood as a quartic analogue to Corollary We
show that the Euclidean length of points in the boundary of the set dom(¥H) as in
Definition is bounded from above by v/6 for all quartic closed connected generalised
projective special real manifolds J.

o Lemma [7.9] which is the quartic analogue to Lemma [£.§f We formulate a necessary
and sufficient condition for a certain connected component of a quartic homogeneous
polynomial of the form to be a closed connected quartic generalised projective
special real manifold. The analogous construction for projective special real manifolds
in Lemma [4.8| was a key component in one of the new proofs that closed projective
special real manifolds are geodesically complete (cf. Proposition .
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In Section (8] we will be concerned with manifolds in the image of the (generalised) su-
pergravity r-map. We will derive a formula for their scalar curvature using our technical
tools from Section |3| and find that it has some properties analogous to the properties of the
scalar curvature of closed connected projective special real manifolds that we have studied
in Section As examples, we will study r-map images of the elements in the two multi-
parameter families of closed connected projective special real manifolds that were studied in
Section [ and we will in particular show that all manifolds that are obtained in this way are
inhomogeneous. The main results of Section || are:

« Proposition [8.8, where we derive a formula for the scalar curvature of manifolds in the
image of the (generalised) supergravity r-map at one point, analogous to Proposition
in which we found a formula for the scalar curvature of (generalised) projective
special real manifolds at one point.

« Proposition in which we determine (not necessarily sharp) upper and lower bounds
for manifolds in the image of the supergravity r-map where the initial projective special
real manifold is assumed to be closed and connected.

o Lemma [8.11] where we find sharp upper and lower bounds for manifolds in the image
of the supergravity r-map under the assumption that the initial projective special real
manifold is closed, connected, and one-dimensional.

o Proposition [8.14] where we determine a formula for the first derivative of the scalar
curvature of manifolds in the image of the (generalised) supergravity r-map at one
point, analogous to Proposition which contains a similar formula for (generalised)
projective special real manifolds.

» Proposition [8.15] where we prove that r-map-images of closed connected projective
special real manifolds of the form H(h) for all h € FUG, cf. Theorem[6.1] are inhomo-
geneous. Recall that F(h) itself was shown to be inhomogeneous for all h € FU G in

Proposition 6.9

« Lemma in which we calculate for each dimension n > 3 the (constant) scalar
curvature of the image under the r-map of the two homogeneous projective special real

manifolds (1, = Rog x R (6.44) and 3, = 220807 0LD (G 45).

We will conclude this thesis with an outlook in Section [0} We will discuss the still open
question if every quartic closed generalised projective special real manifold is automatically
geodesically complete, and we will also present ideas for a possible proof that have neither
been fully tried nor excluded by our research yet. Another interesting problem we will discuss
is the construction of possible ways to map (generalised) projective special real manifolds
H, C {h, =1}, h, of homogeneity degree 7, to generalised projective special real manifolds
H,11 C {hry1 = 1}, hyy1 of homogeneity degree 7+ 1, for all 7 > 3. This question has been
motivated by the proof of Theorem and an analogue for projective special real curves (cf.
Remark , which turned out to provide possibilities for such constructions to map closed
connected projective special real curves to quartic closed connected generalised projective
special real curves.
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2 Preliminaries

2.1 Notation

We will give an overview of the notations and conventions used in this thesis that are either
not frequently used or not standardised.

o Unless stated otherwise, we will always assume that manifolds and maps are smooth.

 For a vector bundle over a manifold £ — M we denote its sections by I'(E). We omit
specifying the corresponding projection map if it is clear from the context.

o In order to omit special notations for vector fields on a manifold M, we will denote the
set of vector fields by I'(T'M) instead of the also commonly used notation X(M). The
term I'(T'M)|y for a subset U C M denotes the set of vector fields along U that are
obtained by restricting vector fields on M.

« We consider elements in the vector space, respectively manifold, R"*! as column vectors.

o We will not use the Einstein sum convention. We will, however, frequently omit sum-

n
mation ranges if they are clear from the context, e.g. we will write ) instead of ).
k k=1
This usually makes formulas a little easier to read while still indicating the summation

and the corresponding indices.

« For local coordinates (x1, ..., z,) on a manifold M we will often abbreviate the induced
local frame fields % of TM by either 0; or 0,,.

o For the positions vector field £ € T'(TR""!) we will frequently omit the symbol £ and
canonically identity p and §,. This makes many equations a lot easier to read.

« We identify homogeneous polynomials of degree 7 > 1 in Rz, ..., z,] with symmetric
tensors in Sym” (R"*1)” in the sense that for every homogeneous polynomial i : R* — R
there exists precisely one symmetric (0, 7)-tensor H, such that h(x) = H(z,...,z).

Also, instead of writing “h € Rxy,...,z,| is homogeneous of degree 7”7 we will write
h € Sym™ (R"+1)*.

o Whenever x = (1,...,2,)" denotes linear coordinates of R", we will identify dz =
(dxy,...,dz,)T. This means for example that for a bilinear form Q(x, ), we will write

dQ, = 2Q(x,dz).

o Empty spaces in matrices are always supposed to be zeros. Writing down zeros and
dots would make the corresponding equations more difficult to read.

o The natural numbers N are given by N = {1,2,3,...}. In particular 0 ¢ N.

We start with some remarks about vector bundles and restriction of corresponding sections
to images of immersions.

Definition 2.1 (Sections along immersions). Let EE — M be a vector bundle over a manifold.
For an immersion f : M — M and an open subset U C M, such that f|y is an embedding
or equivalently f(U) is a submanifold of M, we denote by Iy (E) the sections of E — M
along f(U). These are precisely the sections of the pullback bundle ank = f(U), which can
be identified with the sections of the corresponding pullback bundle f|;;E — U. Here 1)
denotes the inclusion map of the submanifold f(U) into M.
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In order to talk about properties of sections along immersions, one has to be careful
whenever f is not an embedding, i.e. whenever f is an immersion but not a homeomorphism
onto its image with the induced subspace topology.

Remark 2.2 (Terminology for sections along immersions). Let E — M be a vector bundle
and let f : M — M be an immersion. We can restrict any section s € ['(E) to the subset
f(M) C M. Since f need not be an embedding, we say that S’f(l\?) has some property, e.g. is
nowhere vanishing, if that property holds locally around each point. This means that for all
pE f(M) and all open sets U C M with p € U, such that f|y is an embedding and, hence,

f(U) C M a submanifold, s|s has that property.

Remark 2.3 (Induced connection on pullback bundle). If a vector bundle over a manifold
E — M is endowed with a connection V and we consider the (at least locally defined)
associated pullback bundle along an immersion f : M — M, then we will use the same
symbol V for the induced connection in ¢y & — f(U), respectively f|;;E — U. An example
would be the induced connection along a curve in a manifold with nowhere vanishing velocity
where V is a connection in 7'M — M.

2.2 Pseudo-Riemannian geometry and completeness theorems for
Riemannian manifolds

In the following we will quickly review definitions and results from pseudo-Riemannian ge-
ometry, in particular completeness theorems that are used in this thesis.
We start with the most basic definitions.

Definition 2.4 (Pseudo-Riemannian manifold). Let M be a manifold and g a symmetric
(0,2)-tensor field on M, that is g € T'(Sym*T*M). The tupel (M,g) is called a pseudo-
Riemannian manifold if g, = g|r,px1,0m 5 a non-degenerate bilinear form for all p € M. If
g, >0 forallp € M, (M,g) is called a Riemannian manifold. The symmetric tensor field g
is then called pseudo-Riemannian metric, respectively Riemannian metric.

Definition 2.5 (Signature of a pseudo-Riemannian metric). Let (M, g) be a connected
pseudo-Riemannian manifold. The signature of g is defined as the signature (i,7) of the
bilinear form g, for some some p € M, i denoting the number of positive eigenvalues of g,
and j denoting the number of negative eigenvalues of g,. Global non-degeneracy of g and M
being connected implies that the signature is well-defined, that is, independent of p € M.

Riemannian manifolds (M, g) of dimension n have signature (n,0). Another class of
pseudo-Riemannian manifolds are Lorentz manifolds, that is (n + 1)-dimensional pseudo-
Riemannian manifolds with signature (n,1). Lorentz manifolds are of particular interest in
the theory of general relativity, see for example [O] for an introduction.

Definition 2.6 (Isometry). Two pseudo-Riemannian manifolds (M, g) and (M,g) are called
isometric if there exists a diffeomorphism F : M — M, such that F*g = g.

Note that every manifold admits a Riemannian metric. This can be proven with the
help of a partition of unity and adding up locally defined Riemannian metrics. For every
pseudo-Riemannian manifold (M, g) there exists a unique, torsion free connection, such that
g is parallel, called the Levi-Civita connection.

Definition 2.7 (Levi-Civita connection). Let (M,g) be a pseudo-Riemannian manifold.
Then there exists a unique connection ¥V in TM — M, called the Levi-Civita connection,
such that
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(i) VxY —VyX =[X,Y] VXY eI'(TM),
(ii) Vg =0,
where in (i) V denotes the induced connection in Sym>T*M — M.

An important formula used to calculate the components of the local 1-forms of the Levi-
Civita connection is the following.

Lemma 2.8 (Koszul formula). The Levi-Civita connection of a pseudo-Riemannian manifold
(M, g) is uniquely determined by the so-called Koszul formula

29(VxY, Z) = Xg(¥, Z) + Yg(X. Z) — Zg(X.Y) — g(Y.[X, Z)) — g(X.[Y. Z]) + 9(Z. [X.Y])
forall X,Y,Z € T(TM).
Proof. See for example [O] p.61, Thm. 11]. O

For an n-dimensional pseudo-Riemannian manifold (M, g) and (xy,...,z,) local coordi-
nates of M, the Koszul formula shows that in the induced local frame (01, ..., 0,) of TM we
have

1 ..
Vs,0; = 3 Z(aigjz + 0,91 — 8€gij)g€kak V1 <i,j <n,

k.0

where g;; = g(0;,0;) and ¢* = g~'(dz;, dz;). This leads to the following definition.

Definition 2.9 (Christoffel symbols). Let (M, g) be an n-dimensional pseudo-Riemannian
manifold and (x4, ..., x,) local coordinates of M with induced local frame (01, . ..,0y,) of TM.
We define the Christoffel symbols Ffj, 1 <i,j,k <mn, of (M,g) in the given local coordinates
to be

1
Fi?j =5 > (Bigje + 0;gic — Degi) g™
¢

We will now present the most important invariants of pseudo-Riemannian manifolds,
namely their different curvature tensors. For a reference on this topic see e.g. [KN, [O].

Definition 2.10 (Curvature tensor). The pseudo-Riemannian curvature tensor of a pseudo-
Riemannian manifold (M, g) with Levi-Civita connection V is defined as

R(X,Y)Z :=VxVyZ —=VyVxZ -VixyZ VX,Y,ZecT(T'M).
The Ricci curvature is defined as follows.

Definition 2.11 (Ricci curvature). Let (M, g) be a pseudo-Riemannian manifold and R its
pseudo-Riemannian curvature tensor. The Ricci curvature Ric € T'(Sym*T*M) (also called
Ricci tensor) of (M, g) is defined as

Ric(X,Y) = tr(R(-, X)Y) VX,Y € I(TM).

In the above formula, R(-,X)Y € T'(End(TM)) for each pair XY € I'(TM) and tr :
[(End(TM)) — C*®(M) denotes the trace. In local coordinates (x1,...,x,) of M with
induced local frame (01, ...,0,) of TM, the components of Ric are of the form

Ric;; = Ric(8;,0;) = > (aar;.g —o;Ty, +>° (Ffjrgk — Ffarf;k)> .
k

a
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Remark 2.12. The Ricci curvature (also called Ricci tensor) is central in the study of
Einstein manifolds where one is concerned with pseudo-Riemannian manifolds (M, g), such
that Ric = Ag for some constant \. For a reference see [B].

Next we will define the scalar curvature, which is in practice an important tool to check
whether two pseudo-Riemannian manifolds can be isometric or not by studying extremal
points of their respective scalar curvature.

Definition 2.13 (Scalar curvature). The scalar curvature S € C*(M) of a pseudo-Rieman-
nian manifold (M, g) is defined as

S = try(Ric) = tr(g~' o Ric),

where g=1 : T*M — T M is understood as a vector bundle isomorphism and Ric : TM — T*M
is viewed as a vector bundle homomorphism. In local coordinates (x1,...,x,) of M with
induced local frame (0y,...,0,) of TM,

§=> Ric;g’ =3 <3aF?i —o,Tg, + > (ThTe, — T, ﬁ)) g".
k

1,J a,i,j
Another important curvature of pseudo-Riemannian manifolds is the sectional curvature.

Definition 2.14 (Sectional curvature). Let (M, g) be a Riemmanian manifold of dimension
at least two. Let p € M be arbitrary, v,w € T,M two linearly independent vectors, and

denote E = span{v,w} C T,M. Then the sectional curvature of the 2-dimensional vector
subspace E C T,M is defined as

_ g(R(v, w)w,v)
g(U, U)g(w> U)) - g(U, w)2.

This definition is independent of the choice of the basis {v,w} of E which justifies the iden-
tification K(E) = K(v,w).

Remark 2.15. One can show that in any local orthogonal frame (e, ..., e,) of T M,
S = Z K(Gi, €j).
1#]

Definition 2.16 (Length and velocity of a curve). For a Riemannian manifold (M, g) we
define the length of a curve v : I — M, I a possibly unbounded interval, as

() = [ o (At

Notice that L(~y) might be an improper integral and need not converge, so that L(y) = oo is

allowed. In the latter case we say that v has infinite length. The term /g (%, %) is called the
velocity of .

One main interest in the study of Riemannian manifolds is the question of geodesic com-
pleteness. We will present the necessary definitions to study this subject.

Definition 2.17 (Geodesic). Let v : I — M be a curve in a pseudo-Riemannian manifold
(M, g) defined on an open interval I and let V denote the Levi-Civita connection of (M, g).
Then ~ is called a geodesic of (M, g) if V47 = 0.
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Remark 2.18. Geodesics have many interesting properties. One can show that the velocity
of a geodesic is constant and for a reparametrisation of the domain I of a geodesic, f : I' — I,
one can show that v o f is a geodesic if and only if f is affine-linear. In local coordinates
(a:l, ...,x,) of a Riemannian manifold (M, g) the geodesic equation Vs4 takes the form

Ve + ZF”%% = 0 for all 1 < k < n, where 7; = z;(7) for 1 < i < n. For a reference on

classmal results for geodesics see e.g. [O].

Theorem 2.19 (Hopf-Rinow). Let (M,g) be a Riemannian manifold. Then the following
are equivalent:

(i) M is complete as a metric space.
(1) M is geodesically complete, i.e. all geodesics are defined for all times.
(7ii) Closed and bounded subsets of M are compact.
Proof. See for example [Jo, Thm.1.7.1, p. 35]. ]

Theorem justifies to talk simply about completeness of a Riemannian manifold (M, g)
instead of always writing geodesic or metric completeness, respectively. Whenever there are
other connections involved in the discussion of a Riemannian, completeness will always mean
completeness with respect to the Levi-Civita connection.

Completeness is, in general, hard to prove or disprove. One very useful fact in Riemannian
geometry is the following.

Lemma 2.20. A Riemannian manifold (M, g) is complete if and only if every curve in M
that leaves every compact subset of M has infinite length.

Proof. |[CHM, Lem. 1]. O
Lemma yields another way to describe complete Riemannian manifolds.

Lemma 2.21. A Riemannian manifold (M, g) is complete if and only if there exists r > 0,
such that for all p € M the closure of the geodesic ball of radius v around p with respect to
g, i.e. the set B (p), is a compact subset of M.

all p € M, the geodesic ball BY(p) C M is bounded. Thm (iii) now implies that BY(p)
is compact for all » > 0 and all p € M.

For the other direction of the proof assume that (M, g) is incomplete. Then there exists a
geodesic 7y : (0,1) — M of finite length, such that ~ leaves every compactum in M. Without
loss of generality assume that ~(f) converges to some p € M as t — 0, and let L(y) < oo
denote the length of 4. Then BY (7)( ) C M is not compact, since otherwise it would be
contained in some compactum in M which is excluded by the assumption that v leaves every
compactum in M. O]

Proof. Assume that (M, g) is complete. Then Thm. i) implies that for all » > 0 and
EQ 19

2.3 Centro-affine geometry

Now we will give a short introduction to affine differential geometry and specifically centro-
affine differential geometry. In most generality, one considers the following, cf. [NS| p.27].
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Definition 2.22 (Distribution along an immersion). For an immersion f : M — M between
two manifolds M, M with dim M > dim M and k € N, a k-dimensional distribution along f
is an assignment M > x — N, C TpuyM, such that around each point p € M we can find
an open neighbourhood U C M, such that f|y : U — M is an embedding, and k pointwise
linearly independent vector fields {X;,..., X}, X; € T (TM)’f(U) forall 1 <@ < k, with

the property that for all x € U we have that N, = span{Xy, ..., Xy}.

Definition 2.23 (Affine immersion). Let (M, V) and (M, V) be two manifolds of dimension
dim(M) = m and dim (M) = n with torsion-free covariant derivatives V in TM — M and

V inTM — M. Assume that n > m. An immersion f : M — M is called affine immersion if
there ezists a k = (n — m)-dimensional distribution N along f and a N-valued (0,2)-tensor
fieldao e T(T*M @ T*M @ N), that is a(X,Y)|, € N, for all X, Y € T'(T'M) and allp € M,
such that

(i) TypyM = dfy(T,M) © N,
(ii) Vx(df(Y)) = df (VxY) + (X, Y)
for all X, Y € I(T'M) and all p € M.

Note that in [NS], f is only assumed to be differentiable. In thesis all considered immer-
sions are smooth. A special case of affine immersions are affine hypersurface immersions,
i.e. affine immersions of co-dimension 1. We are interested in the case where the ambient
manifold M is R**! endowed with the standard flat connection.

Definition 2.24 (Affine hypersurface immersions). An affine hypersurface immersion in R™ "
is an affine immersion f : M — R""! of an n-dimensional manifold M into R"*'. The
corresponding 1-dimensional distribution is locally spanned by a non-vanishing vector field &
along f that is transversal to f(M) at each point.

On the other hand, one might consider a hypersurface immersion f : M — R"*! with a
given transversal 1-dimensional distribution along f and ask for a torsion-free connection in
T M, such that f is an affine immersion. This is the content of the following proposition, cf.
NS, p.29].

Proposition 2.25 (Gaufl formula for hypersurface immersions). Let f : M — R"™! be
a hypersurface immersion, {U; | i € I} an open covering of M, and & € Ty, (TR™)
locally defined transversal vector fields along f that generate a 1-dimensional distribution
along f. Let V denote the standard flat connection in TR™™'. Then there exists a torsion-
free connection V in TM and for eachi € I a symmetric (0,2)-tensor field h; € T(S*T*M)y,,
such that

Vx(df(Y))=df(VxY)+hi(X,Y)& VXY e D(TM)|y,, Vi€ 1. (2.1)
Equation is called (affine) Gauf equation. With this choice of V, f: M — R" is an
affine hypersurface immersion as defined in Definition [2.2] V is called the induced affine
connection. Note that V is independent of i,j € I whenever U; N U; # 0.

Next we will see how to differentiate the transversal part of (local) sections in f*TR"!,

cf. [INS, p.30].
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Proposition 2.26 (Weingarten equation for affine hypersurface immersions). Let f: M —
R™ ! be an affine hypersurface immersion as in Definition . Then there is a uniquely
defined (1,1)-tensor S € I'(End(T'M)) and a collection of 1-forms 7, € I'(T*M)|y,, i € I,
satisfying

Vx& = —df(SX) +n(X)& VX e T(TM),Viel. (2.2)

Equation is called the (affine) Weingarten equation, the tensor S is called (affine) shape
operator (or affine Weingarten map), and each 7; (local) transversal connection 1-form.

Now that we have introduced general concepts of affine differential geometry, we will
consider the special case of centro-affine hypersurface immersions. The main part of this
thesis considers hypersurface immersions or, more precisely, hypersurface embeddings of that

type.

Definition 2.27 (Centro-affine hypersurface immersion). Let f = (f1,..., fos1)? : M —
R™ L be a hypersurface immersion. It is called a centro-affine hypersurface immersion if the
position vector field £ € T(TR™1), £, = p for all p € R™" under the canonical identification,
is transversal along f, that is

df (T,M) ® R¢y) = TppR™ V¥p € M,

where Ry, denotes the 1-dimensional vector subspace spanned by sy of TypR™ . When-
ever [ is clear from the context, we will call M a centro-affine hypersurface.

If f is additionally an embedding, it will be called a centro-affine hypersurface embedding.
In the case of centro-affine hypersurface immersions, the Weingarten equation (2.2)) takes a
particularly simple form

Lemma 2.28 (Weingarten for centro-affine hypersurface immersions). Let f : M — R be
a centro-affine hypersurface immersion. Then the affine shape operator fulfils S = —Id and
all local transversal connection 1-forms vanish identically.

Proof. For any locally defined position vector field £ defined on f(U) C R*™ and all X €
Iy (TR™) we obtain

Vx& = Vx(f) = df(X).

Comparing this result with the Weingarten equation (2.2)) in Proposition m proves our
claim. [

The Gaufl equation ([2.1)) in Definition for centro-affine hypersurface immersions
f: M — R*"! is of the form

Vx(df(Y)) = df (VxY) + g(X,Y)&;, (2.3)
where £; denotes the position vector field along f. This leads to the following definition.

Definition 2.29 (Centro-affine connection and centro-affine fundamental form). Let f :
M — R"™ be a centro-affine hypersuface immersion. The induced connection ¥V in T M
is called the centro-affine connection, the symmetric (0,2)-tensor g € I’ (Sym2T*M) is
called the centro-affine fundamental form.

Depending on the signature of the centro-affine fundamental form, centro-affine hyper-
surfaces are classified as follows.
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Definition 2.30 (Types of centro-affine hypersurface immersions). A centro-affine hyper-
surface immersion f : M — R with centro-affine fundamental form g is called

o non-degenerate, if g is non-degenerate,

o definite, if g is definite, i.e. either positive or negative definite,
o elliptic, if g < 0, i.e. negative definite,

o hyperbolic, if g > 0, i.e. positive definite.

In this thesis we are interested in certain hyperbolic cases which we will introduce next.

2.4 Projective special real manifolds and other examples of cen-
tro-affine manifolds

After the introduction centro-affine geometry we will present examples of centro-affine hy-
persurface immersions. We will discuss examples of hyperbolic centro-affine hypersurface
immersions and related questions from Riemannian geometry. In particular, we will intro-
duce projective special real manifolds, which are one of the main objects of our studies in
this thesis.

Proposition 2.31. Let U C R"™ n € NU {0}, be an open set invariant under positive
rescaling, i.e. under the Ryg-action (r,p) — rp for allr € Ryg and p € U. Let h: U — R
be a homogeneous function of degree k > 1, i.e. h(rp) = r*h(p). Assume that the level set
{p € U | h(p) = 1} is not empty and let H C {p € U | h(p) = 1} be an open subset. Then
the inclusion map ¢ : H — R is a centro-affine hypersurface embedding with centro-affine
fundamental form g = —%L*(VQh), where V denotes the canonical flat connection in TR™!

and V° its Hessian.
Proof. For a proof of this statement in a slightly more general setting see [CNS| Prop. 1.3]. O

If R™! is equipped with linear coordinates, we will write 02 instead of V°. We will also
omit writing down the map ¢ for an embedding ¢ : M — R™!, that is we will write M C R**!
instead of ¢(M) C R™!if the context is clear. In this thesis we are interested in hypersurface
embeddings as above where the centro-affine fundamental form ¢ is a Riemannian metric on
an open subset H C {h = 1} and h is a homogeneous polynomial of degree 7 > 3. We will
now introduce concepts needed for our studies of said hypersurfaces.

Remark 2.32 (Euler identity for homogeneous functions). Let U be an open subset of
R™* invariant under multiplication with positive real numbers and let h : U — R be a
homogeneous function of homogeneity-degree 7 € R. Then

dhy(x) = Th(z) Vz e U. (2.4)
Equation ([2.4]) is called the Euler identity for homogeneous functions.

Definition 2.33 (Hyperbolic point). Let U C R™"! be an open subset that is invariant under
multiplication with positive real numbers, and let h : U — R be a homogeneous function of
degree 7 > 1. Then a point p € {h > 0} is called a hyperbolic point (of h) if —d*h, has
signature (n, 1), i.e. it is of Lorentz type. A function h that has at least one hyperbolic point
is called a hyperbolic homogeneous function.
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Note that this implies that for a hyperbolic point p of h, —82hp|ker(dhp)xker(dhp) > (0, which
follows from —9%h,(p,p) = —7(7 — 1)h(p) < 0 and —0h,(p,-) = —(7 — 1)dh,,.

Definition 2.34 (Hyperbolic centro-affine hypersurface). Let H C {h = 1} be a centro-affine
hypersurface as in Proposition|2.31. Then H is called a hyperbolic centro-affine hypersurface
if it consists only of hyperbolic points.

Note that the above definition of hyperbolic centro-affine hypersurface coincides with Def-
inition for f the inclusion map ¢ : H — R™*!. Hyperbolic centro-affine hypersurfaces
equipped with their respective centro-affine fundamental form (3, g) are Riemannian man-
ifolds. Continuity of the determinant implies that a connected non-degenerate centro-affine
hypersurface H is hyperbolic if and only if it contains one hyperbolic point. Note that hy-
perbolicity at a certain point is an open condition in the sense every homogeneous function
h : U — R as in Definition [2.33| with a hyperbolic point p is hyperbolic on some open neigh-
bourhood V' C U of p. This follows from the continuity of the determinant of —9%h. Hence,
for every hyperbolic homogeneous function h of degree 7 > 1 we can choose an open subset
H C {h = 1} that is a hyperbolic centro-affine hypersurface.

We are in particular interested in the case where h is additionally assumed to be a poly-
nomial. We define the following.

Definition 2.35 (Hyperbolic polynomial). A homogeneous polynomial h : R*™™ — R of
degree T > 2 is called a hyperbolic homogeneous polynomial if there exists p € {h > 0}, such
that p is a hyperbolic point of h.

Note that Definition [2.35 in comparison with the more general Definition does not
depend on a chosen domain for a given polynomial h. We will now discuss the easiest example
for a hyperbolic centro-affine hypersurface defined by a hyperbolic polynomial.

Example 2.36 (Two-sheeted hyperboloid). Let h : R™™ — R, h = 22, — i x?. Then
i=1
every point in {h > 0} is a hyperbolic point, which follows from

(i)

Each of the two components of {h = 1}, namely {h =1, x,11 >0} and {h =1, x,41 <0},
are hyperbolic centro-affine hypersurfaces. Forn = 2, the set {h = 1} is called the two-sheeted
hyperboloid (see Figure [1]).

A question that might come to mind in this setting is whether there are other hyperbolic
polynomials of degree 2 that define a hyperbolic centro-affine hypersurface. To deal with this
question, we need a notion of when two hyperbolic hypersurfaces contained in the level set
of hyperbolic polynomials are considered equivalent.

Definition 2.37 (Equivalence of hyperbolic polynomials). Two hyperbolic homogeneous poly-
nomials h,h : R"* — R of degree 7 > 2 are called equivalent if there exists a linear trans-
formation A € GL(n + 1), such that ho A = h. Two connected hyperbolic centro-affine
hypersurfaces H and I contained in a level set of h, respectively h, are called equivalent if h
and h are equivalent and A(H) C H or A(H) D K.

We usually consider the following type of hyperbolic centro-affine hypersurfaces.
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Figure 1: A rendering of a part of the two-sheeted hyperboloid embedded in R3.

Definition 2.38 (Maximal connected hyperbolic centro-affine hypersurfaces). Let H C {h =
1} € R™! be a connected hyperbolic centro-affine hypersurface as in Definition m Then
H is called a maximal (or maximally extended) connected hyperbolic centro-affine hypersurface
if it coincides with a maximal subset of {h = 1} that consists only of hyperbolic points, i.e.
if it is a connected component of the set

{p € R"™ | h(p) =1, p is a hyperbolic point of h}.

Note that the continuity of det(—d*h) and Proposition ensure that connected com-
ponent of {p € R"™ | h(p) =1, p is a hyperbolic point of h} are always open in {h = 1}
with respect to the induced subspace topology of {h = 1} C R""!. For maximal connected
hyperbolic centro-affine hypersurfaces, the terms A (ﬁ) CHand A (ﬁ) D H in Definition

2.37 simply become A (ﬁ) = JH. Furthermore, we obtain the following lemma.

Lemma 2.39 (Isometry of equivalent hypersurfaces)i. Any two equivalent maximal con-
nected centro-affine hyperbolic hypersurfaces 3 and H defined by hyperbolic polynomials
h,h : R" — R, respectively, are isometric.

Proof. Let A : R"*! — R""! be a linear transformation, such that ho A = h. Then the
linearity of A implies

—0?hy(-, ) = —Phap(A, A) = A*(—02h),.

In particular, this hold for the restrictions to T, respectively T3, that is for their respective
centro-affine fundamental forms. This shows that H and JH are isometric and one isometry is

given by the respective linear transformation A relating their respective defining polynomial
h and h. O

Equivalence classes of bilinear forms on R™*! are determined by their signature. Hence,
one easily obtains the following.

Lemma 2.40. Let 5 C {h = 1} be a connected mazimal hyperbolic centro-affine hypersur-
face and h : R"" — R be a hyperbolic polynomial of degree 2. Then H is equivalent to
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{$i+1 — Xn: 2=11 Tpy1 > O}, that is to one sheet of the two-sheeted hyperboloid defined in
i=1
Ezample [2.36,

Note that in the case of the two-sheeted hyperboloid, the centro-affine metric g and the
Riemannian metric of the two-sheeted hyperboloid induced by the embedding into (n + 1)-
dimensional Minkowski space via the inclusion map, that is the second fundamental form
II € I'(Sym®T*H) with respect to a unit normal, coincide for all n > 1.

One central interest of this thesis are so-called projective special real manifolds, which we
will define now.

Definition 2.41 (Projective special real manifold). Let h : R"™ — R be a cubic hyperbolic
homogeneous polynomial. An open subset H C {h = 1} that consists only of hyperbolic points
is called a projective special real manifold, or PSR manifold for short.

We immediately obtain the following properties of PSR manifolds.

Lemma 2.42 (PSR manifolds are hyperbolic centro-affine hypersurfaces). Let H C {h =
1} € R™™ be a PSR manifold. Then 3 is a hyperbolic centro-affine hypersurface as defined
in Definition [2.34] and their centro-affine fundamental form as in Definition |2.29 in chosen
linear coordinates of the ambient space R is given by

1
gn = _gazthJ{xTﬂ{-

Proof. This follows from Proposition [2.31] ]

Two connected PSR manifolds H C {h = 1} and H C {h = 1} are called equivalent
if they are equivalent as in Definition 2.37 A connected PSR manifold 3 C {h = 1} is
called maximal (or maximally extended) if it is maximal in the sense of Definition [2.38] In
particular, equivalent maximal connected PSR manifolds are isometric.

We will now discuss known results in the study of PSR manifolds. Since PSR manifolds
are Riemannian manifolds, it is a natural question whether they are always complete or not,
where completeness means geodesically complete with respect to the Levi-Civita connection
of the centro-affine fundamental form. Note that completeness of a given PSR manifold
H c {h = 1} C R™" automatically implies that H needs to be closed as a subset of
R™*! since otherwise one can extend its centro-affine fundamental form g = —%thlTJ{XTJ{
smoothly to its boundary points. This would imply that there are curves leaving each compact
set in H with finite length which contradicts completeness, c¢f. Lemma [2.20, Hence, a
necessary condition for completeness of (H, gg¢) is that H C R"™! is closed. We will call such
a PSR manifold a closed PSR manifold. It has recently been shown in [CNS| that closed
PSR manifolds are always complete.

Theorem 2.43. An n-dimensional PSR manifold H C {h = 1} C R""! is complete with
respect to its centro-affine fundamental form gy = —%82h|Tg{X;m if and only if H is closed
as a subset of R,

Proof. [CNS| Thm. 2.5]. O
In Propositions [4.17] and we give two alternative proofs of Theorem [2.43]

Remark 2.44 (Difficulties in classifying closed connected PSR manifolds). One interesting
questions is to ask if it is possible to classify all closed connected PSR manifolds. In general,
it turns out to be a very difficult question. This problem is equivalent to classifying all cubic



2 Preliminaries 21

hyperbolic homogeneous polynomials up to equivalence. One of the encountered difficulties
is that being hyperbolic as a cubic homogeneous polynomial is an open condition in the sense
that if » € Sym®(R"*!)* is hyperbolic and H € Sym?(R"*!)* is any cubic polynomial, then
there exists an € > 0, such that for all 0 < k < € the polynomial h + kH is hyperbolic. This
follows easily from Sylvester’s law of inertia. Furthermore, the dimension of Sym?®(R"*!)*
grows cubically in n while the dimension of GL(n+1) grows quadratically in n, so we can not
expect to have only finitely many examples as n grows large. In dimensions n =1 and n = 2
however, cubic hyperbolic homogeneous polynomials in 2 and 3 variables, respectively, and
the corresponding closed connected PSR manifolds have been classified up to equivalence,
see [CHM] for 1-dimensional PSR manifolds and [CDL] for 2-dimensional PSR manifolds.

The known classification results for projective special real curves and projective special
real surfaces are as follows.

Theorem 2.45 (Classification of closed connected PSR curves and surfaces). Every closed
connected PSR curve H, that is closed connected PSR manifold of dimension one, is equiva-
lent to exactly one of the following closed connected PSR curves:

A) {z*y=1, >0, y >0},
B) {z(2*—y*) =1, >0},

where () denote linear coordinates of the ambient space R?.

For closed connected PSR surfaces H C R3, that is closed connected PSR manifold of
dimension two, let @) denote the linear coordinates of the ambient space R®. Each such H
s equivalent to exactly one of the following closed connected PSR surfaces:

a) {zyz=1, >0, y > 0},

b) {x(zy — 2%) =1, = > 0},

c) {x(yz+2?) =1, <0, y >0},

d) {z2(z? +9y?> - 2% =1, 2 <0},

e) {x(y* =) +y*=1, y<0, z >0},

) {y?z —4x® + 3222 + 023 =1, 2 <0, 2z > 2} for precisely one b € (—1,1).

Proof. See [CHM|, Thm. 8] for curves, [CDL, Thm. 1] for surfaces. O

Aside from the low-dimensional restriction, another restriction to PSR manifolds is to
consider only those that are contained in the level set of a reducible cubic hyperbolic homo-
geneous polynomial. In this case, PSR manifolds are classified in any dimension, cf. [CDJL].
Since 1- and 2-dimensional PSR manifolds are completely classified, only n > 3-dimensional
PSR manifolds with reducible polynomial are considered in the following Theorem.

Theorem 2.46 (Classification of closed connected PSR manifolds corresponding to reducible
polynomials). Every closed connected PSR manifold H C {h = 1} C R™™' of dimension
n > 3 for which h is reducible is linearly equivalent to exactly one of the following closed
connected PSR manifolds

n—1
o) {nss ('S 72 = 2) =1, 2ua <0, 20> 0},
=1
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b) {(551 + Tny1) (21%2 - xi—i—l) =1, x1+ w1 < 0};

c) {:1:1 (i x? —:L’iH) =1, 21 <0, Tpy1 > 0},

i=1
n+1
d) {xl (x% - xf) =1, 7, > 0}.
i=2
Proof. [CDJLL Thm. 2]. O

Remark 2.47. Theorem is a combined result of [Ju|] and [Li]. Results of these two
works are also part of [CDJL, Thm. 2, Prop. 8].

Lastly, there is a classification of PSR manifolds that are homogeneous spaces under the
action of their respective automorphism groups, cf. Definition [3.13] for which we refer the
reader to [DV].
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3 Standard form and curvature of generalized projec-
tive special real manifolds

In this section we will study hyperbolic homogeneous polynomials of degree 7 > 3 and the
corresponding hypersurfaces contained in their level sets. These geometric object can be
viewed as a generalisation of PSR manifolds. The “machinery” and results of this section
will be used extensively in the following sections.

Definition 3.1 (GPSR and CCGPSR manifolds). Let n € NU{0} and H C {h =1} C R*"!
be an n-dimensional hyperbolic centro-affine hypersurface as in Definition|2.34), contained in
the level set of a hyperbolic homogeneous polynomial of degree T > 3. Then H will be called
GPSR manifold (for Generalised Projective Special Real manifold). If we further assume that
H is closed and connected as a subset of R"™, we will call X a CCGPSR manifold (for
Closed Connected Generalised Projective Special Real manifold) of degree 7. For T = 3, GPSR
manifolds coincide with PSR manifolds defined in Definition[2.41. If H is a closed connected
PSR manifold and we will call it a CCPSR manifold. As a convention we regard the set of
CCPSR manifolds as a subset of the set of CCGPSR manifolds.

If the degree 7 > 3 of a GPSR manifold is not of particular importance, we will omit the
phrase “of degree 77. Recall that according to Definition [2.37, two CCGPSR manifolds of
the same degree are called equivalent if they are related by a linear change of coordinates of
the ambient space.

Definition 3.2 (Moduli space of CCGPSR manifolds). Let n € N. We define the moduli
space of n-dimensional CCGPSR manifolds of degree T to be the set of equivalence classes

{[H] | H is a CCGPSR manifold of degree 7, dim(H) =n},

where [H] = [H] if and only if K and H are equivalent. For v = 3, we will call the above set
the moduli space of n-dimensional CCPSR manifolds.

Note that for n = 0, there is for each degree 7 > 3 precisely one CCGPSR manifold up
to equivalence, which is simply a point.

Remark 3.3. We will consider the moduli space of n-dimensional CCGPSR manifolds in
general without the assumption of any topological data and view it simply as a set. For a
discussion why it is difficult to find a meaningful topology for that space, see Remark
later in this thesis.

Lemma 3.4 (Centro-affine fundamental form of GPSR manifolds). Let H C {h = 1} C R**
be an n-dimensional GPSR manifold of degree T > 3. Then its centro-affine fundamental form

g 18 given by
1
95 = —;32h’Tﬂ{xTﬂf7 (3~1)

where 0% is determined by the chosen linear coordinates on the ambient space R™"*1,
Proof. This follows immediately from Proposition [2.31] O

Definition 3.5 (Maximal connected GPSR manifold). Let H C {h = 1} be a connected
GPSR manifold. We will call H{ a maximal (or maximally extended) connected GPSR manifold
if it is a maximal connected hyperbolic centro-affine hypersurface in the sense of Definition
, If 3 C R™™ s furthermore closed, we will call it a maximal (or maximally extended)
CCGPSR manifold.
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Remark 3.6 (CCGPSR manifolds are maximal). Any CCGPSR manifold KX C {h = 1}
coincides by definition with a connected component of {h = 1} and is thus automatically
maximal in the sense of Definition 3.5

Note that for 7 = 3, Theorem shows that n-dimensional CCPSR manifolds are
precisely n-dimensional complete connected PSR manfolds. We will now show that we can,
after a possible linear coordinate change of the ambient space R"*!, assume that the defining
polynomial is of a certain form. To do so we first review two results from [CNS|] that apply
in particular to the geometry of CCGPSR manifolds.

Proposition 3.7 (Convexity of the cone spanned by CCGPSR manifolds). Let H C {h =
1} € R"™! be an n-dimensional CCGPSR manifold. Then

U=R.o H={rpeR"" \ r>0, peH}cR
s a convexr cone and the map
RogxH>S (rp)—r-pelU
is a diffeomorphism.
Proof. [CNS| Prop. 1.10] for the special case of CCGPSR manifolds. O

Lemma 3.8. Let H{ be a CCGPSR manifold and let U = Roq - H. Then for every p € H,

the intersection
p+T,H)NU Cp+T,H

is open, precompact, and convexr. Here (p+ T,H) C R™ denotes the affinely embedded
tangent space T,H in the ambient vector space R"™' equipped with the induced subspace
topology.

Proof. [CNS| Lem. 1.14]. ]

Definition 3.9 (Homogeneous connected GPSR manifolds). Let (H,gs) be a connected
GPSR manifold. We call H a homogeneous connected GPSR manifold if there exists a Lie
group G acting transitively on (H, gy) via isometries.

Note that in Definition we do not require the action to be linear. In fact, we consider
connected GPSR manifolds to be homogeneous if they are homogeneous as Riemannian
manifolds.

Remark 3.10 (Completeness of homogeneous connected GPSR manifolds). Recall that ho-
mogeneous Riemannian manifolds are always complete, cf. [KN, Thm.4.5] or [BEE, Lem. 5.4].
Thus, in particular homogeneous connected GPSR manifolds are complete.

An immediate consequence of Remark is the following corollary.

Corollary 3.11 (Homogeneous connected GPSR manifolds are CCGPSR manifolds). Let
H c {h =1} C R*"™ be a homogeneous connected GPSR manifold. Then 3 is a CCGPSR

manifold.

Proof. (H, g5) is complete and, hence, closed in R"*! cf. [CNS, Prop. 1.8]. ]
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Homogeneous CCGPSR manifolds provide interesting examples of CCGPSR manifolds of
homogeneity degree 7 > 4, since in general as of now it is unknown if CCGPSR manifolds
of homogeneity degree 7 > 4 are always complete. It has however been shown that every
one-dimensional CCGPSR manifold is complete, hence in particular every homogeneous one-
dimensional CCGPSR manifold is complete [CNS, Thm. 2.9)].

Proposition 3.12. Let 35 C {h = 1} be an n-dimensional connected GPSR manifold with h
of homogeneity-degree T > 3. Then

G" = {M € Mat(n x n,R) | h(p) = h(Mp) ¥p € R**'}
is a Lie subgroup of GL(n + 1) with Lie algebra
TG" = {m € gl(n+1) | dhy(mp) =0 Vp e R*'} . (3:2)

Proof. The set G" contains 1 € GL(n+1), and M, N € G" implies h(M Np) = h(Np) = h(p)
for all p € R*™1. For G" to be a subgroup of GL(n + 1) it thus suffices to show that G" is a
subset of GL(n+1). Suppose that it is not. Then there exists an element M € G", such that
rk(M) < n+ 1. By assumption the level set {h = 1} contains the connected GPSR manifold
H, h is a hyperbolic polynomial and there exist a point ¢ € R™" with det (—9%h,) < 0.
Since h(p) = h(Mp), we obtain the identity

~0hy = —MT0*hp M.

But then det (—9%h,) = det(M)?det (—9?h,) = 0, which is a contradiction to g being a
hyperbolic point of A. Thus, G" is a subset of GL(n+1) and we conclude that G* ¢ GL(n+1)
is a subgroup. In order to show that G" is also a Lie subgroup of GL(n + 1), we will use
the closed subgroup theorem, which was first proven in [Ca] (for a modern reference see
[Lel, Thm.20.12]). With p = (p1,...,pas1)T and M = (M;;) € Mat(n x n,R), the equation
h(p) — h(Mp) = 0 is of the form

n+1

Z f] H p'{l - 07
=1

[I|=7
where I = (Iy,...,I,+1) denotes a multi-index with I; > 0 for all 1 < i < n+ 1 of length
n+41
|I| = > I, = 7, and f; denotes a polynomial in the variables M;;, 1 <i,j < n+ 1 for all
i=1
such multi-indices 1. Using this notation, G can be written as

G"= N {fi=0}L

[I|="

For each considered multi-index I the set {f; = 0} C Mat(n x n,R) is closed since each f;
and, hence, continuous. Hence, G" = N {f; = 0} is also closed in Mat(n x n, R). But since
|[I|=7

we have already shown that G" is a subset of GL(n + 1), and GL(n + 1) is an open subset
of Mat(n x n, R) and equipped with the subspace topology, we deduce that G" is also closed
as a subset of GL(n + 1). The closed subgroup theorem now implies that G"* C GL(n + 1) is
indeed a Lie subgroup. The identity now easily follows via differentiating both sides of
h(p) = h(exp(tm)p) with respect to the variable ¢ at ¢ = 0. O

Using Proposition |3.12] we now define the automorphism group of a hyperbolic homoge-
neous polynomial h corresponding to a connected GPSR manifolds H C {h = 1}.
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Definition 3.13 (Automorphism group of h). Let H C {h = 1} be an n-dimensional con-
nected GPSR manifold. The Lie subgroup

G" = {M € Mat(n x n,R) | h(p) = h(Mp) ¥p € R""'} € GL(n + 1) (3.3)
is called the automorphism group of h. We denote by
Gy cG" (3.4)

the connected component of G that contains the neutral element 1 € G". The Lie algebra of
G" is given by
TG" = {m eglin+1) ‘ dh,(mz) =0V € R”“}

with Lie bracket [-,-] induced by the Lie subalgebra structure TyG" C gl(n + 1),

Lemma 3.14 (Action of G} on H). The Lie group G§ corresponding to a maximal
connected GPSR manifold H C {h = 1} acts on (K, gs) via isometries.

Proof. The action of an element M € G% on H C R™*! is given by the corresponding linear
transformation of coordinates of the ambient space R"™'. The action of G} on H is well-
defined for the following reasons. Both G% and ¥ are (path-)connected and Gf contains the
identity 1. Linear transformations of R™™! are by definition of gy isometries of (3, gg()
as long as they map 3 into itself. This is ensured by the path-connectedness of G%, by the
fact that all points in G! - p are by definition of G automatically hyperbolic points of h for
all p € H, and by the assumption that H is maximally extended that G - p is a connected
component of {h = 1} N {p hyperbolic point of h}. O

Note that independent of whether a connected GPSR manifold H C {h = 1} is maximally
extended or not, there is at least always a well-defined local action of G& on H, i.e. there exists
an open neighbourhood U of 1 € G}, such that there is a well defined action U x H — H
via linear transformations of the ambient space R™*1. This can be shown by considering the
unique maximal connected GPSR manifold H that contains H and the corresponding action
Gh x H — H and observing that the action is continuous.

Remark 3.15 (Classification of homogeneous PSR manifolds with transitive Gj-action).
Recall at this point that there is a classification of PSR manifolds H{ C {h = 1} that are
homogeneous spaces under the action of G2, see [DV]. As of now there is no analogous
classification of GPSR manifolds of any homogeneity-degree 7 > 4 that are homogeneous
spaces under the action of the respective identity-component of their automorphism group,
that is GE. We will classify all such GPSR manifolds that are of homogeneity-degree 7 = 4
and of dimension one, i.e. quartic GPSR curves, this is one result of Theorem

One important class of CCGPSR manifolds is characterised as follows.

Definition 3.16 (Singular at infinity). Let 3 C {h = 1} C R"" be a CCGPSR manifold
and let U = Ryg - H be the corresponding convex cone. We will call H singular at infinity if
there exists a point p € OU \ {0}, such that dh, = 0.

Remark 3.17. Note that there is another meaning of the term “singular” which might be
used in the setting of CCGPSR manifolds. Consider for a CCGPSR manifold H C {h = 1}
the projective variety {h = 0} for which the term singular is defined as the existence of a
point p € {h = 0}\{0}, such that dh, = 0. In comparison with Definition[3.16] this is a priori
a weaker definition of “singular” since it is not clear if singular in the projective variety sense
automatically implies that one such singular point is contained in the respective ddom(H).
If, however, H C {h = 1} is singular at infinity in the sense of Definition , then the
projective variety {h = 0} will also always be singular.
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Proposition 3.18 (Standard form). Let 3 C {h = 1} C R""! be an n > 1-dimensional
connected GPSR manifold and h of homogeneity-degree T > 3. Then for each p € I there
exists a linear change of coordinates on R™1 described by A(p) € GL(n + 1), such that

(i) (ho A(p)) ((3)) = a™ — 2™ 2(y,y) + ¥ 2™ Pu(y),

(ii) Ap) (5) = p,

Y1
where y = ( : ) denotes the standard linear coordinates of R™, () denotes the corresponding

Yn
coordinates of R"™ = R x R", (1) denotes the point () = (§) € R™™, and (-,-) denotes

the standard Euclidean scalar product on R™ induced by the y-coordinates. Furthermore, if
H is a CCGPSR manifold then the transformations A(p) can be chosen in such a way that
A:H — GL(n + 1) is smooth. If H is not closed as a subset of R™ we can still find
for each p € H a subset V. C H that contains p and is open in the subspace-topology of
H C R™™ such that A:V — GL(n + 1) can be chosen so that it is a smooth map.

Proof. First we will show that (i) and hold for all connected GPSR manifolds. Then we
will prove that in the case of CCGPSR manifolds, A : H{ — GL(n + 1) can be chosen to be
smooth. In the case of connected GPSR manifolds which are not necessarily closed we will
show that for all p € H there always exists an open neighbourhood V' C H of p, and that
A:V — GL(n+ 1) can be chosen so that it is a smooth map.

Let H C R"™! be a connected GPSR manifold and denote by (-, -) the standard Euclidean
scalar product on R"*! induced by the choice of the linear coordinates on R"*!. Let p € H
be arbitrary. We will differentiate between two cases.

Case 1: dh, = r(p,-) for some r # 0.

Note that the property dh, € (R \ {0})- (r,-) is preserved by changing the linear coordinates
of the ambient space R"*! by rotations in SO(n + 1) and by positive rescaling of the linear
coordinates. We can thus without loss of generality assume that p = (1,0,...,0)?, and
denote the linear coordinates on R"™ by (x,yy, ... ,yn)T. Since h(p) = 1 is a necessary
condition for p € H, we find that h must be of the form

h=a" +2" 'L(y) + 27 *Q(y, y) + (terms of lower order in z),

where L € Lin (R", R) is linear in y and Q € Sym* (R")" is a symmetric bilinear form. We
can now check that dh, € (R\ {0}) - (r,-) implies L = 0. By assumption, p is a hyperbolic

point of . We calculate
— —1) ‘
—Ph, = [T ) .

The hyperbolicity of the point p thus shows that () must be negative definite, i.e. @ < 0.
Hence, after a suitable transformation of the y-coordinates, we find that h is of the desired
form

h=a" —a™ Xy, y) + > a7 FP(y).

k=3



28 3 Standard form and curvature of generalized projective special real manifolds

Case 2: dh, # r(p,-) for all r # 0.
Note that in this case, r = 0 is automatically excluded by dh,(p) = 7 # 0. We will find a
linear coordinate-transformation B € GL(n + 1) of the ambient space R"! of H, such that
Bqg =p and

dhi,(B-) = r(q. ), (3.5)
which will take us to the setting of the first case since d(h o B), = dhg,(B-). Note that
in the above equation (3.5)), (-,) denotes the Euclidean scalar product induced by the new
coordinates, that is the standard linear coordinates in the domain of B : R*™! — R**! In
order to prove the existence of such a transformation B, let

(0 =), ) — (p,)? +dh.

We claim that ((-,-)) > 0, i.e. that ((-,-)) € Sym® (R"*')" is a positive definite bilinear form
on. To show this, write v € R"™ \ {0} as

v=apt+w, weE pL<"'>.
Note that a and w are uniquely determined since R"*' = Rp @ p*¢2. We obtain

(v, 0)) = (p, p)(w, w) + (dhy(ap +w))*.

For w # 0 we immediately see that ((v,v)) > 0. For w = 0, v # 0 implies a # 0. In that case
{{(v,v)) = a®*7* > 0. Summarising, this shows that ((-,-)) is indeed positive definite. Now let
B € GL(n + 1) be an orthonormal basidl] of ((-,-)),

BN = ().
Denote by h = h o B the transformed polynomial h and let ¢ = B~!'p. Then
dhy = dhpy(B-) = dh,(B-)
and

{q,-) = ((Bq, B))

= {(p, B-))

= (0. p)(p, B-) = (p,p){p, B-) + dhy(p)dhy,(B-)

= 7dhy(B")

= Tdﬁq.
Hence, B fulfils 1} with r = %, and we have d?Lq = %((Ia -y with ¢ € B7*H. We are now in
the setting of the first case and can proceed as described therein.

Summarising up to this point, we have shown that for any n > 1-dimensional connected
GPSR manifold H C {h = 1} and all p € H we can find A € GL(n + 1), such that the
conditions (fil) and are fulfilled. Now we will describe how to construct A explicitly.

We will start with the case where H is a CCGPSR manifold, and first construct the
transformation A(p) explicitly for one arbitrarily chosen point p € H, so that A(p) fulfils (fi
and . We start by choosing initial linear coordinates (z,yi,...,y,)? of R*! and a point

'We interpret the columns of B as the basis vectors.
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p = (i) € H. After a possible reordering of the coordinates we can assume that 9,h(p) # 0.
This follows from dh, # 0, since otherwise 7h(p) = dh,(p) = 0. Let

Oyh
AV _ Dz T O.h
Py 1

where 9,h := 2% and 9,h := Zn: dh(d,,)dy;. A € GL(n + 1) follows from
=1

1

dyh _9yh
det (ﬁ) — det | P* * o p (py) ‘ 9ah [p
0 1
Oyh
=Pz + m (py)
p

1
= @ (a:chp "Da Tt ayhp(py))

~
Ok, 70

In the above formula we have used the Euler identity for homogeneous functions, and p, is
viewed as an n-vector. This shows that A describes a linear change of coordinates. Further-

more, A (}) = p. We obtain

(i) o
+ a7 \dh (_ iy (y)>
oy
ayh

—1—37772182}1,, ((_ auh ) (y)) ’ (_ gzZ » (y)))
2 y y

+ (terms of lower order in x)

:xT

a2l ((— ah, <y>) | (— oh, <y>))
2 y y

+ (terms of lower order in z).

_ Oy
duh

Y

The vanishing of the 27 *-term follows from dh,, ( P (y)) = 0 for all y € R™. This is

_ 9yh
equivalent to Ozh
Y

R" x R" 3 (v, w) — —;a%p ((_ i (”)) , (_ i (“’)>) (3.6)

is a positive definite bilinear form since p is, by assumption, a hyperbolic point of h. This
implies that there exists a linear transformation E € GL(n), such that

h (;1. (%) @) =" — a7 Xy, y) +§;f—kpk(y).

P (y)) € T,H for all y € R". Hence,




30 3 Standard form and curvature of generalized projective special real manifolds

~ 1
Since A - ("f) (é) = p, we have shown that for one choice of p € H we can find a

- 1
linear transformation fulfilling both (i) and , namely A - (*’?

In order to prove the statement of this proposition for all p € H, recall that we have shown
that we can assume without loss of generality that h is of the form h = 2™ — 2™ *(y,y) +

XT: 27 *Py(y) and that (§) € H C {h = 1}. For p = (52) € H and E(p) € GL(n) consider
k=3
Oyh

the matrix
L Dz - 3IhpOE<p)
A(p) = ( o] ) ) : (3.7)

Firstly we need to ensure that A(p) is well-defined for all p € H and all choices for E(p) €
GL(n). This follows from

Ozhlsc > 0, (3.8)

which we will prove next. In order to show that (3.8) holds for all n > 1-dimensional
CCGPSR manifolds, it in facts suffices to prove it for all 1-dimensional CCGPSR manifolds.
To see this, suppose that dim(H) > 1 and that there exists a point p = (gz) € H, such that

p
Ozhlz = 0. Then the set
H:=Hnspan{(}),p}

is a 1-dimensional CCGPSR manifold which coincides with the connected component of the
level set

{G)eR| h(z(h)+y(9) =1} (3.9)
that contains the point (§) € R% In (8.9), v € R™ is chosen to fulfil span{(}),p} =
span{(}),(Y)} and (v,v) = 1. Note that h := h(z({)+y(?)) is then automatically of
the form . Denote by p = (%) € R? the point fulfilling p, (§) + p, (3) = P and note
that p, # 0. Then p € H by construction and 8JL|5 = 0. It now follows from Lemma
that there exists R > 0, such that h (p+ R(4)) = 0, since () € T5H by assumption. The
convexity of the cone U= Ryg - H C R2 (cf. Proposition implies that

UCRso-(§) +R-F+R(E)) =V

But p ¢ V, and we conclude with H C U that D¢ ﬂTC, which is a contradiction. We have

thus shown that (3.8 holds for every n > 1-dimensional CCGPSR, manifold H.
We now show that for all p € H and all choices for E(p) € GL(n), A(p) € GL(n + 1).
i

The calculation is similar to calculating det(A). Since E(p) is invertible, we have with (
ayh yh

det A(p) = ( Pa 830 P |~ MEZ?;)E(])) )

(py)> det(E(p))

( d,h
= Pz + ﬂ
1
Ozh

T

Dohy

(a:vhp "Dt ayhp(py)) det E(p)

det E(p) # 0.
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In order to obtain the conditions for E(p) so that A(p) fulfils condition (), we calculate

h (A(p) (5)) = 27 h(p)
_ 9yh

4ol ( amhp<E<p)y))
’ E(p)y

+$772182hp ((— 2 ) (E(p)y)) | (— b ) (E(p)y))>
2 E(p)y E(p)y

+ (terms of lower order in x).

Oyh
_ k| (g
By definition, dhy |~ %" : (> (p)y)) — 0 for all y € R" and all E(p) € GL(n), which is
Py
— 34| (E)y)

equivalent to ( Ozh Ip

€ 1,3 for all y € R™ and all choices E(p) € GL(n). Thus,
E(p)y

dyh

R" xR" > (v,w) — —;82hp ((_ 0l lp (v)) : (_ gzz P (w))) (3.10)

is a positive definite bilinear form since, by definition, H C {h = 1} consists only of hyperbolic
points of the defining polynomial h. We conclude that for all p € H, E(p) € GL(n) can be
chosen in such a way that

152h <<_ 5yth}(Lp)y)> (_%th}(lp)y))) o) (3.11)
Y % ) K =\yYy :
27 "\ E@y E(p)y

for all y € R™.

Summarising, we have shown for each p € J{ how to explicitly construct a linear change
of coordinates A(p) € GL(n + 1) which fulfils () and (). It remains to show that the
assignment A : H — GL(n+ 1) can be chosen so that it is a smooth map. To see this observe

that o
Pz — 1
A(p) = hlp |- ( ) .
(®) ( py| 1 ) E(p)
» ‘ 9,k
The matrix ( ’ ‘ a]fh p_ | in the above equation depends smoothly on p € H. Hence, it
Dy

suffices to show that £ : H{ — GL(n) can be chosen so that it is a smooth map and fulfils
equation (3.11)). This follows from the fact that, as we have seen above,

—;a%p ((_ %’%p(-)) : <_ gz;lfp(')» :R" xR" > R

understood as in is positive definite for all p € H, cf. [Lel Lem.8.13].

It remains to deal with the cases where H C {h = 1} C R"™ is a connected GPSR
manifold, but is not closed in R**!. For p € H arbitrary and fixed, we want to show that
there exists a neighbourhood V' C H of p in H, such that A : V' — GL(n+1) can be chosen to
fulfil (fij) and and to be a smooth map. We have already seen in the beginning of the proof
that we can, after a possible linear transformation of the coordinates of R"*!, assume without
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loss of generality that p = (), that h is of the form h = 27 — 2™ ?(y,y) + ET: " FP(y),
k=3

and that 3 is the contained in the connected component of {h = 1} that contains the point
(§) € H. Since 0. h|(1) =7 > 0, it immediately follows that we can find a neighbourhood

Voof (§) in 3, such that d.h|, > 0 for all ¢ € V. We can now define A as in equation ({3.7)
and proceed as for the case when H was assumed to be closed. O]

Proposition shows in particular that for any CCGPSR manifold H C {h = 1} we
can assume without loss of generality that h is of the form

h=a" —2" 2y, y) + > 2" " P(y) (3.12)
and that 3 is the precisely the connected component of {h = 1} which contains the point
(y) = () € R"1 If 3 is just assumed to be a connected an not necessarily closed GPSR
manifold, we can still assume Without loss of generality that H is a connected open subset
of {h = 1} with h of the form (3.12)), and that H contains the point (}) € R"*'. Also note
that whenever X is a CCGPSR mamfold then the point ({) € H is the unique point in H
that minimises the Euclidean distance of 5 C R™! and the origin 0 € R"*! (in the chosen
linear coordinates () of R™"1).

Remark 3.19. The polynomials P;, 3 < i < 7, in equation (3.12)) are in general not uniquely
determined for the respective connected GPSR manifold H C {h = 1} For example, for
PSR manifolds the P,’s are never uniquely determined, see Lemma [4.1] in Section [4

Remark 3.20. The form (up to a constant prefactor of the y-coordinates) of h corre-
sponding to a PSR manifold H C {h = 1} has already been used in physics literature under
the name “canonical parametrization”, see [GST) Eqn. (3.31)] and [DV], Eqn. (1.5)]. However,
the motivation for studying h of the form has been of physical origin. We have verified
that we can in fact always assume that h is of said form.

If h is already of the form (3.12]), we obtain the following result.

Lemma 3.21. With the assumptions of Proposition and the additional assumption that
h is of the form (3.13), we can assume that A((})) = 1.

Proof. Tt is clear that for every open neighbourhood V' C H of the point (y) = ({) € H and
every smooth map F': V' — O(n), all linear transformations of the form

A'(p) == A(p) ( ! F) )

fulfil conditions H and of Proposition |3.18 Furthermore, 8yh|((1)) 0, which implies

E((})) € O(n). Hence, choosing any smooth map F : V — O(n) with F (1)) = (E((})))"
and considering A’ instead of A proves our claim. ]

For the following considerations it is helpful to consider a certain parametrisation of
connected GPSR manifolds which we will introduce now.

Definition 3.22 (dom(H)). Let H C {h =1} C R™**, () € K, be a connected GPSR man-
ifold and assume that h is of the form for the chosen linear coordinates (x,yy, ..., yn)"
on R"™. We define

dom(H) := prga. <(R>O -H)N { (;) c R"*!

y € R”}) CR"” (3.13)
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where prg. : R"™ — R™ () — y. The set dom(H) is precisely the intersection of the
cone spanned by H, that is Ryg - H C R and T%)ﬂ'f embedded affinely in R™! via

v (6)+(9)

Independent of whether the connected GPSR manifold H C {h = 1} C R"™! is closed or
not, dom(H) C R" is well-defined, open in R™, and always contains an open ball B.(0) C R™
with respect to the standard scalar product (dy,dy) on R™ for ¢ > 0 small enough. In
order to check that these claims are true, one uses the following facts. Firstly, every ray
R.o - p for p € H meets H precisely once. This follows from the homogeneity of degree
7 > 3 of the corresponding polynomial i : R"" — R. Secondly, H C {x > 1} C R"™! and
Hn{zx =1} = (}). This follows from the fact that H is locally around each point in H
contained in the boundary of a strictly convex domain of in R"*!, which in turn follows from
the Sacksteder-van Heijenoort Theorenf?| [Wi]. Note that if 3 is a CCGPSR manifold, then
H is (globally) the boundary of the strictly convex domain R+, - H C R*™!. Thus, every ray
R.q-p for p € H has a unique intersection-point with the set dom(JH). We see that dom(3)
is bijective to H via

1
b dom(H) — H, ®(z)= —— @ . (3.14)
vh((2))
One can check that @ is everywhere a local diffeomorphism. This and H being a hypersurface
of R™! also show that dom(JH) C R™ is open and, hence, that ® is a diffeomorphism. Note,
however, that the set dom(H) does depend on the chosen linear coordinates of the ambient

space R"*1,
Lemma [3.8] implies the following property of dom(H) if H is a CCGPSR manifold.

Corollary 3.23 (Properties of dom(H) for CCGPSR manifolds). Let H be a CCGPSR

manifold. Then dom(H) C R™ is open, precompact, and convez.

Note that the statement of Corollary is independent of the linear coordinates of the
ambient space R™™! of JH.

Now we will demonstrate how to explicitly calculate the standard form of a cubic
polynomial h corresponding to a CCPSR manifold H C {h = 1} as in Proposition
with the example of CCPSR surfaces.

Example 3.24 (Standard form of cubics for CCPSR surfaces). Let @) denote the standard

linear coordinates on R3. Recall that CCPSR surfaces H C {h = 1} C R? have been classified
up to equivalence in [CDLL Thm. 1], ¢f. Theorem a)-f). In the following we will for
each h corresponding to the cases a)—f) give a choice of A = A(p) € GL(3) corresponding to

a given point p € H, such that A- (é) =p, h (A- @)) is of the form (3.14), and A= (H) C
{h o A = 1} is precisely the connected component of {h o A =1} C R? that contains the point

(£)=(8):

a) H={h=2zyz=1, >0, y>0}.
It is clear that p = (%) € H. One choice for the corresponding linear transformation of the

1
form is

2
1—1%0
A=[1 2 -1,
1%1

2To apply said theorem, one first needs to extend the considered local neighbourhood of H to a Euclidean
complete convex hypersurface.
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which brings h to the form
2

x 2
h(A-(v)) =22 +2%) - =y + Y22, 3.15
(4- (1)) = = ot + ) - 2+ 2 19
with corresponding P3 ((¥)) = —%?ﬁ + %yzQ.
b) H={h=x(xy—2*) =1, z > 0}.
Similar to the surface in a), consider the point p = (é) e H and
1
1 —2% 0
0 0 1
Then 5 )
z 3 3 2
h(A (y))—a: —z(y —|—z)+37\/§y —l—ﬁyz, (3.16)
with Py (1)) = 1.
o) H={h=z(yz+2*) =1, <0, y>0}.
With p — (z;) € K and
v
-1 0 22
A=|1 S ——L
—2 V2 =
we obtain /3 \/_
x 2 14
_ .3 2, 2y, 2VZ2 o
h(A-(g))—x —x(y —|—z)+\/_yz—|—15\/_ (3.17)

d) H={h=z(a*+y*—2%)=1, 2<0}.
By re-ordering 0f the coordinates and switching one sign one quickly finds that 3 is equivalent

to H = {h = 2 —2(y>+2%) = 1, > 0}, which is precisely the connected component of {h =

1} that contains the point (Z) = (é). The corresponding point in H and transformation

A € GL(3) are given by p = (§> € H and

so that indeed
h<A~ (g)) =2° —2(y* + 7). (3.18)

The transformation A is not of the form since we needed to switch the x- and z-
coordinate so that 0,(h o A)|((1)) # 0. Note that in the sense of equation (3.12) this means

O ~
that P3 = 0, so one might call h the simplest possible cubic polynomial of the form

defining a CCPSR manifold.
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e) H=4{h=z(*-2)+y*=1, y<0, z >0}
Consider the point p = (—(2)1) € H and the corresponding linear transformation as in

1
2
A=1"1 % ~yw
0o 0 &

We find
1 2

L P (3.19)
—Y — — =Yz .
3v37 237

(4 (1) =" a4

f) Hy={h=9?2—423 +3222 + b2 =1, 2 <0, 22>z}, be (—1,1).

Observe that the point p, = \3/% < H ) is contained in Hy for allb € (—1,1). After switching
b\

the x- and z-coordinate via the transformation (1 1 1), we can apply the construction in
equation in order to find A, € GL(3), such that ho ((1 1 1) /Nlb) is of the form (3.19).
We calculate that

=
A, = 0 Y1—b 0
1 0 1w
2Y1-b V6
With
1 0 _ 1w
1 - 2Y1-b , V6
Ab:<11 ) Ay = 0 J1 =0 0
1
s 0
we obtain

V21 =1
3v3

and have thus shown that ho Ay is of the form (3.19) and that Ay- (é) = pp forallb € (—1,1)
as required. Note that equation allows us to interpret the one-parameter family of
CCPSR surfaces 3y, as interpolating between the CCPSR surfaces Theorem d) (for
b— 1, see equation (3.18)) and e) (for b — —1) of Theorem[2.43. To see the latter, observe
that with

>
—
N
(=

—
ne s

)) =2 —z(y® + 2°) + 2 (3.20)

_1y _1 9

B 213§ 2 3@ 0

A: 2 Sﬁ 2 33 S 5
0 0 2765+/3

the polynomial
~ 2
ho=a®—a(y® + 2°) + —=y°
(W +27) + 3 Nl
transforms to
3 1 2

9
P BN
3v/37 237

which coincides with equation (3.19). Furthermore one can check that the point A (é) s

E(;l- (5)) =2 —2(y? + 27)

z

contained in the connected component of {:v3 —z(y? +2%) + % 3 - 2—\1/3:7;22 = 1} that con-

tains the point (g) = (é), for which we have shown that this is equivalent to the CCPSR
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surface e) in Theorem . Hence, the connected component of

2
3 2 2 3
— X + + —y° =1
{SL’ (y Z) 3\/31/ }

that contains the point (g) = (é) is in particular also a CCPSR surface which is equivalent
to the surface e)f

We will use the parametrisation of H C {h = 1} to study infinitesimal changes of
the P,’s in the standard form of h when we vary the point p € H in Prop.
near (y) = ({) € H. The results are important tools in the following sections. Whenever we
use z-variables in the general considerations in this section, we will be working with dom ().
The y-variables will be used in when working with the ambient space R"*! of H. Note
however that in the examples in Section [6] we will in general not stick to this convention.

For the following calculations we will define the (globally smooth) functions

a:R"—=> R, alz)= 81h|(1) : (3.21)
f:R" =R, Bz)=h((1)). (3.22)

Note that under the assumption that H is closed and connected, dom(H) coincides with the
connected component of {3(z) > 0} that contains the point z = 0 € R", and |gdom(s) = 0.
Also, as shown in the proof of Proposition , @|dom(zey > 0 if H is a CCGPSR manifold.
If H is not closed, we can at least find a neighbourhood V of z = 0 € R", such that
aly > 0, which also follows from the proof of Proposition m Furthermore, it immediately

follows from (j3.14) that ®(z) = T\/% (1) for z € dom(3H). While dh does not vanish on

H, it might vanish at a point (y) = (1) for z € ddom(H) or, equivalently, on the ray
Ry - (1) € O(Rsg - KH). If H is also closed, we are in this case precisely in the setting of
CCGPSR manifolds that are singular at infinity, c¢f. Definition [3.16] The following lemma
characterises these cases for CCGPSR manifolds in terms of the functions o and /.

Lemma 3.25. Let H C {h = 1} be a CCGPSR manifold with ({) € H and h a homogeneous
polynomial of homogeneity-degree T > 3 of the form (3.13), i.e. h = 27 — 27 2(y,y) +

XT: 27 *Py(y). Let o, B be defined as in (3.21), respectively (3.24). Then for all Z € ddom(H)
12172 following are equivalent:
(i) dh( 1y = 0,
(i) a(z) =0,
(iti) dBs = 0.
Proof. Assume that dh( 1) = 0 for a z € ddom(H). By affinely embedding dom(H) into

R™™! via z — (1) and identifying y and z we obtain

dh(%) = «o(z)dx + dfs.

Since «(z)dx and dfz are linearly independent we conclude that «(z) = 0 and dfz = 0.

3In order to find the transformation ﬁ, we have used a technique developed later in this thesis in Theorem

Specifically we used equations (5.22) and (5.23).
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Now assume that dfz = 0. Then, using the Euler-identity for homogeneous functions,
0=715(z) = dh(l) (1) = a(z) showing that «(z) = 0. Hence, dh(l) = 0.

Lastly, assume that «(z) = 0. Similar to above, 0 = 75(z) = dh<1) (1) = dpz(z). We
need to show that this implies dfz = 0. Assume the latter does not hold. Then dh( 1) #0

and, hence, we can use the implicit function theorem and conclude that dom(H) has s;nooth
boundary near z, and dfz(zZ) = 0 is equivalent to the statement that z € T:0dom(H).
This, however, contradicts the assumption that H is a CCGPSR manifold which implies
that dom(%H) is a convex set containing the point 0 € R™ (cf. Lemma [3.8). To see the
contradiction, observe that for each non-singular point z € ddom(XH), i.e. a point satisfying
dpz # 0, the affinely embedded tangent space z + T50dom(H) in R™ intersects the convex
compact set dom(H) (cf. Corollary only at its boundary, that is ddom(¥H). But if
z € Tz0dom(JH), the intersection of zZ + T5x0dom(H) and dom(H) will always contain 0 € R”
which is, independently of any coordinate choice of the ambient space R"*! of H, always
contained in dom(H) and in particular never contained in ddom(¥H). This follows directly
from the definition of dom(J), see Definition [3.22] This is a contradiction to the convexity
of dom(H), see Corollary [3.23] O

Returning to Proposition [3.18], we will now study the infinitesimal changes in the trans-
formations A(p) for p € H near (y) = (§) € H, and in the corresponding polynomials P,
in the considered polynomial h as in equation (3.12). To do so we use the parametrisation
¢ : dom(H) — H given in equation (3.14). The next result might seem a bit artificial or
overcomplicated at first, but it has useful applications, see e.g. Proposition |3.34!
Proposition 3.26 (Infinitesimal standard form). Let H C {h = 1} be a connected GPSR
manifold, (§) € H, and let h be of the form h = z7 — 27 2(y,y) + 3 27 *P(y) as in

k=3

equation (3.19). Furthermore, let V. C H be an open neighbourhood of (y) = (}) and
yh

A:V — GL(n+1),
A _ Pz _BxhpoE(p))’
) ( Py | E(p)

as in equation so that A(p) fulfils (@) and in Proposition . Further assume that
A((3) =1, ¢f. Lemma|3.21, Let ® : dom(H) — H be the diffeomorphism given in equation

and define

A: 07N (V)= GL(n+1), A(2) := A(®(2)). (3.23)
Then there ezists an so(n)-valued linear map dBy € Lin(R",s0(n)) of the form
n(n—1)/2
dBo = Z ak<£k, d2>,
k=1

where {a | 1 <k <n(n—1)/2} is a basis of so(n) and {;, € R™ for all1 <k <n(n-—1)/2,
such that for T > 4

9. (R (A(2) (y))].—0
dhzy (dAo (y))

—2(1 -2 3
= 1‘773 <(T><y’ y> <y, dZ) + 3P3 (Z/: Y, dBoy + §P3(y> “ dZ)T> + 4P4(y7 Y,Y, dZ))

(S (TR )

i—4 T



38 3 Standard form and curvature of generalized projective special real manifolds

3
+ Z-PZ (y7 e Y, dBOy + §P3(ya ) dz)T)
+(Z + 1)Pi+1<y7 e Y, dZ)))
2 3 T
+ ;PT—l(y)<y7 dZ> + TPT <ya e Y dBoy + §P3(y7 ) dZ) > (324)

and for T = 3, that is for connected PSR manifolds,

0. (h (A=) (5))].co = dh(z (dAs (3))
2

3
= —§<y, y)(y,dz) + 3P <y Yy, dByy + §P3(y, ; dZ)T> :

In the above equations, P3(y,-,dz)T is to be understood as the column-vector

1 le T
682P3‘y 5 "
dz,,
and dBy s to be understood as
n(n—1)/2
dBoy = > ary(ly,dz). (3.25)
k=1

Proof. Note that z =0 € ®~1(V) for all possible choices for V since ! (({})) = 0. Observe

that for all v € R™, the function — 8?’6251) defined on R+ - H is constant along rays of the form
R.o - p, p € H. With the notation €(z) = E(®(z)) and «, 8 defined in ([3.21), respectively
(13.22),
1 ‘ _dB:(E(2))
A(z) = ( T\/f(Z) ga(z )
and
AW0)=1, €0)=1, a(0)=7, py=—2(dz,dz)
We obtain

0 | 2dz"
dAy = ( 4> | de > , (3.26)
where we understand dz as the identity-map on R" and d&; as a gl(n)-valued 1-form,

d&y € Q' (R™, gl(n)), both using the identification Thdom(H) = R™ obtained with the affine
embedding d®, as in equation (3.14). With

dh(i) = <T$Tl — (1 —2)2" 3y, y) + ;(T — )T " Py(y )) dx

T

=207 Xy, dy) + >_ 2" "iPi(y, ...,y dy)
i=3
we get
dhr (@0 (5)) = 27 (<2(y. dEag) + 3Pi(y.y.d=)
+ (terms of lower order in z). (3.27)
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The assumption that A fulfils (i) and ({ii) in Proposition (3.18) and A(0) = 1 implies that
‘3.27

the 27 2-term in the above equation must vanish, i.e.
—2(y,d&oy) + 3P5(y,y,dz) = 0.

This is true if and only if

3
déo(y) = 5 Ps(y, - d2)" + dBoy (3.28)

for all y € R™, with dBy € Lin(R",s0(n)) a linear map from R" to so(n). Here we have
identified R™ with Todom(H). We will now justify our notation of the endomorphism dB.
Consider for any smooth map B : R" — O(n) with B(0) = 1 the map

B-&:07' (V)= GL(n+1), 2z B(2)-&(2).

It is clear that if we replace E with (Bo®~1)- F in the map A (and correspondingly B - & in
A), it will still fulfil (i) and ({ii) in Proposition and A(0) = 1. We can thus choose for any
dBy € Q'(R",s0(n)) a fitting map B : R" — O(n) and a smooth map & : &~'(V) — GL(n)
with d€y = 3P3(y,-,dz)", €(0) = 1, so that & := B - & will fulfil equation . Also note
that the requirement B(0) = 1 implies that the image of B lies in SO(n).

To complete the proof, we only need to replace d€y in dh(g) (dAo (3)) according to
equation (3.28) and obtain the claimed result. [

Equation (3.24)) in Proposition determines precisely the infinitesimal changes of the
Py’s in the polynomial h as in equation when changing coordinates for p € H C
{h = 1} parametrised by ® : dom(H) — H (3.14) in the way described by Proposition [3.1§
Rotations in y € R"® C R*™! always preserve (3.12)), which is seen in the freedom of choosing
dBy € Lin(R™, s0(n)). We will now assign symbols to the respective infinitesimal changes of
the P,’s in order to simplify the considerations to follow.

Definition 3.27 (First variation of the Py’s). With the assumptions of Proposition and
the definition of A as in , we define fort >3 and 3 < k< T

—k
SR = e g (A ()

, (3.29)

- <<T_1k)!a¥’“dh<z> <dﬂ0<5>>>

where we denote by % = > dz ® 0,, the de-Rham differential with respect to the z =
i=1

(21, ..., 2n)T -coordinates. In particular, we have for T = 3, that is cubic polynomials h,
2 3 T
3Py () = — 5.0y d2) + 3Py (9. dBoy + S Pa(y, - d2)") (3.30)
and for T = 4, that is quartic polynomials h,

3
5P3(y> - _<y7 y) <y7 dZ> + 3P3 (yv Y, dBOy + §P3(y7 ) dZ)T) + 4P4(y7 v, Y, dZ), (331)

1 3
6Py(y) = §P3(y)<y7 dz) + 4P, (y7y7 y,dBoy + §P3(?J, . dZ)T) : (3.32)
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This means that the §Py(y)’s are precisely the factors depending on y in the summands of
dh( ) d.AO f, ZQIT Z(SP

that are of order x™~%, respectively. For each 3 < k < 7 we call 5P, the first variation of

Py, along I with respect to the chosen dBy , respectively dA , and understand
6P, (y) as a linear map 6Py(y) : R* — Sym® (R™)"), so that we insert vectors v € R" into
the dz in each 0 P,(y) and obtain a homogeneous polynomial in (yi,...,y,) of degree k.

The first application for Proposition that we will consider is calculating the first
derivative of the scalar curvature of a connected GPSR manifold H equipped with its centro-
affine fundamental form at one certain point. To do so we need a closed form of the scalar
curvature (at at least one point). Its calculation uses the following result.

Lemma 3.28 (Pullback metric on dom(H)). Let X C {h = 1} be a connected GPSR
manifold with centro-affine fundamental form g¢ = —%82h|Tg{X;m (cf. Lemma , h of
homogeneity-degree T > 3 and of the form (5.19), and (§) € H. Let ® : dom(H) — H be

the diffeomorphism given in equation and B as in equation . Then

028, (1 — 1)d5§
@) )

Proof. This is a special case of [CNS|, Cor. 1.13]. To check the claim, one uses the homogeneity
of degree 7—2 > 1 of 9%h,, in p and the first derivative of the diffeomorphism @ : dom(H) — H

B14), that is
1 0 1 1
= <dz> TR (z) ® dp:-

(®7g5), = —

(3.33)

]

We will use equation ([3.33)) to calculate the scalar curvature of (dom(H), P*gs) at z =
0 € dom(¥).

Proposition 3.29 (Scalar curvature of GPSR manifolds). Let H be an n-dimensional con-
nected GPSR manifold H C {h =1}, h of homogeneity-degree T > 3 and of the form ,
(3) = (§) € H, and let gsc = —20*h|racersc be the centro-affine fundamental form of H.
Denote by (y) the linear coordinates of the ambient space R"™ in accordance with equation
. Then the scalar curvature Sgc : H — R at the point (}) € H is given by

Sx ((3)) = Mn+—22(%&@@%@@@H%@@@”,(%@
¢ a#i

where Oy = 0y, for1 <k <n.

Proof. Note that we identify 0,, = 0,, = 0; when inserting vectors in the Pj-polynomials.
This is justified by the fact that d®y, maps Todom(H) to T((l) )fH via d®y : 0,, — 0, for

all 1 < 4 < n. For the following calculations we will first calculate the scalar curvature
S : dom(H) — R of (dom(K),g:=7P*gs) at z = 0. We work with ¢ instead of P*gy
because the necessary calculations will then require less symbols. Furthermore, we will for
the general calculations assume that 7 > 4. The calculations for 7 = 3 are analogous and
the formulas coincide when we set P, = 0. The metric g has the form

__8252 +7’—1 ds?
I8 " T PR
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We abbreviate 0., = 0, and obtain for the first differential of g in z,-direction
21 + 2

09 = 57 (—dB(0,)d8°
45 (29080, ) + 43(0,)0°5)
+ 87 (=080, ) -
The second partial derivatives of g read

6T —

0,0, = 5 (T"d5(0,)45(0,)5°)

570 (S (d8(0,)450° (0, ) + d3(0,)450 30, )
— 245(0,)d5(0,)0°8 + —20(0,,0,)d5")

+ 57 (A3(0.)0° 804, -,-) + AB(0)P Bl ) +
OG0, 0,005 + T 0P5(0, )P B(0h))

+ 671 (=0"B(0y, Oy, ~)) .

Applying the above formulas at z = 0, we obtain

47‘~|—4

27 — 2

d5836(6V7 a/u )

glo = 2{(dz, dz), (3.35)
1
g o= 5(@,@), (3.36)
aMg|0 = _8350(6/1’ K ) = _6P3(8u7 K ')v

- . L, 3
0u(g™ o = =97 10Fuglog ™o = 5 Ps(Ou, ),

2
2 2

0,8,9l0 = 0*Bo(,0, 3,)0%Bo + ———=02Bo(Dy, )0*Bo (0, -) — 0*Bo(Dy, Dy -, )

<aw '><au7 > - 24P4(81/7 a;u * ')7

8 —8

= 46Z<.’ .> =+

Y
0,0,:510 = 46457 + — (007 + 6J67,) — 24P4(Dy, O, 0, 0y).

In order to calculate the scalar curvature of (dom(H), g) = (H, 7gs),
S=% (aara a;r% + Z (Phra, - Ffal“jk)> g4,
a,t,j

at z = 0, we need to calculate the Christoffel symbols and their first derivatives. We have

1
Ffj = 3 Z (0sgje + 09ic — 0ugij) 9%7
¢

1
3arfj =5 > ((3a3i9je + 0.0;9i — 0a019i5) 9™ + (9590 + 03910 — Orgij) 3{191%) ;
]
and
rt| — —3p0,.9,.0 3.37
z’jo__§ 3(i7 7o k)> ( )
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(%Ffj = 6’“ + 69 6% + 6’“5” — 6P4(0q, 0;, 05, Of) — Z P3(0y, Ok, Op) P3(0;, 05, Op).
(3.38)
Since ¢, = 147,
1
)= 3 (0 - s + 5 (Thrs - i)
a,i k 0
We obtain
-2 .
0TSy = T2 4 28— 6Ps(00, 00, 0,0) — 3 3 PO 00, 0 P3(0,01,00),
¢
2 2
ore |, =1+ 5?—6P4(8a,8a,8i,8i)—ZZPg(aa,&,@g),
4
Prs, = 2P0, 01, 00 P09, 0.
9

Ffargk = Z (P3(aaaa%7ak)) :

Hence,
(1 —n) 2
S(0) = + 2 Z (= P3(Oa, Our 00) P30, 04, ) + (P3(0a, 05, 00))°)
azf
n(l

) 42 Zz( P5(Da, 0a, 00) P3(0, 01, 0p) + (P3(0a, i, 01))?) .

L a#i
Recall that d®g (0,,) = 0,, for all 1 < ¢ < n, which one can easily verify. Thus Sy (({)) =
75(0) and the above equation prove our claim. Observe that Sy ((§)) only depends on the

dimension n of H, the degree of homogeneity 7, and the cubic polynomial P;. Also note that
Sy = 0 for dim(H) = n = 1 is consistent with the formula (3.34)). O

Note that Proposition |3.29| gives us, at least in theory, a simple way of calculating the
scalar curvature of a connected GPSR manifold H equipped with its centro-affine fundamental
form (and thus of all GPSR manifolds by considering each connected component) at every
point p € H. This, however, requires calculating A(p) as in Proposition for each p € H.
This amounts basically to determining an orthonormal basis for some positive definite bilinear
form. This is certainly easier than calculating Christoffel-symbols and their derivatives at
each point, but nevertheless complicated enough to require a (both p- and H-dependent)
case-by-case study and not giving us a closed form of Sy (p) for all p € H. An application of
these studies is Proposition [6.9]

Calculating the first derivative of the scalar curvature Sy at the point () = ({) € H
can of course also be done in a direct way, but the calculations require the (local) calculation
of the third partial derivatives of the metric g4 and, hence, are very long and have a huge
potential for human error. One can however also make use of Proposition to obtain a
formula for ng{\G]).

Proposition 3.30 (First derivative of Sy¢). With the assumptions and notations of Propo-
sition |3.29 and Definition |3.27 and identifying T<(1))J-C with the affinely embedded hyperplane

{(2) ’ ye Rn} C R"*! we have for T > 4

A9l (1) = (Z

a

3(n — 13(7 -2) Pg,(@a,aa,dy)>
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(Z 97— P3 aayaaa a )P4(az> 87,, a]a dy) + PS(aaa aza a )P4(aa7 al? 8]7 dy)))

a,,J
27
+ X0 B0, 00, dy) (— Pa(0s, 90, 0,) Pa(0,0,, )
a,i,j,0
_ 2P3<8a7 a(“ 81)P3(8“ 8]', 05) + 3P3(8a7 aia 8j)P3(aa7 ai7 aﬁ)) (339)

and for T =3

3(n—1
dSﬂf!((l)) = (Z (n2)P3(8a>aaady)>
&1
+ Z §P3(aj, Or, dy)(—Ps3(0a; 0a, 0;) P3(0;, 0;, O)
a,i,j,0

— 2P5(0y, O, 0;) P5(0;, 04, 0p) + 3P5(0a, 0;, 0;) P3(0a, 0i, Op)). (3.40)

Proof. In the following calculations we will identify dz and dy, respectively each 0,, and 0,
(and write 0; instead) via d®y, cf. equation (3.14]), which has the property that d®, (9,,) = 9,,
for all 1 < 7 < n. We start with the case 7 > 4. With the notations of Definition [3.27],

Propositions m 3.29| and Proposition equation (3.24)) imply

de{| - Z P3 6a78a,a€)5p3(auawaé) + P3(aa)82784)6P3<8a78278€)) (341)
a,il
where
—2(1 — 2)

3
5P3(y> - <y7 y> <y7 dZ> +3P3 (yu Y, dBOy + §P3<y7 ) dZ)T> +4P4(y7 Y, Y, dZ) (342)

T

Recall that dB, € Lin(R", so(n)). We thus need to determine a formula for d P;(0;, 0;, ) for
all 1 <1,j,k <n. The safest way in the sense that possible errors in the pre-factors do not
occur is to determine 9?(§P5(y)), where we regard dz in equation (3.42)) as a constant vector.
We obtain

—4(r —2) —2(1 —2)

d(5P3)y(v) - - <y7 U> <y7 dZ> + - <y7 y) <U’ dZ>
3 3
+ 6P3 (y; v, dB(Jy + §P3(y7 ) dZ)T) + 3P3 <y7 Y, dBOU + §P3(U7 B dZ)T>
+ 12P,(y, y, v, dz) (3.43)

for all y,v € R™ and, hence,

0*(6P3)y (v, w) = ————=((v, w){y, dz) + (y,v)(w, dz) + (y,w) (v, dz))

+6P; | v,w,dByy + 2P3 Y, -, dz) T>

3
+6P; |y, v, dByw + 2P3 w, -, dz) T)

7 N 7 N 7N

3
+ 6Py (y w, dBoo + S Py(v, -, d T>

+ 24Py (y, v, w,dz)

for all y,v,w € R™. Since 0 P5(y) is homogeneous of degree 3 in y, we have the identities

d((SP?))y(U) = 35P3(y7 Y, U)?
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82(5})3)11(”7 ’U)) = 65P3(y7 v, U)),

when we regard dz as a constant vector and interpret P as a cubic tensor. We use the
above identities and obtain

Z P3(6a7 a(m 33)51:’3(8“ a’i? 6f)

a,il

_ (Z Py(0, 00, 0) =220 = 4)

al T

<8g, dZ>>

+ (Z P3(0a; Oa, Or) (2P5(0;, 0p, dBy0;) + P3(0;, 05, dBo0y) + 4P4(0;, 03, Oy, dZ)))

a,il
3
+ ( Z Pg(aa, 8a, (%) <3P3(8“ ag, @)Pg(@i, 8]', dZ) + §P3(8,, 81‘, 8j)P3(8£, aj, dZ)))
a,il,j

and

Z P3(aaa 8i7 aﬂ)(sPS(aaa 8i7 86)

a,il

= (Z P3(0a, 0p, Op)

al

M(&,dz))

+ (Z P3(aaa aia 8€) (3P3(aaa aia dBoaf) + 4P4(aaa aia 8[? dZ)))

a,il
9
+ ( > Pil00,0,0) <2P3(aa,ai,aj)Pg(ag,aj,sz) . (3.44)
a,1,t,]

To see that all terms containing dBj : R" — so(n) (understood as in equation ({3.25))) vanish,
observe that for all 1 < a,i,¢ < n the tensors

P3(aa;aa7aZ)P3('7a€7'>) P3(aa7aa7')P3(ai7a’i)')7 P3(8a)ai7')P3(aa)aiu')

are symmetric in their two arguments. Their trace with respect to the standard Euclidean

scalar product (-,-) on R™ when inserting any matrix M € so(n) in one of the arguments

thus vanishes. We can now use the above formulas for > P3(0,, 0y, 0¢)0Ps(0;, 0;, 0p) and
a,i,l

> P3(0, 0, 0p)0 P3(0y, 0;, 0¢) in equation ([3.41]) and, with the identification of dz and dy via
a,il

d®y (3.14)), obtain our claimed result for 7 > 4. For 7 = 3, observe that the formulas for  Ps
in equations (3.30) and (3.42)) coincide when setting P, = 0. The calculations for the case
7 = 3 thus coincide with the cases 7 > 4 and we obtain the claimed result. O]

The calculations used in Proposition [3.29| can also be used to calculate the Riemannian

curvature tensor, the Ricci curvature, and the sectional curvatures of a connected GPSR
manifold (H, gg().

Lemma 3.31 (Riemannian, Ricci, and sectional curvature of GPSR manifolds). With the
assumptions of Proposition[3.29, let R denote the Riemannian curvature tensor, Ric denote
the Ricci curvature, and K denote the sectional curvature of an n-dimensional connected
GPSR (H, g5), respectively. We again identify dz and dy at (§) € H via dPy (3.14). Then

2
R(1)(0:,0;)0% =~ (650; — oka)
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+ - Z P3 azaafa )P3(8]7ak7a ) +P3(8i7akaaa)Pfﬂ(ajaaf?aa))86’ (345)

2(1 —n) 5t

J

RiC( )(8], 6k)

+ = Z (—P3(0;, 0i, 02) P3(0;, Ok, 0a) + P3(0, 0;,04) P3(0;, Ok, 0a)) (3.46)

and for dim (span{v,w}) = 2

9
(v,w) = —1+ §T S" (= P3(F0;, Fo,, Fo) Py(FO;, Fo;, FOy) + Py(FO,, FO;, Fo,)?) |
¢
(3.47)
where F' € O(n) is any orthogonal transformation with the property that span{v,w} =
span{ F'0;, F0;}. Note that such a transformation F always exists for any choices of i # j,
and that K(v,w) does in particular not depend on that choice of i, j, and the corresponding

F (cf. Definition M)

Proof. The formulas and for the Riemannian curvature tensor R and the Ricci
tensor Ric, respectively, follow directly from the formulas for the Christoffel symbols ,
their first derivatives (3.38)), and the inverse of gy at the point (§) = (§) (3-36) (up to the
factor 7) given in the proof of Proposition . Recall that in said proof we work with
g = 7®*gy, ¢ as in , hence we also need to rescale the formula for g at 0
at the point where we take the trace with respect g4. For the sectional curvature K, the
formula for K (1)(&,0) for i # j follows easily from (3.45) and (3.35) (and by rescaling

K¢

1
0

with the overall factor 7). To find the general formula K1\ (v,w) (3.47) for any two linearly
independent vectors v, w € T(l)ﬂ-f = R", choose i # j and F' € O(n) as described such that

0
span{v, w} = span{F'0;, F9;}. Changing the coordinates of the ambient R"*! via

@ B (Fiz)

corresponds to rotating I in the y-coordinates and correspondingly changing the defining
cubic h to

h=2"—5(7,5) + Ps(0),
with P3() = P3(F7). In the (E)—coordinates, let K denote the sectional curvature. By

identifying 65% = 0,, = O for all 1 <k < n (as the kth unit vector in R", not via the map
F) we have

>(v,w) = K<(1))(E)2,8J)
9 - ~ ~
= —14 5 3 (~P2(0,. 0,00 Ps(0,,0,,0)) + Po(9,,0,0,)?)
l
_ 1y 987 S (~P(F0,, Foi, FOy) Py(Fy, FOy, FO,) + Py(F0,, oy, F,)?)
l

<

B

1
0

O

In the next part of this section, we will determine the second variation of the Pj-
polynomials in 1} which we will define analogously to their first variation determined

in Proposition [3.26| and defined in Definition [3.27]
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Definition 3.32 (Second variation of the Py’s). With the assumptions of Proposition
we define fort >3 and 3 < k< T

2 = (Lot e ()]

: (3.48)

where 0% (h (A(2) - (y))) denotes the second derivative with respect to the z = (z1,...,2,)" -
coordinates, (02 (h(A(2)-(y))))y,; = az?;zj (h(A(z)-(y))). For each 3 < k < 7 we call
52P, the second variation of P, along H with respect to the chosen dB , respectively
dAgy (3.26), and understand 5°Py(y) as a bilinear symmetric map dP,(y) : R® x R" —

Sym" ((R")").

Note that with the conventions introduced in Definition B.48]

92 (h(A(:) - (5))]_, = éx”m(y»

Proposition 3.33 (62P;’s for 7 = 3 and 7 = 4). With the assumptions and notations
from  Proposition 62Ps(y) for connected PSR manifolds is of the form . For
quartic connected GPSR manifolds, that is connected GPSR manifolds H C {h = 1} with
corresponding h of homogeneity-degree T = 4, 6*P3(y) is of the form and 6*Py(y) is of
the form .

Proof. The proof is, up to one stepEL just a big calculation. We will however include the
main steps of this calculation, since the general result can most likely not be obtained with
a computer algebra system for arbitrary 7 > 3 and arbitrary n € N. Furthermore, as the
calculations become longer, the potential for calculation errors rises. So if one wants to check
the result, intermediate steps will provide cornerstones for checking ones own calculations.
We start with the formulas for the first and second derivatives of A and A. It is easy to
confuse some symmetric tensors with non-symmetric tensors, e.g. consider for any smooth

map F' : dom(H) — GL(n) and v, w € Todom(H) = R™

((dz,dFy-)) (v,w) = = ((v, dFyw) + (w, dFyv))

N | —

and using wrong pre-factors when forgetting about the factor % For this reason we will use
the identification (dz, dFy-) = % ((dy2, doFy-) 4 (doz, d1 Fyy+)), where dyz and dpz stand for the
first, respectively second, direction in which we are taking the derivative. We again identify
dz and dy via d® and obtain

dh(z) = (T:UT_l — (1= 2)2"*(y,y) + ;(T - i)xT_i_lPi(y)> dz
— 227 {y, dy) + Zi: TPy, ..y, dy),
th(z) = <7’(7’ — 12" = (1 =2)(7 = 3" Hy,y) + TZg(T —i) (T —1i— 1)x7_i_2Pi(y)> dz?
+2 (—2(7’ —2)a" 3y, dy) + Ti i(t —i)a" 'Ry, ...y, dy)) dz

*See implication of equation (3.49).
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— 207 2 dy, dy) + Y i(i — Va7 By, ..y, dy, dy),

i=3
0 | 2d2T
Ao = ( dz | d&, )
2 _ 2<dZ, dZ> ‘ 2 (<d12, d280'> + <d22, d180'> - 3P3(d12, dQZ, ))
a -.AO — T T 2 3
0 | 7€
where we, similarly to Proposition and using the identification Tpdom(H) = R", under-
stand d&( as an element of Lin(R™, gl(n)) and §°&; as a gl(n)-valued symmetric (0, 2)-tensor,
i.e. 9%€y € Sym? (R")") ® gl(n).
The following calculations are slightly different for 7 = 3, 7 = 4, and 7 > 5, respectively.
The difference is that certain terms, for example terms of order 27—, do not appear for 7 = 3

and 7 = 4. We will present the calculations for 7 > 5 and present the results for the cases
7 = 3 and 7 = 4, which are easily obtain by slightly modifying the 7 > 5-case. We obtain

with (3.26) and (3.28))
82h( )(d1ﬂo(§)7dzﬂo($))

v
= xT(_2<d127d22>)
+ 27 (=2(dy 2, dy€oy) — 2(daz, d1Eoy))

[ —4T + 12
472 ((y, d12)(y, d2z) — 2(d;Epy, d280y>)

and

+ 73 <_4(:__2) ((y, d1E€0y) (y, daz) + (y, d2€0y) (y, d12>)>

e e IR )
; (g o T ) p ). i) d2z>>
; (Z o DO (b i) i)

+P 1y, ..y, diEoy) (Y, d22>)>

|
—

- 20(T — 1
xTizg (Pz(ya e Y, d22)<y7 d12> + pz(ya e Y, d12)<y, d22>>>

T

+

S
Il
w

+
AM\‘

Il
w

5"77%(@' - 1)Pz'(y, .Y, di€oy, dzgoy)>

)

(
(
:
(

|
—

xTiz(Z‘ + 1>Z (PiJrl(y? Y, d280y> dlz) + pi+1(y> e Y, dlgoya dQZ))>

+

(]

<.
[|
N N

)
|

(S 2+ D Py, .y die, d22>)

Il
—

and
dhys) (%40 (7))
=27 (2(dyz,ds2))
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+ 27 (2((dv, d280y> (daz,d1Eoy)) — 6P3(d12,daz,y))

2
b ( Ly ) oz da) — 2<y,8280y>)
2
( y>(<d127 d280y> + <d22> dlgoy> - 3P3(d127 d22>?/))>
T— Z T — 1+ 1)
Zf - Pfl(y)(<d12, d280y> + <d22, d180y> - 3P3(d127 dgz,y))

(Z 27 T‘”P(yxdlz, sz)>
+ (2 Py, ...y, a2£0y)> .

T—1

We immediately see that the terms of order ™ and 7" in the sum

Phz) (dAo(5), dAo(5)) +dhey (0740 ()

vanish as expected. Furthermore, the term of order 272 is also required to vanish, which

yields the following equation for 92&:

—2(1 —2) —4(T —

3
(y, 0*Eoy) = (y,y){d12, d2z) + )<y, di12)(y, d2z) — 2(d1€oy, d2€oy)
+ 6(Ps(y, do€oy, di2) + Ps(y, di€oy, do2)) + 12P(y, y, d1 2, d22). (3.49)

Assuming that 92&, fulfils equation (3.49)), we obtain
Physy (dAo(y), dAo(§)) +dhizy (940 ()

(D i+

T

6(1 —3)

+ (Pg(y,y,d22)<y,dlz) +P3(y,y,dlz)<y,dgz))
+6P5(y, di€oy, d2€oy)
+ 12<P4(3/, Y, d2Eoy, dlz) + P4(y7 y,d1Eoy, d2z))
+ 20P5(y7 v,Y, dlza dQZ)
—2(1 —2)
+ ———(y, y)({d12,d2€oy) + (d22, d1E0y) — 3P3(d12,d22,y))

2(r—3
+ 2D ) i) + 3P4 )

rart (TR ), i o)

8 _
L8

4
L Pays 9292 do2) 1 b 2) + Prly, 5,y da) s do=))

T
6(7 —3)
+ T (P3(y7y7d280y)<y7dlz> + P3(y7yad180y)<y7d22>)

+12P4(y, y, d1 €0y, d2€0y)
+ 20<P5(y7 v, Y, d280% dlz) + P5<y7 v, Y, dlgoyv ng))
+ 30P6(y7 v,Y,Y, dlza dZZ)
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20r — 4
+ 2D gz, i)
2(T — 3) 2
+ . Ps(y)({d1z,d2€0y) + (daz,d1Eoy) — 3P3(dv2,d22,y)) + 4P4(y, y,y, 0°Eoy)
24
2 (S Py i) v, do2)
A(1 —2)
+ T (PT—Z(yv e Y, dQEOy)<ya d12> + PT—Q(ya Y, d180y><ya d22>)
4
+ ;Pr—2(y>(<d12, da€oy) + (doz, di1Eoy) — 3Ps(d12, daz, y))
2(r—1
+ ( )<P’r—1(y7 e Y, d22)<y7 d12> + PT—1<y7 Y, dlz) <y7 d22>)

+ (1 =1 =2)Pr_1(y, ..., y, di&oy, d2€oY)

2
+ =Pra()(dhz, doz) + (T = DPra(y, -y, 0%€y)

+ T(T - 1)<PT(y7 - Y, d280,% dlz) + PT(ya - Y, d180y7 d22)>>

8
+(ﬁJ12@x%dﬂM%dﬁ>
2(r—1)
- (Pr1(y, -y, d2€oy)(y, drz) + Proaly, -y, dioy){y, d22))

T

2
+ ;Pr—l(y)«dlZ; da&oy) + (doz,d1E0y) — 3Ps(d12,d22,y))
+ T(T - 1)PT(ya e Y, d180y7 dQEUy) + TPT(?J? e Y, 8280y)>

T—2

2(i —1)(r —i+1)

41 —i+ 2)2(7 —i+1) Pi_s(y)(y, di2){y, da2)

+ T (-F)i—l(yv"‘7y7d280y)<y’d12> +P’i—1(y7"'7y7d180y)<yad22>)
20r—1+1

+ (7')R_l(y)(<dlz’ d280y> + <d22, d180y> - 3P3(d12, ng, y))
20(T —1

202D (piy, o) i) + Pl i) o)

-
+ Z(Z - 1)Pi(y7 Y, di€oy, d2503/>

2(1 —1 ,
+ ( >Pz(y)<d127d22> +Zpi(y7-"ay>8280y)
+ (Z + 1)Z(P7,+l(y7 e Y, d280ya dlZ) + Pi-‘rl(ya e Y, d180y7 dQZ))

D0 DRl i)

In this proposition we want to determine §2P3(y) and §?P,(y), and are thus only interested
in the terms of order 272 and z™*. The terms of order ™ for 5 < ¢ < 7 and related
analogous definitions of §? P;(y) can be determined in a similar way.Note that the summation
ranges in the above formula are precisely the reason why we have to be careful in the cases
7 =3 and 7 = 4. At this point we have shown that

—4(1 —2)

52 Py(y) = ((y, di€oy) (Y, d2z) + (y, d2€oy)(y, d12))
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6(7 — 3)

+ (P3(?/7 Y, d22’)<y7 d12> + P3(3/» Y, d12)<y7 d22’>)

+ 6P5(y, di€oy, d2€oy)
+ 12(P4(y7 Y, d280y7 dlz) + P4(y7 Y, d180y7 sz))
+20P5(y, y, y, diz, dy2)

—2(1 —2
+ ¥<y, y)((d1z, da&oy) + (doz, d1Eoy) — 3Ps3(d12,doz,Yy))

N 2(t —3)

P3(y){diz,do2) + 3Ps(y, y, 0°Eoy). (3.50)

Next we will replace the first and second derivatives of € at z = 0. In Proposition [3.26| we have
already determined that d€, fulfils d€o(y) = 2Ps(y, -, dz)" + dByy, dBy € Lin(R", s0(n)), for
details see equation and the discussion following it. We denote by Endgym, (R”, (-, )
the symmetric endomorphisms of R™ with respect to the standard Euclidean scalar product
and uniquely decompose gl(n) = Endgm. (R”, (-, -)) @ s0(n), so that we can write

&y =s+a, s¢€Sym®(R")" ®Endgym (R, (-,-)), a € Sym? (R")* ®so(n).  (3.51)
Hence, we obtain for the symmetric part s of 92€,
—(r -2

T

)

(v, sw) = (v, w){d1z,dyz)

(v,d12)(w, doz) + (w, d12) (v, d22))

T
1

— §(<d180’0, d280w> + <d180w, dggov»
3

+ §(P3(U, dggow, d12’> + Pg(w, dggo’l}, dlz)
+ Pg(v7 dl&)w, ng) + P3(U}, dlg(ﬂ), dQZ))

+ 6P (v,w,dyz,ds2). (3.52)

The only part in equation (3.50)) containing the term 92&q is 3Ps(y,y, 9*Egy). By setting
v= P3(y,y,-)" and w =y, we can insert equations (3.51)) and (3.52)) into 3Ps(y,y, 9*Eoy):

3Ps(y,y,0%E0y) = 3Ps(y,y, ay)
—3(7 — 2
+ 20D by . )

+ 202y i)y, o) + Py, o), 1)

- 2 (PB (?L Y, (d2€oy, d180'>T> + P3 (y,y, (dyEpy, d280->T))

+ g (Ps (v, d2€0Ps(y,y, )" dv2) + Py (Ps(y,y,-)", da€oy, di2)
+ Py (y,di€oPs(y,y, )", doz) + Py (Ps(y,y,-)", dh €0y, da2))
+ 18Py (y, y, Py(y, dy12, dsz, -)T) .
Hence,

i) = T2 (g, o) (. o7) + (v, coEap) 9. 1)



3 Standard form and curvature of generalized projective special real manifolds

51

3(r—3
+

)(P?,(y, Y, d22’)<y7 d12> + P3(3/» Y, d12)<y7 d22’>)
+ 20P5(y7 Y, dlz7 dQZ)

+12(Py(y, y, d2€oy, d12) + Pi(y, y, d1Eoy, d22))

+ 6P5(y, di€oy, daoy)

—2(1 — 2
+ ¥<y,y>(<d12, da€oy) + (doz, diEoy) — 3Ps(y, d12,dsz))

T e

+ Ps(y,y, ay)

3

— §P3 (%ya (do€oy, d1Eo0-)" + (d1€oy, d280'>T)

+ 18P5 (y, Y, Py(y,dyz,dyz, )T>
+ g (P3 (y, da€oPs(y, 1y, )", dlz) + Py (Pg(y,y, N da€oy, dlz)
+ P3 (yv d180P3(y7 Y, ')T’ dQZ) + PS <P3(y7 Y, ')T7 dlgo.% dZZ)) .

The next step is replacing d€y(y) = %Pg(y, -, dz)T + dByy, cf. equation (3.28)). This yields

2P(y) = 2T (i da=) iz + Palysydiz) (9 o)

+20P5(y,y,y,d1z,ds2)

+ 18 <P4 (y, y, Py (y, -, dyz)" d1z>
+ Py (y, y, Py (y, - di2)" d22>
+Py (v, Ps(v,y,)"  drz, daz) )

27
+ ?Pg, (y7 P3<y7 ) dlz)Ta P3(y7 ) d2Z)T)

27

T T
- §P3 (ya Y, P3 <P3(y> ) dZZ)T7 ) dlz) + P3 (P3<y7 ) dlz)Ta ) ng) )

n ﬂpg(y><dlz,d2z>

+ 247 <P3 (y, d12’, P3 (Pg(y,y’ ,)T’ : dzZ)T)> + P3 (Pg(y,y, _)T’ Pg(y, . dQZ)T, dlz)

+P3 (ya ng, P3 <P3(y7 Y, ')Tu ) d1Z>T)) + P3 <P3(y7 Y, ')Ta P3(y7 K dlz)T7 d22>)
+ 12(P4(y7 Y, d2B0y7 dlz) + P4(y7 Y, dlBoy? dZZ))
+ 6P5(y, d1 Boy, d2Boy)

+9(Ps (y,d1Boy, Ps(y,,d22)") + Ps (v, d2Boy, Ps(y, -, d12)"))
+ 202 (2, doBag) + (o2, ds Bo)

+3P5(y,y, ay)

— 2P3 (ya y, (d2Boy, dyBo-)" + (dy Byy, d2BO'>T)

- i (Ps (Z/a y, Ps(daBoy, -, dlz)T) + P (y7 y, Ps(d1Boy, -, dQZ)T)
+P3 (y, Yy, Pg(y, ng()', dlz)T> —l— Pg (y, Y, Pg(y, dlBO', dQZ)T))
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+ Z (—PS (y, Ps(y,y, d2By-)", d12) + P <P3(y7 y,-)", dy Boy, d12)
—Ps (y, Ps(y,y,d1Bo")", daz) + Ps (Ps(y,y,-)", d1Boy, daz) ) (3.53)

Note that we have used that dB, has image in so(n), that is dBy, € Lin(R",so(n)) or,
equivalently, dBI = —dB, and, hence,

T
dBoPs(y,y,-)" = (Ps(y,y,)dB; ") = (=Ps(y,y,dBy"))" = —Ps(y,y,dBo)".

The formula for 6>P,(y) is obtained with methods analogous to the ones used for the calcu-
lation of 62P3(y). We obtain

—4(t —2)(1 —3)

§*Py(y) = = (Y, Y)Y, d12)(y, d22)
LAr=5) (Pa(y, Y, ¥, do2)(y, di2) + Pa(y,y, y, d12)(y, do2))
+ 9(77— J (Ps (w9 Paly, - do2)") (g, diz) + Py (9., Paly, - di2)") (y, da2))

+ 18P4 (yv Y, P3(y7 ) dlz)Ta PS(Q? ) dZZ)T>

+ 30 (P5 (y; v, Y, P3(y7 ) d2Z>T7 dlz) + P5 (y7 vy, P3(y7 ) dlz)T7 d2z))
+ 30P6(ya v,Y,Y, dlza dQZ)
— 2P4(y)<d127 d22>

- 227134 (4,99, Py (Ps(y, -, do2)", -, daz) + Ps (Pa(y, -, ch2)" -, do2))

+ 24P4 (ya Y,Y, P4(y> ) dlza dQZ)T)
6(1 —3)
(P3(y7 Y, dQBOy)<y7 d12> + P3(?Ja Y, dlBOy)<y7 d22>)

+18 (P (y, v, di Boy, Pa(y, - d22)" ) + Pi (v, y, deBoy, Pa(y, -, d12)") )
+ 12P,(y,y, d1 Boy, d2 Byy)
+20(P5(y, ¥, Y, d2 Boy, d12) + P5(y, Y, y, d1 Boy, d22))
+ Q(TT_ 3) Py(y)((drz, do Boy) + (do=, ds Boy))
+4Py(y,y,y, ay)
+ 3Py (49,9, Ps(d2Boy, -, d12)" + Ps(y, doBo-, dy2)"
+Py(ch By, -, d22)" + Py(y, dy By, dp2)")
= 2Py (4., (d2Boy, dy Bo")" + (d Boy, d2Bo-)") (3.54)

+

To obtain 9?P3(y) for 7 = 3, respectively 0?Ps(y) and 9*Py(y) for 7 = 4, it turns out that
we can simply set the P;’s for i > 3, respectively ¢ > 4, to zero. Also not that we do not
run into any difficulty with P;’s of the form P,_j, which might not be defined, if we are only
interested in 92 P3(y) and §*P,(y). We obtain for 7 = 3, that is for cubic polynomials h, (see
equation (3.53)

§°Psy(y) = —2(P3(y, y, do2){y, d12) + P3(y,y, d12)(y, d»2))

27

+ 92 P3 (y7 P3(ya 7dlz) aP3<y7 '7d22)T>
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27 T T
- §P3 (ya Y, P3 (P3(y7 ) dQZ)T7 ) dlz) + PS <P3(ya ) dlz)Ta ) dQZ) )

1
— gpg(y) <d12’, dQZ)

27

+ Z (Pg (y, dlz, P3 (P3<y,y, ')T, . dQZ)T)) + P3 (P3(y,y, ')T, Pg(y7 °, dQZ)T7 d12’>

+ P (y, doz, P3 (P3(y,y, S dlz)T)) + Py (Pg(y,y, N Py(y, -, di2)T, ng))
+ 6P3(y, dlBOy, ngOy)
+9 (Ps (v, diBoy, Ps(y,,d22)") + Ps (v, d2Boy, Ps(y, -, d12)"))

2
— §<?J, Y)((d1z, do Boy) + (d2z, d1 Boy))
+3Ps(y, y, ay)

3
— §P3 (ya Y, (doBoy, d1 By)" + (d1 Boy, dzBO'>T)

- 9 (P3 (y7 Y, P3(d2Bo?/7 K dIZ)T) + Ps <y7 Y, P3(d1Boy, K dZZ)T)

4

+P5 (y,, Ps(y, daBo-,d12)") + Py (y,y, Ps(y, i By, d>2)"))

+ Z (—Pg (y, Ps(y,y,dyBo-)T, dlz) + P (Pg(y, y, )", dyByy, dlz>

—P; (yv Ps(y,y, dlBO')T7 d22> + Ps (P3<y7 Y, ‘)Ta dy By, d22’)) ) (3.55)

and for 7 = 4, that is for quartic polynomials h (see equations (3.53]) and ({3.54))),

FPy(y) =~ (P, d2) (s o) + Pyl o)y o2)
+ 18 <P4 (y, y, Py (y, -, do2)" d12>
+ Py (y,y, Py (v, di2)", dp2)
+P, (y, Ps(y,y,)" , dyz, d22>)

27
+ ?P3 (y7 P3(ya ) dlz)Ta P3(y7 “y dQZ)T>

27 T T
- §P3 <y7 Y, P3 <P3(y) ) d2z)T’ ) dlz) + P3 (P3<y7 ) dlz)Tu ) dQZ> )
1
— 5P3(y)<dlz’ d22>
27
+ Z <P3 (% dlzv P3 (P3(y7 Y, '>T7 ) d2Z>T)) + P3 (P3(y7 Y, ')Ta P3(y7 ) d2Z)T7 dlz)

+P5 (y,doz, Py (Po(y, 0, )" dr2)") ) + Py (Ps(y, 9, )", Pa(y, -, diz)", do2))
+ 12(Py(y, y, d2Boy, d1z) + Pu(y, y, d1 Boy, d22))
+ 6P5(y, dy Boy, da Boy)
+9 (P3 (y, dy Boy, Ps(y, -, dgz)T> + Ps (y, dyBoy, Ps(y, -, dlz)T>)
— (v, 9) ({12, d2Boy) + (d2z, d1 Boy))
+3P3(y,y, ay)

3
— §P3 (?/, Y, (doBoy, d1 By)" + (d1 Boy, dzBO'>T)

- i (P:s (ya y, Ps(d2Byy, -, dlz)T) + P (%ya Ps(d1Boy, -, d22)T>



54 3 Standard form and curvature of generalized projective special real manifolds

+ Py (y, y, P3(y, d2By-, dlz)T) + Py (y,y, Ps3(y, dy By, sz)T))

+ Z (—Ps (y, Ps(y,y,daBy-)", dlz) + Py (P;;(y, y,)", dyBoy, d12>

—Ps (y, Py(y,y,d1Bo-)", daz) + Ps (Pa(y,y,-)", di Boy, do2)) , (3.56)

FPiy) = —3 0, 0) {0, 2} (0, o)

- (P4(y7 v,Y, dzZ) <y7 d12’> + P4(y7 v, Y, dlz) <y7 d22>)
9
+ Z (PS (y7 Y, P3<y7 ) dQZ)T) <y7 d12’> + P3 (,% Y, P3<y7 ) dlz)T) <y7 d22>)

+ ]-2P4 <y7 Y, P3(y7 ) dlz)T) P3(y7 ) d2Z>T)
— 2P4(y) <d12, ng)

+ 227P4 (y,y, Y, P3 (Pg(y, . dgz)T, . d12> + P3 (Pg(y, . dlz)T, . ng))

+ 24-F)4 (y7 y,Y, P4(y7 ) dlzv d22>T)
3
+ §(P3(?/, Y, ngoy)(y, d12> + P3(Z/> Y, dlBoy)@, d22>>

+ 18 (Py (9. y, & Boy. Pa(y, -, d22)") + Pa (. y, doBoy, Pa(y, -, dr2)"))
+ 12Py(y,y, d1 Boy, d2 Boy)

1
+ §P3(?/)(<d12, da Boy) + (daz, d1 Boy))

+ 4Py(y,y, y, ay)
+ 3P, (y7 Yy, y, P3(daBoy, -, dlz)T + Ps(y, d2 By, dIZ)T

+Py(diBoy, -, dz2)" + Py(y, d By, dp2)")
— 2P (ya Y, y, (d2Boy, dlBO'>T + (d1Boy, d2B0'>T) . (3.57)
]

This would enable us to calculate the second derivative of the scalar curvature Sy of
a connected GPSR manifold (H, g5c) with relatively low effort in comparison with a direct
calculation which would require calculating the 4-jet of the metric g5 at (y) = (3) € H. As
a motivation why one really does not want to do this, the interested reader is encouraged to
try calculating the 4th derivative of g5 at () = (§) € H of her or his favourite connected
GPSR manifold 3 without the help of a computer algebra system.

One application of the first variation of the P.’s as defined in Definition [3.27is the study
of homogeneous spaces that are CCGPSR manifolds. We will derive a sufficient condition
for a connected GPSR manifold H C {h = 1} to be a homogeneous space with respect to
the action of G%, that is the identity-component of the automorphism group G" of h, cf.

Definition [3.3]

Proposition 3.34 (Sufficient condition for homogeneity of CCGPSR manifolds). Let H C
{h=1}, (}) € H, h of the form (3.13), that is

h=a2" — 2" 2{y,y) + Z :ET_kPk(y),
k=3

be a mazimal connected GPSR manifold of dimension n > 1. Let 6Py(y) : R® — Sym" (R?)*
be as in equation depending on dBy € Lin (R",s0(n)) (3.28), cf. Proposition [3.26
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Then the connected component containing the neutral element of the automorphism group
of h, that is Gf, acts transitively on 3 if and only if there exists a choice for dBy €
Lin (R",s0(n)), such that §Py(y) = 0 for all 3 < k < 7. Furthermore, each of the latter
two equivalent statements imply that H is a CCGPSR manifold.

Proof. By Lemma m, the action G x H — JH is well defined. Assume that G acts
transitively on the considered maximally extended GPSR manifold 5 C {h = 1}. Then
H is, in particular, a CCGPSR manifold. For p = () € H let M(p) € Gb, such that
M(p)-(§) = p. We will show that M (p) is necessarily of the form (3.7). It is clear that M (p)

is of the form .
Dz v
M p—
(») < py | W(p) )

for some v, € R" and W (p) € Mat(n x n,R). We calculate

G- )= (§5) 2 (45). ()
+ (terms of lower order in z).

Since by assumption h = h o M(p) it follows that
Ozhy(vp, y) + Oyh,(W(p)y) =0 (3.58)

and

o (35)-(55) =0 o
Suppose that W(p) & GL(n). Then there exists g € R" \ {0}, such that W(p)y = 0. Then
by

207hy (v, 7)" = = (7,7) < 0.

This in particular shows that (v,,7) # 0. But then equation cannot be fulfilled since
Oyh,(W(p)y) = 0yh,(0) = 0 and O,hlsc > 0 is true since H is a CCGPSR manifold, cf.
proof of Proposition [3.18] equation (3.8). We deduce that W(p) € GL(n). Hence, setting

v, = W(p)Tv in equation (3.58)) implies that v, = 8yh’ . This shows that

- 35,
_ Pz | — % p o W<p)
Mip) = ( Py | W(p) )

is of the form as claimed. The action G x H — 3 might not be simply transitive,
but near p = (§) € H, that is on some open neighbourhood U C K of (}), we can choose
a smooth branch of the possible maps W : U — GL(n) by the implicit function theorem.
Then, using the diffeomorphism ® : dom(3) — H (3.14), M o ® is locally on ®~(U) a valid
choice for A as in equation and d(W o @) must fulfil the same equation as € in
in the proof of Proposition [3.260 We now use the equality

h(W(®(2)) - (y)) = h((y))

for all z € ®1(U) to conclude with the definition of the §P;’s that there exists a
linear map dBy € Lin(R"™, so0(n)), such that the corresponding functions dP;(y) : R" —
Sym” ((R™)*) identically vanish for all y € R* and all 3 < k < 7.

Now assume that there exists dBy € Lin(R",s0(n)), such that §P(y) = 0 for all 3 <
k < 7. Consider the corresponding map A : ®~ (V) — GL(n + 1) (3.23) for any open
neighbourhood V' C H of the point (}) € H so that A is defined, with

(0]
o = < dz | $Ps(-,-,dz)" + dBy ) (3.60)
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cf. equations (3.28) and ([3.26). Then 0P (y) = 0 for all 3 < k < 7 implies that for all
v € Todom(H) = R”

dhzy (dAo(v) - (y)) =0,
where dAg(v) denotes the gl(n + 1)-valued 1-form dA at z = 0 applied to v € Tydom(H).
With

a; ‘= dflo (821)

for 1 < i < n, the set of matrices {ay,...,a,} is linearly independent. Furthermore
{a1,...,a,} C T'G" = T1Gh, see (3.2). Let p: G — H, u(a) = a- (}), denote the
action of G§ on the point ({) € H. Then

dpa(a;) = 0y,
for all 1 < ¢ < n. Hence, duy : TBG’(} — T((l))ﬂ'f is surjective (recall that with h of the

form (3.12)), we view T(é)f}f as the vector subspace {(9) | v € R"} C R™"!). This shows

that there exists an open subset U C H, such that (}) € U and U C G} - (§). We can
without loss of generality assume that U is diffeomorphic to the open ball B;(0) C R™ with
radius 1 in (R", (-,-)) and that 9U is diffeomorphic to S"' = {v € R" | ||v|| = 1}. Suppose
that the orbit GJ - (}) C H is not open in H. Then the set H N 5)(G8 : ((1))) N (Gg : ((1)))
is non-empty. Let ¢ € H N0 (Gg . (5)) N (Gg’ : (6)) and let a(q) € G}, such that ¢ =

a(q) - (§). Since ¢ is by assumption an element of 0 (G’g : ((1))) and a(q) acts via linear

transformations on R"*! restricted to H, there must exist p € U, such that a(q)p = g,
because otherwise ¢ € a(q) - OU and ¢ € a(q) - U would imply that ¢ & 0 (G’g : ((1))) But
we have by definition of G} that G& C GL(n + 1) and, hence, (§) = a(q)"'q = p, this is
a contradiction to p € OU. We conclude that the orbit G - () C H is open in H. Since
H c R is maximally extended and being a hyperbolic point of h is an open condition
in R™*! it follows that H N OH = (. This shows that the same also holds for the relative
to H open orbit G - (}), i.e. that (G{j : ((1))) no (Gg : ((1])) = () where the boundary of
Gh - () is relative to R™". This implies that G} - (§) is an n-dimensional submanifold of

R™. Furthermore, (Gg‘ (8, gg{|Gg.( 1 )) is also by construction a homogeneous Riemannian
manifold and, hence, in particular geodesically complete (see Remark|3.10]). This implies that
Gh - (§) € R™! is closed, which can be seen the following way. Suppose that G§ - (}) is
not closed in R™*! but geodesically complete with respect to the restriction of gi and let p,

be a point in the boundary 0 (Gg . ((1))) For any other point p € G - (}) consider a curve

v :[0,1) — GE-(§) with v(0) = p and t_gr?d'y(t) = po. Since G§ - () c H c {h =1}
and h - R — R, we conclude that 1 = lim _h(4(t)) = h< lim y(t)) — h(po). Since

t—1,1<1
gx = _%82h|TJ{XT}( it in particular follows from the fact that h(py) = 1 and that h is
a homogeneous polynomial of homogeneity-degree 7 that gy can be smoothly extended to
po € G - (§). This implies

t
[ gs(3(2), 7(2))dt < oo
0

This is a contradiction to the geodesic completeness of (Gg (8, gg{|Gg,< 1 )) by Lemma 2.20]

By assumption, H C R™"! is maximally extended, and we have shown that G - (§) C R™"
is closed. We deduce that H = G% - ({}) and that the action of GI on 3 is, in fact, transitive.
In particular, H is a CCGPSR manifold. ]
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It is however not true in general that the Lie group G corresponding to a homogeneous
CCGPSR manifold H C {h = 1} acts transitively on H. We will prove that statement in
the next lemma.

Lemma 3.35 (Homogeneity of CCGPSR curves). Let H C {h = 1} be a CCGPSR curve, h
of homogeneity-degree T > 3. Then H is a homogeneous space.

Proof. Every one-dimensional CCGPSR manifold 3 is complete, independent of the homo-
geneity-degree 7 of h, cf. [CNS| Thm.2.9]. Furthermore, H is diffeomorphic to R since
H C R? is closed by assumption. We now choose an arbitrary non-constant maximal unit-
speed geodesic v : R — H of (K, gg¢), which is by the connectedness of H automatically a
diffeomorphism with the property

v gse = dt’.
This shows that (3, gg) is isometric to (R, dt?), which is in particular a Lie group with bi-

invariant metric. Hence, H is a homogeneous space when viewed as a Riemannian manifold.
O

Remark 3.36 (Examples of CCGPSR curves that do not fulfil § P, = O-criterion, 7 = 3 and
7 = 4). One can check that for all 7 € {3,4}, the homogeneous polynomial h : R* — R,
h =27 — 27 2y?, defines a CCPSR curve for 7 = 3 and a quartic CCGPSR curve for 7 = 4,
in each case given by the connected component of {h = 1} C R? that contains the point
() = (§)- In both cases one can now verify that 6 P5(y) # 0.

Open problem 3.37 (“Non-linear” homogeneous CCGPSR manifolds). Are there any ho-
mogeneous CCGPSR manifolds H C {h = 1} of dimension dim(H) > 2, such that the
corresponding connected component that contains the neutral element of the automorphism
group of h, that is Gf, does not act transitively on H? Note that Proposition imme-
diately implies that then the orbits of the action of G on H must everywhere locally be of
dimension smaller than dim(3).

The above open problem |3.37]is in particular interesting for homogeneous connected PSR
manifolds H C {h = 1} which have been classified under the assumption that G} acts
transitively on H in [DV]. An open problem related to the above open problem is the
following question.

Open problem 3.38 (CCGPSR manifolds of constant scalar curvature). Is it possible to
find a classification of CCGPSR manifolds H C {h = 1} of arbitrary dimension n € N and
arbitrary homogeneity-degree T > 3 of h that have constant scalar curvature Ssc? Is such a
classification possible for some fized T > 37 Are there such CCGPSR manifolds that are not
homogeneous spaces?

If one manages to classify CCGPSR manifolds with with constant scalar curvature, at least
corresponding to some specific degree of homogeneity 7 > 3 of the respective polynomials
h, one would have all possible candidates that might solve the open problem for that
specific degree 7.
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4 Curvature bounds of complete projective special real
manifolds

In this section we will study curvature properties of CCPSR manifolds. We will use the
formulas for the curvature tensors obtained in Section [3l Recall that we can assume without
loss of generality that the defining cubic polynomial A : R**!' — R of an n-dimensional
CCPSR manifold H C {h = 1} is of the form

h=2*—x(y,y) + Ps(y)

and that J is precisely the connected component of {h = 1} containing the point (}) € R"*,
cf. Proposition and equation (3.12)). In the case of connected PSR manifolds, the cubic
polynomial P; : R®™ — R is never unique:

Lemma 4.1 (Non-uniqueness of P for connected PSR manifolds). The cubic polynomial Py
in equation is never unique for any n-dimensional connected PSR manifold, n > 1.

Proof. Assume Ps(y) # 0. then the linear transformation R"** 3 (§) — (%) € R*!
preserves the form of h and maps (}) to (§). The induced map for the cubic polynomial
h maps P3 to —P3, which are not equal since P; does not identically vanish.

Next, assume that Ps(y) = 0. It suffices to show that dPs(y) # 0, cf. Definition [3.29]
We obtain 6P3(y) = —2(y,y)(y,dz) # 0. Thus, if we move the reference point in H away
from (}) € H for which the procedure of Proposition was applied and calculate the
corresponding form of h, we will always change P;(y) in a non-trivial way if the initial
P3(y) does vanish identically. O

We will now construct bounds for the different curvature tensors for CCPSR manifolds.
To do so, we will investigate for every such manifold and corresponding cubic polynomial
h the properties of the associated cubic tensors Ps(-,-,-). It will turn out that we can find
bounds for that tensor independent of the CCPSR manifold or any of the other choices
involved in determining equation (3.12) (i.e. the choice of the point p € H for which to
calculate the standard form of h and the freedom of transforming the y-coordinates in
the latter equation via transformations in O(n), see proof of Proposition .

Lemma 4.2. Let H C {h = 1} be a CCPSR manifold, (}) = ({) € H, and h = 23 —
z(y,y) + Ps(y) as in equation (3.19). Then

Vie{z R (2,2 =1}: |B(3)] < 3\2/3 (4.1)

Proof. Consider f(t) := 8(t2) = 1—t>+t3P3(%), with 3 : R” — R as in equation (3.22)). Since
dom(H) is precompact (Lemma , f must have at least one positive and one negative real
root. We will determine the range for P5(Z) such that this holds. If P3(2) =0, f(t) = 0 if

and only if t = +1, so in this case f(t) has exactly one positive and one negative real root.
In the following assume that P3(2) # 0. The first and second derivative of f are

f(t) = =2t +3t2P5(2), f(t) = =2+ 6tPs(2).

Hence, f(t) =0 if and only if t = 0 or t = 3P:®. We obtain f(0) = —2 and f(ﬁ) = 2.
This implies that f(¢) has a local maximum at ¢ = 0 and a local minimum at ¢ = ?3(5. Now

assume P3(Z) > 0. In that case, ﬁ > 0 and tgr_n f(t) = —o0. Since f(0) = 1, this implies
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that f(¢) has at least one negative real root (one can show that it is the only negative real

root by showing that f(t) > 0 for all t < 0 if P5(2) > 0). We have seen that f(t) attains its
unique local minimum at t = ﬁ. Furthermore f(0) = 0, and tli)m f(t) = oo. Hence, f(t)

has a positive real root if and only if

2 4 ) 5

For P3(2) < 0 we define f(t) :=1—t* + t3(—(2)

~—

. Similarly as for P3(Z) we then obtain

2
—P(2) < —=.
3( ) — 3\/5
Summarising, we have shown that |P3(2)| < 3—\2/3 O

Note that the bounds for P3(2), z € {z € R" | (2,2) = 1}, are independent of the
CCPSR manifold and of its dimension. We will later in this thesis show that these bounds
are in fact sharp in all dimensions, see Theorem [5.600 An immediate consequence of the
calculations in Lemma 4.2 is the following

Corollary 4.3. Let h : R — R, h = 2° — z(y,y) + P3(y), be a cubic homogeneous
polynomial and let 3 denote the connected component of {h = 1} C R"™! that contains the

point () = (§). Then the connected component of the set

{h>01n{(}) eR™ | z eR"} CR™
which contains the point (§) = (§) coincided| with the set
(Rso-3) N {(1) eR™ | z € R"} C R

and is precompact if and only if |I|£1Ha:X1 |P3(z)] < %

Note that it follows from Lemma that the connected component of the set {h >
0} N {(l) e R | 2 € R"} that contains the point (y) = () being pre-compact is a
necessary condition for the connected component of {h = 1} that contains (y) = ({)
to be a CCPSR manifold. Also note that if the connected component H C {h = 1}
that contains the point (y) = (§) is a CCPSR manifold, then the connected component
of the set {h > 0} N {(1) € R""!' | 2 € R"} that contains the point (3) = (}), the set
(Rog - H)N {(L) e R"™ | 2 € R"}, and {1} x dom(HK) coincide. One could ask if we can
find similar bounds for CCGPSR manifolds of homogeneity-degree 7 > 4, but unfortunately
this is in general not true as we will see in Lemma [7.9 Lemma [£.2] also means that we
have determined positive and negative bounds for P3(Z), Z € {z € R" | (2,z) = 1}, that
guaranty that the corresponding hypersurface which is the connected component of {h = 1}
containing the point () € R" is closed. However, it does a priori not give us information
about hyperbolicity when we are studying some specific connected PSR manifold and want
to know whether it is a CCPSR manifold or not. It will later turn out that this condition
also shows hyperbolicity of all points contained in the connected component of {h = 1} that
contains the point (§) € R"™! see Theorem

Next, we will use Lemma to determine upper and lower positive bounds for the norm
of points in the boundary of dom(H) C R”, that is ddom(H), corresponding to a CCPSR
manifold H.

5This holds true by definition.
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Lemma 4.4. In the setting of Lemma assume without loss of generality that P3(Z) > 0.
Let Np, ) be the biggest negative real root of f(t) and P, be the smallest positive real
root of f(t), where f(t) is associated to a CCPSR manifold H as in the previous lemma and

|1P3(2)] < 3\2/5. Then

V3
1= Np = -5

1< :PPa@ < \/g

Proof. Let 0 < A< B < 3—\2@, and define

falt) =12+ 34, fp(t):=1—-t*+*B.

fa(t) and fp(t) have a unique negative real root N4 and Np, respectively. Furthermore,
N4 < Np. To see this, consider

fa(t) = =2t +3t2A,  fgz(t) = =2t + 3t*B.
This implies that
VE<0:  fa(t) >0, fa(t) >0.

Since  lim fa(t) = —o0, Jim fB(t) = —oo, and fa(0) = fp(0) = 1 this implies that N4
and Np exist and are the unique negative real roots of f4(t), respectively fg(t). We further
obtain

BNy =1-— Ni + NiB
= fa(Na) + (B — AN},
= (B— AN <0.

Using fpli<o > 0 this shows that
NB > NA. (42)

We apply this result to Npg@ and obtain

V3

N 2 can easily be found by guessing or using a computer algebra system.
3vV3

Now let P4 and Pp be the smallest positive root of f4(t) and fp(t), respectively. Then
P4 < Pp. To see this, note that the existence of P, and Pp is ensured by the estimate (4.1])
in Lemma 4.2l We obtain

fa(Pp) =1- P +PpA
= f5(Ps) + (A — B)P},
= (A-B)P% <0.

Since f4(0) = 1 this shows that f4(¢) has a positive real root that is smaller than Pg, and
in particular that
Py < Pp. (43)
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Again, we apply this result to Pp,z) and obtain
1:9’053’&@3?%:‘@

In order to show that Tif = /3, consider f \7( ) =147 2 2 . We obtain f (\/_) =0,
3v3 3V3

f%(\/g) =0, and f (\/_) = 2. Hence, f ( ) has a local minimum at t = 7 Further-
3v3

more, f (\/_—i— s) = 4s+ \[s and, hence, f (\/_—1— s) > 0 for all s > 0. Summarising this
shows that P > =+/3is the only and in partlcular smallest positive real root of f7( ). O
3V3

3V3

Lemma [4.4] implies the following result for the Euclidean norm of points in ddom(X).

Corollary 4.5. For a CCPSR manifold 3 with the assumptions from Lemmal[{.3, and cor-
responding dom(H) as in Definition the following holds true:

vz € ddom (%) : \f < |zl < V3, (4.4)

where || - || denotes the norm with respect to the standard Euclidean scalar product (-,-) on

R™ in the y-coordinates from equation .

Hence, with the notation
B (0) = {z € R"| (z,2) <1}

for 7 > 0, we have the inclusions B,5(0) C dom(H) C B ;5(0) for all CCPSR manifolds
H. In particular this is also independeznt of the point chosen in the process (see Proposition
of obtaining A in the form for any given CCPSR manifold H C {h = 1}.
Note however that the inclusion B \/5(0) C dom(H) might not be compact in the sense that
0B 5 (0) N ddom(H) might not be empty. If we choose any 0 < R < f , Br(0) will always
be czompactly embedded via the inclusion in dom (%) since the IHCIUSIOD Br(0) C B g(()) is

a compact embedding.
Another consequence of Lemma is the following characterisation of CCPSR manifolds
that are singular at infinity, cf. Definition |3.16]

Lemma 4.6. Let X C {h = 1} be an n > 1-dimensional CCPSR manifold and assume
without loss of generality that h = x® — x{y,y) + Ps(y) as in and () € H. Then H
s singular at infinity in the sense of Definition|3.16 if and only if |{nHaL_Xl |P3(2)| = 3—\2@, where

| - || is the Euclidean norm induced by the choice of the y-coordinates.

Proof. First note that with our assumptions for H and h, O(Rsq - H) \ {0} = Roo - ({1} x
ddom(H)). Since dh, is homogeneous of degree 2 in p, it thus suﬁices to show that there exists

az € ddom(H), such that dh( 1y = 0 if and only if ‘1‘rn|ax |P3(2)] = +%=. In Lemma|3.25(we have

shown that for Z € ddom(¥H), dh(i) = 0 is equivalent to 5" ((%)) = a( ) = 0, which is by the

Euler identity for homogeneous functions equivalent to dfz(z) = 0. Hence, H is singular at
infinity if and only if there exists a point Z € {||z]| = 1}, such that the 1-dimensional CCPSR
manifold H?* defined by restricting A to the 2-dimensional linear subspace

b oo (1), ()} e
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is singular at infinity. More precisely, H is the connected component of B
{hz = — xt? + 3 P(Z) = 1} that contains the point (%) = (}) and {1} x dom (9’(2> =

EN ({1} x dom(H)). The corresponding function 7 as in (3.22) for h* is given by

~

B (t) = B(t2) =1 — 2 + 1 P3(3).

Let ¢, and ¢_ denote the smallest positive root and the biggest negative root of Bg(t),

respectively. Then ddom (5{2) = {t z,t_z}. We have shown in Lemma (with the
notation () = fip,(t)) that 9,6°(t,) = 0 or 9,B°(t-) = 0 if |P3(2)] = 325. It remains
to show that |P3(2)| < 32% implies that 8,3(t) does not vanish at neither ¢, nor ¢_. To
do that, assume without loss of generality P3(Z) > 0. For P3(Z) < 0 we can simply use the
reflection t — —t and consider 37(—t). For P3(Z) = 0 it is easy to check that 8,562(@[) = F2.
Now assume P3(Z) > 0. We have

D5 (1) = t(—2 + 3tPy(2)),

hence atﬁg(t_) > 0 is always true and 8t52(t+) = 0 if and only if t, = %. One quickly
finds that 8%(t,) = 0 and P3(2) > 0 if and only if P3(2) = % This shows that 9,57

vanishes at a point z € dom (J-C;) = {t,2,t_2} (which is equivalent to H* being singular
at infinity) if and only if |P3(2)| = % Summarising, we have shown that there exists a
point zZ € ddom(H), such that dfz(Z) = 0 if and only if there exists a point z € ddom(H),
such that ‘P3 (ﬁ)‘ = 3% In Lemma we have shown that this is precisely the maximal

possible value for |P3(z)| on {||z]| = 1} that does not exclude the property of H being closed
in R"*. We conclude that |I|£1Ha>§ |Ps3(2)| = % if and only if H is singular at infinity. O
Remark 4.7. There exist a CCPSR manifold of dimension n > 1 which is singular at
infinity for all n > 1. For examples consider A) and a) in Theorem forn =1and n =2,
respectively, and for n > 3 see Proposition [6.6l For a general description of the set of all
n-dimensional singular-at-infinity CCPSR manifolds see Proposition [5.8|.

We will now determine an estimate for the bilinear form Ps(z,-,-) for all z € dom(¥).
It will use the hyperbolicity property of the CCPSR manifold H, which we first need to
reformulate.

Lemma 4.8. Let h: R — R be a cubic homogeneous polynomial of the form , that
ish=x3—x(y,y) + Ps(y), and let H C {h = 1} be the connected component of the level set
{h =1} C R™" that contains the point (3) = ({). Further assume that H is a hypersurface
in R, Then H is a CCPSR manifold if and only if

V(1) eRag-H: 3(dz,dz) —9Ps(2,dz, dz) + (z,dz)* > 0. (4.5)

Proof. Suppose that H is a CCPSR manifold. Then H fulfils the assumptions of this lemma
and (Rso-3) N {(}) € R*™ | 2 € R"} coincides with dom(H), cf. Definition [3.22] We
will show that condition follows from the hyperbolicity of each point in . For each
p € H C R™™| the tangent space T,H viewed as a the hyperplane ker(dh,) C R™™ and the
line Rp € R™"! are orthogonal with respect to the Lorenzian inner product —9%h,. Recall
that —9*h, being Lorenzian precisely means that p is a hyperbolic point, see Definition m
Since —9%h,, is homogeneous of degree 7 — 2 > 1 in p, it follows that the property that 3

consists only of hyperbolic points is equivalent to the statement that —82h( 1) is Lorenzian for
z
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all z € dom(H). Since —th((l)) is always Lorenzian if h is of the form ([3.12)), —82h< ) being

Lorenzian on dom(¥H) is equivalent to det (—GQh( 1)> < 0 for all z € dom(H). Consider

2 o —6 2ZT
det( 0 h(i)) _det< 2: [ 21— 6P5(z, -, -) )

— det —6 227
S0 [21—6R(z, ) + 22 @ (2, )
n+1

= — oy det (31— 9Ps(z, ) + 2@ (2,)). (4.6)

Since (31 —9P5(z,-,) +2® (z,-))|,_, = 31, it follows that det (—82h<1)) < 0 for all z €

dom(XH) is equivalent to 3(dz,dz) — 9Ps(z,dz,dz) + (z,dz)*> > 0 for all z € dom(H).

For the other direction, the conditions that H is a connected component of {h = 1} implies
that it is closed as a subset of R**!. Furthermore, J is a hypersurface by assumption. With
the same argument as before for the homogeneity of —d?h,, in p and the same calculations
as above, it follows that H consists only of hyperbolic points. H is thus a connected and
also closed PSR manifold, and the set prg. (Rso - H) N {(!) € R"* | 2 € R"}) and dom(K)
coincide. [

We will use the results from Corollary [£.5and Lemma [4.8 to find upper and lower bounds
of the eigenvalues of P;(z,dz,dz) (when viewed as a symmetric matrix) for z € dom(%H) that
are valid for all CCPSR manifolds 3 (and thus also for non-connected closed PSR manifolds).

Proposition 4.9 (Bounds for eigenvalues of Ps(z,dz,dz) for CCPSR manifolds). Let H C
{h =1} C R"! be an n-dimensional CCPSR manifold, (}) € H, and h = 2*—z(y, y)+Ps(y),

cf. Proposition[3.18. Then
2
Vz € dom(H) : —2(dz,dz) < Ps(z,dz,dz) < §<dz,dz>. (4.7)

This is equivalent to the statement that for all z € dom(H), the eigenvalues A € R of the rep-
resentation matriz of the symmetric bilinear form P3(z,dz,dz) induced by the z-coordinates
fulfil —% <A< % Furthermore, the upper bound in is sharp in the sense that for all
n > 1 there exists a CCPSR manifold 3 and a point Z, such that the representation matrix
of Ps(2,dz,dz) has one eigenvalue A = %
Proof. We start with the upper bound in . Equation in Lemma and equation
in Corollary imply for all z € dom(H)

3(dz,dz) + (z,dz)* _ 3(dz,dz) + (z,2)(dz,dz) 2

Ps(z,dz,dz) < 5 < 5 < §<dz,dz>. (4.8)
Obtaining the alleged lower bound in equation (4.7)) for Ps(z,dz, dz) needs more work. A
“naive” lower bound can be obtained the following way. For all Z € dom(H) with ||Z|| = §

(recall that B5(0) C dom(H) is always true, see Corollary , the biggest positive eigen-

value of the representation matrix of Ps(Z,dz,dz) is bound from above by % Using that

Py(z,dz,dz) is linear in z, we obtain that the smallest eigenvalue of the representation ma-

trix of P3(—2%,dz,dz) is bounded from below by —3. Since Z € 9B5(0) was arbitrary, we
2

obtain for all Z € OB s(0) the estimate P3(Z,dz,dz) > —3(dz,dz). Since for all CCPSR
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manifolds with the assumptions of this lemma dom(JH) C B ;5(0), we can use the linear-
ity of P3(z,dz,dz) in z again to conclude that for all z € dom(JH) we have the estimate
P3(z,dz,dz) > —3(dz,dz). This bound is worse than —32(dz, dz), which we will derive now.

The estimate (4.8]) shows that for all 2 € ddom(H), every positive eigenvalue A, of the
representation matrix of Ps(Z,dz,dz) fulfils

3 M

A, < SHIEIE (4.9)
9

Fix 2 € 0dom(H) C R? and let A\_ be a negative eigenvalue of the representation matrix of

P3(Z,dz,dz). The linearity of P3(z,dz,dz) in z implies that —A_ is a positive eigenvalue of the

representation matrix of P3(—Z,dz,dz). However, —Z might not be an element of dom(H).

In fact, —% € dom(H) if and only if [|2]| < 1, which holds if and only if Ps (%) € |~3%,0]
(cf. Lemma [1.2] and see Figure [2)).
Figure 2: The set dom(H) C R? corresponding to Ps ((21,22)7) = —ﬁzi” Observe for example that

for all ¥ € dom(H) of the form ? = (21,0)7, z; > 0, we have P; <ﬁ) € [—%,0} and one can see that
—Z € dom(H).

For such a given # € ddom () we want to find £ > 0, such that £(—%) € ddom(H). When
we have determined said £, the linearity of Ps(z,dz, dz) in z implies that £(—\_) is a positive
cigenvalue of the representation matrix of Ps(f(—Z),dz,dz). Using the upper bound (4.9),
we can thus estimate

20 312 72 ¥|2
<3+t||z|| <3—va||,2|| _.p

f(=A)<— " & -

<20 <2 (EN} (4.10)

Our asserted lower bound —% for A_ is now obtained via showing that the function F' :

[‘/75, \/3] — R.q defined in (4.10)) is continuous and by determining its maximal value, where

we recall that the elements in the closed interval [‘/73, \/3} are precisely all possible values for
||Z]] when considering all possible n-dimensional CCPSR manifolds H (cf. Corollary [4.5)). To
find a closed formula for £ depending on ||#||, consider the function f(t) = 3 (ti) =1-t*+

1=l
Py (ﬁ) t3 (compare with equation (3.22)) and assume that f(||Z]|) = 0. By assumption, 3
is a CCPSR manifold, implying that dom(JH) C R™ is precompact and, hence, f(¢) must have
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at least one more negative real root in addition to its root ¢t = ||Z]| > 0. Hence, (t—||Z||) | f(t)
and we obtain with a,b € R

0 = = 12 (

+at + bt2>

=1+ <—a|\é|| >t—|—(a—b|| )t + ot?.

T H3 Note that this determines P; (Héll) depending

on ||Z]|, and as we would expect Py (II ”) = ;5 if|1Z] = V3, and Pj ( IZII) = ;5 if|Z] = %
(see Lemma and Corollary [4.5)). We deﬁne

fiy =40 1 _ %t+<¥ - )ﬁ.

11| I -1 I 4 Il 11=11

In order to determine # in dependence of ||%|| we need to find the roots of f(t), for (at least)
one of the roots coincides with #(—||%||). We will differentiate between the three cases || 2| = 1,

12|l € (1, \/5], and ||Z|| € [?, 1). We will also use these results to show that F is continuous.

‘ -

This implies that a = B ”2 and b =

Ni

Case 1: ||| = 1. N
In that case f(t) =1 —t2, so the roots of f(t) are tx = 41 and the root of f(t) = —1 —t is
t = —1. Hence, { = 1 and ‘D thus yields the estimate —A_ < % = F(1).

Case 2: ||| € [, V3] \ {1}.

In this case,

flte) =0 & ti=

120 [z = 3)IE)*
2(12)* = 1) Allz)> = 1)?

Note that the sign of ||Z||* — 1 depends on whether ||Z]| < 1 or ||| > 1. We will treat these
cases separately.

Case 2.1: ||Z] € (1,\/5}.

In this case, the plot of f(t) is of the form as in Figure (except when ||%|| = v/3, in which case
f(t) has the unique positive double root v/3). Also ||Z||> — 1 > 0 and, hence, t_ = {(—||Z|)).
We obtain

R Jeuérr?—muéw
CTAEE-1) T\ A(EE -1
N e
E(EEE (1 izl -3).
{

1 X2 __
- =T (VAR 3).

and, hence,

P = ﬂHV—NVW+3+VMMP—%MMV—HHP+$

18(]2]]* = 1)?
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0.5

/ | ! \\2/ é
-0.51

-11

Figure 3: A typical plot of f(t). Here, Ps (H%I) =
root of f(t), that is £(—||||), and ¢_ coincide in Case

. 3{, so that ||Z]| € ( 7) The unique negative

4
5
2.1.

It is clear that F |(1 V3] is continuous and furthermore smooth. Using L’Hospital’s rule for

limits twice at ||Z|| = 1 yields
F(IZ]) =

IIZ\Hl || [>1
which coincides with F(1) determined in Case 1. This means that F' is continuous from the
right at ||Z]] = 1. Next we will show that F\<l V3] attains its maximum, namely at ||?|| = v/3.

To prove that we show that > (. The first derivative of F' is given by

8IIH( V3)

OF (121 = 1Z]] (SH%II“— 18||Z]1* + 9 + (/4] £||? —3)
| 2| 9,/4(212 = 3(]|%|2 — 1)? ’

and ||%||—1 > 0 implies that in order to solve -2 SiEl L (|IZ]]) = 0 with the restriction ||2|| € (1 \/_)

we only need to solve 8||Z||* — 18||Z||* + 9 + /4||Z]|> — 3 = 0. Using MAPLE or any other

computer algebra system one finds that the latter equation has no solutions in (1, \/g) It
1+v3
2

thus suffices check the sign of 8||zH (1v3) at one point in the interval, say , to determine

its global sign. We calculate

OF (1++/3\ 4y1+2V3+2V/3+2 ~0
0|zl N

2 27

We conclude that

sup F(|Z|) = F (V3 :5
Hé||e(11?\/§] (121 ( ) 5

Case 2.2: ||z € [2,1).

This case works similarly to Case 2.1. Here, f(t) has the shape as in Figure [4] (except for the

\[, where f(t) has the unique negative double root ?) In this case, f(t) has,

except if ||Z]| = ‘2[, precisely two negative roots, of which we need to consider the bigger one.

Since ||2]|* — 1 < 0, we see that this is

IZ1] T

case ||Z]| =
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LS
t ||
3 \;/ 0 0

-0.57

-11

Figure 4: A plot of f(t) with P (Hzi\l) =-% 3\2/57 so that ||Z]| € (‘f ) In Case 2.2, the biggest negative

root of f(t) which is £(—||Z||) by construction, and ¢, coincide.

so that . = £(—||2||) has the form

o 1 S li~no

We see that formally the function F' for this case and F' in Case 2.1 coincide, i.e. we have
for F | [ V3 )
3ol

P = 201211 = 5lIZI* + 3 + 4lI201% = 3(lZ)1* = 7lIZ)* + 3)

18(][Z]]* = 1)?

and for the derivative el (@1)

oF o _ P (811211 — 18II2II* + 9 + /4] 2]1* — 3)
oIz 9./4]1 2|12 — 3|22 — 1)2 '

Proceeding analogously to Case 2.1 we will show that %»ZH‘ ( 3 1) > 0. Note that the de-
27

nominator of the formula for the first derivative of F' has no zeros in ?, 1), so we will
not run into trouble with possibly singular values. Again, we use MAPLE to show that

S| Z1* — 18212 + 9 + /4] 2]|> — 3 = 0 has no solutions in (?, 1). Hence, the global sign of
671: ( §1> coincides with the sign of

OF (1 (/3 1220 5824 6376 10112
RE] <2<é_+ >>= ——\/3\-5 V33— S\ 5443+ 2 >0,

1089 3267 3267 3267
Hence, FT 5 ) does not attain its maximum in its domain of definition, but at the limit

|IZ]] = 1, assuming that limit exists. For the existence we need to check that F' is continuous
from the left at ||Z]] = 1. This is done in the same way we have shown continuity from the
right, that is by applying L’Hdospital’s rule twice. As expected, we obtain

F(lz]) =

IIZH—>1 || <1
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Summarising, we have shown that F' : [?, \/3} — R, is continuous and attains its

maximum at [|?]| = /3, F <\/§) = 2. Since the negative eigenvalue A_ of the representation
matrix of P3(Z,dz,dz) was arbitrary, we conclude with (4.10) that for all such negative
eigenvalues A\_ we have

5
Ao >— max _F(|Z|) = ~5
Me[%x/ﬂ

The point Z € ddom(H) was also arbitrary and, thus, using the linearity of Ps(z,dz,dz) we
obtain

Vz e dom(H): Ps(z,dz,dz) > —2<dz,dz>.

Note that our calculations also show that A_ = —% can only possibly be a negative eigenvalue
of the representation matrix of P3(%,dz,dz) at a point ¥ € ddom(H) with norm ||%|| = v/3.

We want to stress again at this point that the obtained lower and upper bounds for
Ps(z,dz,dz) hold for all CCPSR manifolds H C {h = 1} of dimension n > 1 with A of the
form and () € H.

It remains to show that the upper bound in is sharp in the stated sense, and that
the lower bound in can never be sharp. For the upper bound, we will give an example of
a CCPSR manifold of dimension n for each n € N. For any n € N, let () = (x,y1,...,yn)"
denote linear coordinates of R"*! as usual and consider the cubic polynomial

2
h:R" =R, h=a—z(yy) +—1>, 4.11
(v, y) Wk (4.11)

and the corresponding centro-affine hypersurface H C {h = 1}, which is the connected
component of {h = 1} that contains the point () = (§). Then H is a closed PSR manifold
of dimension n. We will not prove this here, since for n > 3, H is an element of a family
of CCPSR manifolds constructed later in Theorem (for this statement, consider also
Proposition , equation (6.40) with j; = v2m; > 0 forall 1 < i <n—1.) Forn = 1,
one can check that h is equivalent to x?y, which is one of the two 1-dimensional closed
PSR manifolds classified in [CHM, Thm. 7], and for n = 2, h is linearly equivalent to the
polynomial e) in [CDL, Thm. 1] and H is the corresponding described CCPSR manifold.

T
For each of these cases consider the point Z, = (O, .o, 0, \/5) € ddom(H). We obtain

Py(Z2,,dz,dz) = %dzﬁ and the corresponding symmetric matrix has precisely the eigenvalues
A1 = 0 with eigenspace-dimension n — 1, and Ay = % with eigenspace-dimension 1. This
proves our claim. [

We will now prove a statement similar to Proposition but for points in "' = {z €
R™ | (z,2) = 1}.

Lemma 4.10 (Bounds of P3(z,dz,dz) for Z € S™1). In the setting of Proposition we
have

vze st —6\5/§(dz,dz> < P3(Z,dz,dz) < 6\5/§<dz,dz>. (4.12)
Proof. The linearity in z of P3(z,dz,dz) implies that it suffices to find the maximal positive
eigenvalue of the representation matrix of P3(Z,dz,dz), Z € S"! in order to prove .
Note that P3(y) being an odd function in the sense that P;(—y) = —Ps(y) implies that
S"=1 e dom(H) if and only if Ps(y) = 0, since this is the only case where the solutions of
h = 23 — z(y,y) + P3(y) = 1 that form ddom(H) have Euclidean norm 1. This forbids us

to simply maximise the formula for positive eigenvalues (4.9) valid for points in ddom(3)
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over S"71. Let Z € ddom(H) and A, be a positive eigenvalue of the representation matrix
Py(%2,dz,dz). Then A, := ”—1“/\+ is a positive eigenvalue of the representation matrix of

Py (qu,dz dz) =z HP (2,dz,dz). The map

v

ddom(H) T

is continuous and bijective for all CCPSR manifolds 3. It is however not necessary smooth
since dh might vanish at some point (! ) and does thus allow for ddom(JH) to be a continuous
non-smooth submanifold of R™. Using (4.9]) we see that

~ 1 3+ 2]
Ay = — N\, < "0 —
TS 9)2

p(lIZID) (4.13)

for all 2 € ddom(XH). Hence, we can obtain an upper bound for 3\+ by finding

max _ p(||Z]]),
e[ E.v3]

see Corollary [4.5] We obtain

(note: % \5[) and

dp
o||Z]]

-3 z 3
B il T (f\@) |
(5ur) " T 2

5
6v3"

Hence, max _p(||Z]]) = This shows that the maximal positive eigenvalue possible

e | 5.va]
of the representation matrix of Ps(Z, dz,dz) for 2 € S" 1 is \f, and with our remark at the

beginning of the proof the minimal negative eigenvalue is —¢ \/5 ]

Remark 4.11. The result for negative eigenvalues obtained in Lemma |4.10| can be used to
find the exact same lower bound for Ps(Z,dz,dz) for Z € ddom(H) that is obtained via the
estimate derived in Proposition [4.9] Furthermore, we do not expect the lower bound in
Proposition , equation , or equivalently the upper and lower bounds in Lemma (4.10)),
equation , to be sharp. This is motivated by the following Lemma.

Lemma 4.12. For dim(H) =1, is never sharp. Instead we have the estimate

2 2
vze S0 —37§dz2 < P3(2,dz,dz) < 3—\/§d22, (4.14)

which is sharp.

Proof. We will see in Remark [7.4] that every possible standard form for a cubic polynomial
h: R™ — R (3.12) describing a CCPSR curve H that is precisely the connected component
H C {h = 1} containing the point (3 ) = (), with h given by

h=a®—axy*+Ly*, Le¢

2 2
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see Lemma 1.2l Note that we will also show in Remark [Z.4] that two such CCPSR curves
H and H are equivalent if and only if either the respective L, L € (—3%, %), or L,L €

{—ﬁ, V} Alternatively, we know from Lemma {.2| that for h = 23 — 2y? + Ly?, the con-

dition L € g{ = 3\2[} is a necessary requirement for the corresponding maximal connected
PSR curve H to be a CCPSR curve. In order to show that this is also a sufficient condition,

one checks using formula (3.33)) and the function 5 as in (3.22)) that

o* 2 9Lz +3).
for all z € dom(H). One then finds that the equation 22 — 9Lz + 3 = 0 has real solutions

if and only if |L| > 3—\2/3 (and, hence, that 22 — 9Lz +3 > 0 for all z € R if |L] < %)

which implies that for all L € [_V’ V} the pullback of the centro-affine fundamental form
(®*ggc), is positive definite for all points in the connected component of {h ((1)) > 0} that
contains z = 0. Hence, said connected component coincides with dom(J), which shows that
H c R? is closed and, hence, a CCPSR curve.

Now, in order to show that the estimate is never sharp, we need to check this
estimate for every L € [ 3 \[, 3 f} Let Z be elther the smallest positive root or the biggest

negative root of 3(z) = h((l)) = 1 — 2% + Lz3, which both are precisely the elements of
ddom(H), and consider the corresponding point = € S° = {—1,1} C R. Observe that

11l
P3(y) = Ly? and, hence,

( ,dz dz) = dz* = Lsgn(%)dz*.
121’ HZ+H
The sole eigenvalue of the representation matrix of Ps(-= E ‘,dz dz), namely Lsgn(Z), depends
thus on L and the sign of Z, but in particular not on the absolute value of Z. We conclude by
maximising, respectively minimising, over L € [ 3 f’ 3 f} that for all CCPSR curves H with
our assumptions for the standard form of the corresponding cubic polynomial A : R* — R
we have the estimate
2 dz*

3f ~3V3
for all 2 € S°. This estimate is sharp for L = i%. One can check that the corresponding
CCPSR curve is equivalent to each of the connected components of the one described in
[CHM, Thm. 8, a)], respectively A) in Theorem [2.45] O

For higher dimensions, that is CCPSR manifolds H of dimension dim(H) > 2, the ques-
tion of finding the best possible estimate for P3(Z,dz,dz), z € S™71, is very difficult. We
would need to classify all cubic polynomials P : R™ — R (at least up to rotations in R") to
obtain an estimate for P3(Z,dz,dz) for all h = 23 —x(y, y) + P3(y) that define a CCPSR man-
ifold H, dim(H) > 2, as in Proposition . Equivalently, we would need a classification of all
CCPSR manifolds of dimension n > 2 and for each a corresponding h = 2 — x(y,y) + P3(y),
but we would still need transformations of the form A(p) for all p € H as in Proposition m
to obtain for each CCPSR manifold H all Ps(y)’s depending on p. The explicit classification
of CCPSR manifolds of arbitrary dimensions is a very difficult, and probably unsolvable,
open problem, see Remark and also the comment under Theorem 3 in [CDJL|. Even in
dimension 2 where we have a classification [CDL, Thm. 1] we would still need all transforma-
tions A(p) defined in (3.7)), which would require (after finding each standard form for
the corresponding cubic polynomial k) explicit knowledge of dom(H) in each case.

We will now use Proposition and Lemma to find a general global estimate for
the scalar curvature of CCPSR manifolds derived in Proposition |3.29,

dz* < P3(2,dz,dz) <
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Theorem 4.13 (Bounds for the scalar curvature of CCPSR manifolds). The scalar curvature
Sy of every n-dimensional CCPSR manifolds H equipped with their respective centro-affine

fundamental form g = —%82h’TfoTH 1s globally bounded by
25 25
_ —1-=En) < < — — .
n(n —1) < 1 16n) < Sy <n(n-1) ( 1+ 16n> (4.15)

Proof. For 0- and 1-dimensional CCPSR manifolds the estimate is always true since Sy
and the bounds vanish. Assume now that n = dim(H) > 2. Proposition implies
that we can without loss of generality assume that H is the connected component of {h =
23 — 2{y,y) + Ps(y) = 1} that contains the point (y) = (§) € {h = 1} C R""'. If we can
show that (4.15) holds at the point () € H independent of which specific form the cubic
polynomial P; : R" — R might have, we can, using linear transformations of the form A(p)
as in for all other points p € H, conclude that holds globally on . The formula
for the scalar curvature of PSR manifolds (A is of homogeneity-degree 7 = 3) reads

Ssc ((8)) = n(1 - n) +f§jz( P5(Da, 0a, 0r) Ps(0;, 01, 0y) + Py(0a, 03, 00)?) .

0 a#i
We rewrite

PS(aaaaiaaf) = !

G (Ps(Q + 0i, 0 + 01,00)* + P3(0a — 01,00 — 0, 0y)”
— 2Py(0q + i, 00 + 05, 0) P3(0a — 03, 00 — 0, 01)) (4.16)

for all 1 < a,i < n. Note that for all 1 < ¢ < n and for a # i, the vector 9, has Euclidean
length 1 and the vectors 9, + 0; always have Euclidean length /2. Now, using the estimate

(4.12)) in Lemma yields
25
<n(l-— -1)(-14+—

{ a#i

and analogously
2
Sse ((3)) >n(n—1)< 1—5n>.

These estimates do not depend on the specific form of P; as required. O

Remark 4.14. We will later in this thesis, in Proposition find a sharp estimate for the
scalar curvature of CCPSR surfaces, i.e. CCPSR manifolds H of dimension dim(H) = 2.
This estimate does not coincide with the estimate in Theorem for n =
2. This indicates that the general estimate in Theorem [4.13| is most likely not sharp for
dim(H) = n > 2, to prove this for n > 3 is a task for future studies.

Note that Theorem 4.13]is also true for all closed PSR manifolds with multiple connected
components by simply considering each connected component seperately. Similarly to global
bounds for the scalar curvature Sy that hold for all CCPSR manifolds I of fixed dimension,
we can also derive global bounds for their sectional curvatures , again independent of
the considered CCPSR manifolds of fixed dimension.

Proposition 4.15 (Bounds for the sectional curvature of CCPSR manifolds). The sectional
curvature K of every n > 2-dimensional CCPSR manifold H equipped with their respective

centro-affine fundamental form gsc = —%32h‘TﬂxT}( is globally bounded by
25 25
—1——n< -1+ — 4.1
TS K,(V)< -1+ 6" (4.17)

for allp € H and all 2-planes V' C T, H.
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Proof. Proposition and Lemma imply that it suffices to prove the estimate (4.17)

for
27
K(1)0:0)) = —1+ 5 > (= Ps(Di, 01, 00) P3(05, 05, 00) + Ps(0r,0;,00)%)

¢
(cf. equation (3.47) for 7 =3, F = 1) for all i # j and all n-dimensional CCPSR manifolds
HC{h=2a%—z(y,y) + Ps(y) =1}, (}) € H. We now proceed as in the proof of Theorem
4.13 rewrite (P3(0;,0;,0,))* as in equation (4 , and obtain

25 25
= < K (05.0,) < —1 4 =
6" S K(3)(00) < —1+ gem

which is independent of 7 and j, ¢ # j, as required. ]

Remark 4.16. The global estimate (4.17]) can also be used to obtain a global estimate for
Sgc. Since 0; and 0; are orthogonal at p = () for all PSR manifolds H with (}) € H and

corresponding h of the form ((3.12)),

SHfE:K (0:,0;), (4.18)
i#j
see Remark Hence, the estimate (4.17)) in Proposition implies
25 25
(1= 2n) < S <nn—1) (=142
n(n )( 16n) < Sy < n(n )( +16n>

which coincides with the estimate (4.15]) in Theorem [4.13]

Lastly in this section we will give a proof that all closed PSR manifolds H equipped with
their centro-affine fundamental form gg¢ are geodesically complete. This was first shown in
[CNS, Thm.2.5], in the corresponding proof it was used that the moduli space of closed
PSR curves under the action of GL(2), which consists precisely of two elements, is compact
(cf. [CHMI Cor.4]). Our proof will instead make use of the estimates for P3(z,dz,dz)
and for the diameter of ddom(%H). Note that geodesically complete PSR manifolds are
necessarily closed, since otherwise we could always continuously extend g4 to each boundary
point and construct a geodesic in H which reaches said point in finite time, cf. [CNS|
Prop. 2.4].

Proposition 4.17 (Alternative closed PSR manifolds completeness proof Nel). Closed PSR
manifolds (3, gsc) are geodesically complete.

Proof. Let H be a closed PSR manifold and assume without loss of generality that H is
connected, that is a CCPSR manifold. For dim 3 = 0 there is nothing to show. Assume that

dimH > 1. We will show that for all p € H the closure of the geodesic ball B (p) C H
643
with respect to the centro-affine (Riemannian) metric gs is always compact in H. We can

then use Lemma to conclude that (3, gg) is geodesically complete.

Let p € J{ be arbitrary. Proposition |3.18| implies that we can without loss of generality
assume that p = (§) and that H C {h = z* — z(y,y) + P(y) = 1}. Corollary implies
that the closure of the Euclidean ball B §(0> C dom(3H) with respect to (R”, (-, -)) is always

compact in dom(H). Hence with ® : dom(H) — H as in (3.14), ¢ (B\/g(())) C H is also
8
compact. The upper bound in estimate (4.12)) Lemma [4.10| implies that

V3 5
8 6V3

Vz € (‘3B§(O) o Py(z,dz,dz) < (dz,dz) = —(dz,dz). (4.19)
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The linearity of P3(z,dz,dz) in z implies that (4.19) also holds for all z € B,5(0). We use
8
this and 0 < 8(z) < 1 on dom(XK) to estimate ®*gs; (see (3.33) with 7 = 3) on By3(0) and

obtain for all Z € B 5(0)
8

—0%Bs 2d32
(D* — Z
O TE
—0%B= 1
> — = —(2(dz,dz) — 6P5(Z,dz,dz
1 5 11
> (2-2 == :
2 3 (2 8) (dz,dz) 24<dz,dz>
Hence,
B (0) = BY(0) € Bys (0),
8 24 64V/3 8
which implies that the closure of the geodesic ball around z = 0 with radius —L- is always

64v/3
compactly embedded in dom(%H). Since ® : (dom(H), P*gs) — (H, gs) is an isometry, it

follows that B%); (0) C H is compact. This holds independently of the p € H we started
643
with and, hence, we can now use Lemma and conclude that (H,gs) is geodesically

complete. [

To summarize this section, we have seen that the condition for the cubic polynomial P3(y)
in h = 2* — z(y,y) + P(y), cf. equation in Proposition so that h corresponds
to a CCPSR manifold, yield various new results about the different curvature tensors, and
can also be used to prove the known result about completeness of closed PSR manifolds
in a different way. In particular we did not need to consider any regularity conditions of
the boundary of dom(H) (cf. [CNS| Prop.2.4] or Definition in the following section)
or properties the quotient space of closed PSR curves (cf. [CHM, Cor.4]|). This might
make one hope that a similar way can be used to solve the open problem of completeness of
closed GPSR manifolds (with 7 > 4, 7 being the degree of homogeneity of the corresponding
polynomials h). Unfortunately, we have not found a way to do that. We will however
illustrate occurring problems in that endeavour for quartic GPSR manifolds (7 = 4), which
in even more generality will appear also for 7 > 4, in Section [7| and present partial results.

Next, we will be concerned with the moduli space of CCPSR manifolds. As mentioned
before in Remark 2.44] one cannot expect to classify all CCPSR manifolds in a fixed dimension
without further restrictions (recall that PSR manifolds that are homogeneous spaces under
the action of the respective Lie group GI as in Definition have been classified in [DV]).
We will however present an idea for a deformation theory for CCPSR manifolds. This might
also be of particular interest in physics, i.e. in the theory of supergravity, see [GST] [FS| [DV],
CHM]| and also Section [§|
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5 Deformation theory of projective special real mani-
folds

In this section we will study how one can deform CCPSR manifolds. This is motivated by
the following problem. Let H{ C {h = 1} be an n > 1-dimensional CCPSR manifold where
we assume without loss of generality that JH is precisely the connected component of the level
set {h = 1} which contains the point () = (§) € {h = 1} C R""! and that h is of the form
h =23 —z(y,y) + P3(y) as in equation . Let V:R* = R, V € Sym® (R")*, be another
cubic polynomial. We now want to determine all € > 0, such that

he =2 —x(y,y) + Ps(y) + eV (y) (5.1)

also defines a CCPSR manifold H, in the sense that, as for the initial CCPSR manifold J,
H. is the connected component of {h. = 1} which contains the point () = (§) € {h. =
1} ¢ R™. Tt will turn out that the answer to this question and in particular the existence
of one such ¢ > 0 will only depend on the behaviour of the continuous function

e — max (Ps3(z) + eV (2)). (5.2)

l[=l=1

We start with a description of the boundary behaviour of the centro-affine fundamental

form of CCGPSR manifolds.

Definition 5.1 (Regular boundary behaviour). Let H C {h = 1} be a CCGPSR manifold
of dimension n > 1 and let U = Ryq - H be the corresponding convex cone (cf. Proposition

. Then H has regular boundary behaviour if

(1) dhy, # 0 for allp € OU\ {0}, i.e. H is not singular at infinity in the sense of Definition

516,

v a_Ua 2\hk(f(]\{onxT(aU\{on > 0 and dimker (0Bl oy xriopop) = 1 for all p €
0}.

Note that Definition [5.1]is equivalent to [CNS|, Def. 1.17] restricted to CCGPSR manifolds.
We also want to stress that Definition [5.1]is independent of the chosen linear coordinates of
the ambient space R™*!,

Remark 5.2. With the functions o and § as in (3.21]) and (3.22]), Lemma shows that
the conditions |(i)| and in Definition are equivalent to

(i) a(z) # 0 (or, equivalently, dBz(Z) # 0) for all z € ddom(H),
(i) —9%Bz > 0 for all 7 € ddom(H),

respectively. The second equivalence might not be immediately obvious. It follows from the
equality
T(l)(ﬁU) =R- (1)@ T5(0dom(H))

z

and the property that this decomposition is orthogonal with respect to —82h( 1y, since
z

a2
8h(

=

1 ((2),) = —(r = 1)dh

wl =

)();

which vanishes on Tx(0dom(¥H)) viewed as a linear subspace of R"*1,
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We will now prove that for CCPSR manifolds, the condition Def. always implies
Def. . We formulate this as follows.

Theorem 5.3 (Regularity conditions for CCPSR manifolds). CCPSR manifolds of dimen-
sionn > 1 are not singular at infinity in the sense of Definition[3.16 if and only if they have
reqular boundary behaviour as defined in Definition[5.1].

Proof. A CCPSR manifold H that has regular boundary behaviour is by definition not sin-
gular at infinity. For the other direction, consider first n = 1. Then Def. is trivially
satisfied.

To prove the statement of this theorem for n > 2, it suffices to prove it for n = 2. To
see this, consider any CCPSR manifold H of dimension n > 2 and assume that Def.
holds for H. Assume without loss of generality that (y) = (§) € H and that h is of the
form (3.12). Considering Remark Def. holds true if and only if Rem.
holds true. To show the latter we need to show that —9%8:(v,v) > 0 for all 7 € ddom(H)
and all 0 # v € T3(0dom(H)) C R™. Observe that for any 2-dimensional linear subspace
E = span{w;,ws} C R", where w; and wy are chosen such that they are orthonormal with
respect to (-, -), the restricted polynomial

h* ((tml )) =2 — x(t] +13) + P3(tiw; + taws)

to

defines a 2-dimensional CCPSR manifold H* C {hE = 1} C RR? as the connected component
containing the point (é) = (é). Furthermore,

dom (fHE) e (g) — tiwy + tawy € dom(H)

is an embedding. Note that the explicit formula for A* in general depends on the choice of
basis for E. Hence, if we want to show that —d?3z(v,v) > 0 for some fixed z € ddom(H)
and 0 # v € T3(0dom(H)), it suffices to show Rem. for H® and hf, respectively

BF ((g )) = h¥ ((fl )), with F = span{z, v}’| where we view v as an element of R”. Hence,

proving the statement of this theorem for all 2-dimensional CCPSR manifolds will also prove

it for these of higher dimension. Since the conditions in Definition [5.1] are independent of
the linear coordinates chosen for the ambient space R"™!, we can reduce our studies to the
classification of 2-dimensional CCPSR manifolds up to equivalence given in [CDL, Thm. 1]|Z|,
see Theorem [2.45] We will do a case-by-case check for the surfaces a)-e) and the one-
parameter family of surfaces f) in Theorem[2.45] For the cases a)—¢) we will study the Ps-part
the calculated standard form h = 23 —x(y?+2%)+ P ((¥)) @ of each cubic h corresponding
to a CCPSR surface H C {h = 1} obtained in Example [3.24] with the property that ¥ is

equivalent to the connected component of {E = 1} that contains the point @) = (é). We

can then use Lemma [4.6, which says that the value of H (rlrllax 1P ((Y))] € [0, %} determines
=1
whether H is singular at infinity or not. In the cases where J is not singular at infinity, that

is fulfils Def. , we need to show that it also fulfils Def. . For the one-parameter
family f) we will use another method and explain why in this case the form (3.12)) is not the
best choice to work with in order to prove our claim.

6Strictly speaking, at this point we need to choose two orthonormal vectors wy, ws, such that span{z,v} =
span{w, ws}.

TAt the time the article [CDL] was written and published, it was still an open problem to show that a
PSR manifold is closed if and only if it is geodesically complete, which has first been proven in [CNS].
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a) H={h=2yz=1, >0, y>0}.

Equation 1} implies that P3 ((¥)) = 3fy - fyz Since H is a CCPSR surface and
Py((h) = 575> Lemma [4.6/ implies that H is singular at infinity.

b) H={h=x(xy—2*) =1, z > 0}.

By equation (3.16), P ((¥)) = 375y° + 5y2* with P53 ((§)) = 375 Hence, 3 is singular at
infinity.

c) H={h=z(yz+2?)=1, x <0, y > 0}.
This case is a little more complicated in comparison with a) and b). Equation (3.17)) implies
that P ((¥)) = 22422 + 1V2 .3 We now need to determine max |P; ((¥))]. We find
5 (1)) \ﬁy 15V15 ||(¥)||=1| 5 ((2))]
3
for v = <2€>, |lv|| = 1, that P3(v) = % Hence, H being closed and connected implies
2v2

that ”<m§1|>|< 1P ((Y)] = % This shows that H is singular at infinity. Note that v can

be found without the help of a computer algebra system like MAPLE by considering the
equation dP3|(y) =r{(¥%),-), r > 0, which is not difficult to solve in this case since P;((¥))

is reducible.

d) H={h=za*+y*—2%)=1, 2<0}.
From equation (3.18) we obtain that in this case P3 ((¥)) = 0. Hence, max |P3((¥%))|=0

1(2)]=2

and JH is thus not singular at infinity. It is immediate that dom ( ) ={]|(¥)|| < 1} and that
for the corresponding function B(y, z) = 1 —y? — 2% as in (3.22)) we have df = —2ydy — 2zdz.

Hence, df vanishes at no point in ddom (fH), so Lemma [3.25| implies that %, and thus also
H, fulfils Def. . Furthermore

0B (y) = <_02 _02> <0V (g) e ddom (%),

so K, and equivalently 3, fulfils Def.

e) H={h=x(*-2)+y>=1, y<0, z>0}.
From equation (3.19)) we know that P3 ((¥)) =
shows that I is singular at infinity.

L_yz%. Hence, P3((§)) = which

2 3
337 T3

3\/3’

OF 3, = {h =922 —4a® + 322 + b2 =1, 2 <0, 22>z}, be (—1,1).

For all b € (—1,1), the projective curve C' := {h = y*2 — 4z + 3z2* + b2*> = 0} C RP? has no
singularities, cf. [CDL, Prop. 3], which means that dh, # 0 for all p € {h = 0} \ {0} C R3.
Hence, each H,, b € (—1,1), is not singular at infinity in the sense of Definition and,
hence, fulfils condition Def. . Note that H, not being singular at infinity for all

8For this one-parameter family of CCPSR surfaces which are each contained in the level set of the respective
Weierstafl cubic with positive discriminant h, the method used for a)—e) has proven itself to be unsuitable.
This is because the formulas for the corresponding function 8 as in and the derivatives corresponding
to h when brought to the form might not depend on b € (—1,1) in a complicated way, but studying
the system of equations v € kerdf3, v € ker 9?3, = 0, turned out to be quite difficult. We will thus consider
Definition and not the equivalent conditions in Remark to prove our claim for this one-parameter
family.
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b € (—1,1) also follows easily from equation (3.20) in Example [3.24, We need to show
that each 3, b € (—1,1), also fulfils Def. . In order to prove this, we need to
determine d(Rwq - H;,) C {h =0, 2 <0, 2z > 2z} C R3 for each b € (—1,1). Observe that
{h =0, 2<0, 2¢ >z2}N{z =0} ={z =0, z=0}. Hence, the line {z =0, z = 0}
is contained in {h = 0, z < 0, 2z > z}, but Ry, - H, being a convex cone which has the
property described in Lemma shows that {z =0, 2 = 0} NIO(Rso - H) = {(g)}. For
z < 0 we will determine the intersection {z = —1} N I(Rxg - Hp), which can then be used

with the homogeneity of h to obtain the whole set 9(Rxq - H;). We find
h((9))=0 & ——42"+3z-b=0, (5.3)

=:pp

xT

where p, ((y)) = h (( v )) We consider pj, to be defined for all b € R, not just for b € (—1,1).

Let V:span{(é)>(g)}

and observe that H; not being singular at infinity implies that the tangent space TO(Rq-Hp)
fulfils
T,0(Rsg-Hp) =R-pd (kerdh,NV) Vpe{z=—-1}NO(Rso-Hy).

Furthermore, the 1-dimensional linear subspaces R - p and kerdh, NV of T,0(Rsq - Hy)
are orthogonal with respect to the positive-semidefinite bilinear form —d2h,,, which follows
from —9%h,(p, ) = —2dh,(-). Also note that kerdh, NV is always 1-dimensional since the
position vector p # 0 is always an element of kerdh, for all p € O(R-q - Hp). Thus, in
order to prove that Def. is fulfilled for each Hy, b € (—1,1), it suffices to show that
— I (ker dhy (V) x (ker dhynvy > 0. We obtain

dh = (—122% + 32%)dx + 2yzdy + (y* + 622 + 3b2%)d=

and
—24x 0 62
Ph=| 0 2z 2y
6z 2y 6x+ 6bz
Since H,, is not singular at infinity, it follows that at each point p = @) e {z=-1}n
O(Rso - Hp), kerdh, NV is given by
—0yhy 2y
ker dh, NV = span Ozhy =span{ | —1222 + 3
0 0

Hence, —82h|(kerdhpmv)x(ker dn,nvy > 0 if and only if

2 2
() ()
& 962y + 288zt — 1442% + 18 > 0
& 162y® + 482* — 2422 +3 > 0

& 16y + (4v/327 - \/§)2 >0 (5.4)

for all p = @) €{h=0, z=—-1}NI(Rso - Hp). We will first check the above inequality
1} for y = 0. In that case, 1) can only be false if v = i%. Then with p;, defined as in
(5-3)

we obtain

0=p((5))=Fgt s -b==%1-b
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This is however a contradiction to b € (—1,1) and, hence, holds at all points in {z =
—1, y = 0} NIO(Rsg - Hp). Now let y # 0. We see that then (5.4)) is true for all z > 0,
independent of b € (—1,1). It thus remains to check the inequality for points in
{z = -1, 2 < 0} NO(Rso - Hy). Note that the latter set might be empty, in fact one can
show that it is empty if and only if 0 < b < 1, but we will not need this information for our
proof. Observe that for all by, by € R with b; < bo,

o ((4)) > 1, ()

for all () € R*. Hence, pp, |(p,,=0; > 0, which in particular implies that

p-1l{p=0y >0 (5.5)

1

for all b € (—1,1). With the fact that ( o ) € {z = =1} N (Ryp-H,), cf. Example
1

3.24) and p_; ((%)) = 2 > 0 it follows that {z = —1} N (Rso-H) is a subset of the

1

connected component of {p_; > 0} x {—1} C R? that contains the point ( H ), see Figure
1

El Further observe that p, ((_y% )) =—y’—1-b<0forally e Rand b€ (—1,1), and that

Figure 5: The connected component of {p_; > 0} that contains the point (3,0, —l)T is (partly) marked in
grey, its boundary is a part of the set {p_1 = 0} which is also shown in {—1 < z < 1} C R?. The dotted area

in the plot is the connected component of {p_% > 0} that contains the point (%7 0, —1)T.

Hy C {z <0, 2z > z} implies that {z = =1} NI(R~o-H,) is contained in {z =—1, x> —%}
for all b € (—1,1). In particular there exists no b € (—1, 1), such that the x-coordinate of an
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element in {z = —1} N (R~ - H,) has the value —35. Hence, (5.4) and (5.5) imply that in
order to prove that H, fulfils Def. it suffices to show

{16xy2 + (432 = V3) = O}ﬂ{pl —0, > —;}ﬂ{x <0} = {@ _ <—0§>} (5.6)

since (16:63/2 + (4v/32% — \/§)Q>‘

> (), see also Figure |§| We insert p_; = 0, which

Figure 6: The thick black curves represent the set {16xy2 + (4\/§x2 - \/3)2 = 0} N{-1 < z < 0}, the
thinner grey curve is the set {p_1 =0} N{—1 <z < 1}.

is equivalent to y? = —4x3 + 3z + 1, into 16xy? + (4\/§x2 — \/§)2 = 0 and obtain
F(z) := —162* + 242* + 1617 + 3 = 0.

One can now use a computer algebra system like MAPLE and find that F(z) = 0 and
—% < x < 0 if and only if z = —%. This proves 1} and, hence, shows that each Hj,

be (—1,1), fulfils Def.
This finishes the proof of Theorem [5.3] O

Lemma [.6] and Theorem [5.3] show the following.

Corollary 5.4 (Critical values of Ps|f;j=1} and regularity of CCPSR manifolds). Ann > 1-
dimensional CCPSR manifold H C {h = 23 — z{y,y) + P3(y) = 1}, () = (}) € K, has

reqular boundary behaviour if and only if ﬁﬁ}i Ps(z) < %



80 5 Deformation theory of projective special real manifolds

Proposition 5.5 (Starshape and path-connectedness of the moduli space of CCPSR man-
ifolds). Let 3 C {h = 1} C R"™ be an n > 1-dimensional CCPSR manifold and assume
without loss of generality that h = 2 — x(y,y) + Ps(y) and (3) = (}) € H (¢f. Proposition
[3.18). Let || - || denote the norm on R" induced by the Euclidean standard scalar product
(-,-) determined by the choice of the coordinates y = (yi,...,yn)". Then for all s € [0,1],
the connected component H, C {hs = x> — x(y,y) + sP(y) = 1} that contains the point
() =(3) is a CCPSR manifold.

Proof. For all s € [0, 1],

2
max |sP3(2)] < max |P3(2)] £ —=.
e [sPs(e)] < ax B (&) < 507

Hence Corollary shows that for each corresponding H,, which is by definition closed as a
subset of R"*!, the necessary condition for H, to be a CCPSR manifold, namely that the set
(Rao - H)N{(L) e R*™ | 2 € R"} C R™ is precompact, is satisfied. For s = 1, H; and H
coincide. For s = 0, in Lemma immediately shows that J{, is a CCPSR manifold.
Now consider s € (0,1) and let (1) € (Rog-H,) N {(L) € R"™ | 2 € R"} be arbitrary. For
z=0, in Lemma is always true. For z # 0, we will differentiate between the cases
P3(z) > 0 and P3(z) < 0. In the first case, that is P5(z) > 0, the estimate in Lemma [4.2]

for fspg(ﬁ)(t) = h, ((t% )) (note: B = P (ﬁ) and A = sPs (ﬁ)) show that z € dom(JH)

for all s € (0,1). Hence, using the hyperbolicity of H we estimate
3{dz,dz) — 9sPs(z,dz, dz) + (z,dz)* > s <3<dz, dz) — 9Ps(z,dz,dz) + (z, dz)2) >0. (5.7)

This shows that all points in (Rsq - Hs)N{(l) € R*™ | z € R"} with Py(z) > 0 satisfy (4.5)
in Lemma [4.8| for all s € (0,1).
Next, consider the case P3(z) < 0. This case is a bit more complicated, since the estimate

1) in Lemma (4.4| for f_sP3(”7ZH)(t) = hy (( _tlﬁ )) shows that for all s € (0,1) there exist

points in (Rwg - H,) N {(1) € R"™! | 2z € R"} that are not contained in the set
{(H)eRrR™ | zedom(H)} = (Rog- H) N {(}) €eR™ | z€R"}

(see Figure [7] for an example). Consider for z € R - z, such that z € ddom(H), and for
t € [0,1] the function r : [0, 1] — [1, 00) implicitly defined by

F(r,t)=1—-1*z,2) + (1 - t)r’P(z) = 0.

The condition that r(t) is a positive function and the uniqueness of the positive real root of
r — F(r,t) for all t € [0,1] show that F(r,t) = 0 indeed defines r(¢) in a unique way, and
furthermore that r(t) is smooth for ¢t € (0,1) and continuous for ¢ € [0, 1] (note: P3(z) < 0).
The map

U {1} X (Rsp-2)Ndom(H)) — ({1} x Ryg - 2)
N (B0 -36) 0 {(1) € R | 2 e R7)),

(£) = (alor)

9With corresponding values B = — P (i) and A = —sPs <L)

=1l =1l




5 Deformation theory of projective special real manifolds 81

L
W
(=
S
W
=

Figure 7: The black curve is a plot of f_ 2 (t) corresponding to s = 1, that is H;. The grey curve is a
3V3

plot of f_l%,%f(t) corresponding to s = % € (0,1), that is H_ 1. The set B is to be understood as points
3V3

1
10
in that are not contained in dom (H;), but are contained in (a fitting projection of the set) (Rsq-Hs) N

{(1,2)T € R *! ‘ z € R”}.

is thus a diffeomorphism for all s € [0,1]. Furthermore, ¥ can be continuously extended to
be defined on {1} x ((R>0 -zZ)N dom(f}()) for all s € [0, 1], with the property that

U(z) €0 ((Roo-H) N {(1) eR™M | zeR"}).
We obtain for the first t-derivative of r = r(t) for all t € (0,1)

—2r()r(t)(2,2) — r*(t)P3(Z) + 3(1 — t)r*(t)r(t) P3(2) = 0
—r*(t) P3(2)
2(z,z) = 3(1 = t)r(t) P3(z)

& 1) = (5.8)
Since P3(zZ) < 0 and t € (0,1), this in particular shows that 7(¢) > 0 for all t € (0,1).
If the considered point (1) € (Ruo-Hs) N {(1) e R"™ | 2 € R"} is also an element of

z

{1} x dom(H), then we can use estimate (5.7) for all s € (0,1). For (1) € (Rsg-Hs) N

z

{(1)y e R | 2 e R"}\ ({1} x dom(H)), we want to show that (4.5 holds for all s € (0,1),
i.e. that 3(dz,dz) — 9sP3(z,dz,dz) + (z,dz)* > 0 for all s € (0,1). Substituting s =1 —¢
and z = ¥(2) = r(t)Z with Z € dom(JH), the latter is equivalent to

3dz,dz) — 9(1 — t)r(t)Ps(Z,dz, dz) + r*(t)(Z,dz)* > 0. (5.9)
Since H is a CCPSR manifold by assumption, we already know that
3{dz,dz) — 9P3(Z,dz,dz) + (Z,dz)* > 0
for all Z € dom(K), cf. Lemma Since r2(t) > 1 for all ¢ € (0,1), proving
3{dz,dz) — 9(1 — )r(t)Ps3(Z,dz, dz) + (Z,dz)* > 0

for all t € (0,1) and all Z € dom(H) will in particular prove (5.9). Since the estimate
3(dz,dz) + (Z,dz)* > 0 holds true for all Z € R, it suffices to show that (1 —¢)r(t) < 1 for



82 5 Deformation theory of projective special real manifolds

all t € (0,1). The function (1 — ¢)r(¢) is non-negative and continuous on [0, 1], and positive
and smooth on (0,1). For t =0, (1 —¢)r(t)|t=0 = r(0) = 1. Using (j5.8)) yields

0 B =23, 7) + 2(1 — () Py(3)
o (1= 0r(0) = =r(t) + (1= 0)i(t) = —=5 o o = <0

for all ¢t € (0,1). Hence, 0 < (1 —¢t)r(t) <1 for all ¢ € [0,1]. This thus proves (5.9).
Summarising, we have shown that 3(dz,dz) — 9sPs(z,dz,dz) + (z,dz)*> > 0 for all (1) €

Reog-H,N{(l)eR"™ | 2 € R"} for all s € [0,1], and thus have proven using Lemma

that H, is a CCPSR manifold for all s € [0, 1]. O

An immediate consequence of Proposition|5.5|is that we can always find a continuous curve
connecting two CCPSR manifolds of the same positive dimension that consists pointwise of
CCPSR manifolds. However, we will prove a stronger result in the following Theorem [5.6]
from which it will in particular follow how such an aforementioned curve can look like (see

Corollary |5.10)).

Theorem 5.6 (Convex compact generating set of CCPSR moduli space). Let n € N and
h: R"! — R be a cubic homogeneous polynomial of the form (3.13), that is h = 23 —x(y, y)+
Ps(y). Then the connected component H of the level set {h = 1} C R™* ! that contains the
point () = (§) is a CCPSR manifold if and only if max P3( ) < 3\[

Proof. Firstly note that P; : R" — R being a cubic homogeneous polynomial and, hence, an

odd function implies that |Tmuaux Ps(z) = ﬁn”a_ki |P3(2)|. Assume that H is a CCPSR manifold.

Then Lemma 4.2 shows that max Ps(z) < %

Now assume that max Ps(z) < % Lemma [4.2| only shows that this is a necessary

llzll= B
requirement for H to be a CCPSR manifold. In order to show that it is also a sufficient
condition, we have to show that

3{v,v) — 9P3(z,v,v) + (z,0)2 > 0 (5.10)

for all (1) € (Rug-H) N {(L) €R™! | 2 € R"} and all v € R™\ {0}, cf. Lemma [4.8] For
z =0, (5.10) is always true. For z # 0 and v = rz, r # 0, (5.10)) reads 72(3(z,2) — 9P(2) +
(z,2)?) > 0. Suppose that there exists a point (1) € (Rso-H) N {(L1) e R*"™ | z e R"}\

{(3)}, such that 3(z,2) — 9P3(2) + (z,2)?> = 0. Observe that max Ps(z) < % implies

3(z,2) — 9P3(2) + (2,2)" = ||z]" (3 — 9|21 P <|| ||> + HZH2>
> 121 (3 = 2v3llzll + [1=]1°) -

The map ||z]| = 3 —2v/3||z|| + ||z||? is non-negative and its only zero is at ||z|| = v/3. Hence,
for ||z|| > 0, ||2]|>(3 — 2v/3]|z|| + ||2]|?>) = 0 if and only if ||z|| = /3. Since by assumption
(L) eRs - HN{(L)eR"™ | zeR"}\ {(§)}, we have h((1)) =1 — (z,2) + P3(z) > 0.
But with ||z| = v/3,

h((1)=1—=(z,2)+ Py(2) = 2+3\/_P3<” H>< 2+3\/'3 =0,

N

which is a contradiction. We conclude that whenever z # 0 and v # 0 are linearly dependent,
the estimate (5.10) holds. Note that this already finishes the proof for n = 1.
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Now assume that dim(3H) > 2 and let (1) € (Rso-H)N {(L) e R | z e R*}\ {({)}
be arbitrary. Let v € R™\ {0}, such that z and v are linearly independent. In order to show
(5-10), choose an orthonormal basis {e1,es} of span{z,v} C R" with respect to (-,-) and
consider the cubic homogeneous polynomial h:R =R given by

hiz0) ((%)) =N ((aes by ) = 7 — 2(a® + V%) + P3(ae; + bey) . (5.11)
—_——
=P:((3))
Let % be the connected component of the level set {iL } C RR? that contains the point

(é) € R? and observe that

(Roo- ) N {(s) €®?| (5) e R} (5.12)
= {(&) | wespan{zo}} N (Roo-30 N {(1) R | € R"})

via the linear map (%) > (aey1bey ). Hence, if we prove that the inequality 1) in Lemma

holds for all cubic homogeneous polynomials ivz(z,v) of the form lb with corresponding set
(5.12)), we will also have proven (4.5)) in Lemma for our considered h with corresponding

set (Rug-H)N{(L) e R*™ | z € R"} (recall that for z and v linearly dependent, (5.10) has
already been shown to hold true). Furthermore note that

2
0< H(m?ﬁ(lp 5 (5 ))<ﬁn|‘a)§P( )_3—\/3

We thus see that it suffices to prove the statement of this theorem for all considered manifolds
H with the additional restriction dim(JH) = 2 in order to conclude that it holds true for all
H with dim(3H) > 2. In the following, we will use the notation used in [CDL|] and consider

R? with linear coordinates ( g),
h:R* =R, h=2"—a2@*+2%)+P((Y)),

such that
2

y 2

H(r??ﬁ(:lpg((’z» <37
As before, we consider the centro-affine surface H which is the connected component of the
level set {h = 1} C R? that contains the point (é) = (), and we want to show that 3 is a
CCPSR surface (which is equivalent to the condition (4.5 in Lemma . For P; = 0, the

condition (4.5) in Lemma is immediately seen to be true. For P3 % 0, Proposition
implies that it suffices to prove that H is a CCPSR surface if “ (max Ps((Y )) = 3%/3, since for

2)ll=1

all non-vanishing cubic homogeneous polynomials P; : R? — R with max P3((¥%)) <

()= i
we can always choose a positive real number r > 0, such that | Izrllﬂx rPs((Y)) = %
NE
Consequently assume that max P;((¥)) = % We can, after a possible orthogonal

transformation of the (¥)-coordinates (which does not change the form (3.12)) of h), assume
that Pgl{H(y)H:l} attains its maximum at (%) = (), so that Pj is of the form

P3((Y) = —=y" + kyz* + (2°.

3\/_
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We immediately see that £ € R needs to fulfil [{] < 5 f Furthermore, we can without loss
of generality assume that ¢ > 0, which can be achieved via z +— —z if necessary.
Now we will show that for all £ € [ ) 3\[} H(y?ﬁ( P3((Y)) = % implies
=1

ke 2 ! (5.13)
It will become clear how to use this information in the step thereafter.

First assume ¢ = 0, so that P;((¥)) = 3—\2/3y3 + kyz?. We want to determine the positive
extremal values and corresponding critical points of P; when restricted to the set {]|(¥)] = 1}

aside from %, respectively (%) = (). Suppose that there exists k > f or k < — \%, such

that ||(m§l|)|( P;((Y)) = % In order to find the extremal values of P; on {[[(¥)] =1} we
need to solve dP3\<y) = 7"<(Z) : <§y>> r € R, that is
2 92 2
By TR (ry 2, 2 1
( Sy o P +z . (5.14)

We already know that (¥) = () is an extremal point with Py > 0, so we assume now that
z # 0. Then by (5.14) r = 2ky, which implies

23k — 2
2 _ 2V T2 5.15
: VT (5.15)
Note that 3
23k — 2 2 1
250 VEeRN |——, —], 5.16
V3k \[ V3 \/31 (516)

SO ) will always have non-trivial solutions. For k > % or k < —% consider the two

points
n:l: 2\[1(: 2 € R .
\ 3\f k—2 T

One quickly checks that ||n+|| = 1 and that 74 both solve equation (5.15)). We obtain

3\/§k

and
2 3k
Kholk) =3 3v3k — 2 (1 3\/_k 2)
Furthermore,
1 2
klim% o(k) = ¢ <3> = 33 (5.17)
2 2

and we see that
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such that max P ((¥)) = 2.

This shows that for ¢ = 0 there exists no k € R\[ 73 f} & 3v/3
=1

It remains to consider the case ¢ € (0, 3\[} For P53 ((¥)) = %ﬁy + kyz? + (23 we get

Nl

R

(note that ||n4|| = 1 independent of the chosen /). Since

2v/3k — 2

2 1
VONTZ 0 VkeR\ |- —|,
3k 2 \l ]

3 V3
it follows that

AP (n+) = (ggﬁ:;) 2 >0, (5.19)
OPy(n.) = — (;g::;) <0 (5.20)

forall k € R\ [—%, %] With

P3(n4)]e=0 > 3\2/§ Vk > \}3
and
P3<77_)|g:0 < —i Yk < —i
3v3 V3
we can now conclude that for all ¢ > 0, i.e. in particular for all ¢ € (0, 32 }, we have
P3(ny) > 375 and Ps(n-) < %

Summamsmg, we have shown that for all £ € R\ {—%, %} and all £ € {

>

)

ma Ps((Y =
T AN

which in particular implies that for all ¢ € {O, 2

f]’ max
)=

Ps((¥)) = % implies k €

[—%, %] as claimed in (5.13|).
Next, we will deal with the cases where

ke {—jg\/lg} (5.21)

Equ&(xtions {D and 1} (for the lower limit k = —%) imply that for k = —% and all
te (0

) 3\/7 2
max P3((¥)) > —=.
()= 3v3
Hence, for k = — E = 0 is the only allowed value for ¢ € [0 7} such that
2

max P3((¥)) =—=.
()= =50
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The corresponding connected component H of {h = 1} is linearly equivalent to the CCPSR
surface a) in Theorem [2.45] cf. equation (3.15)) after a sign-flip in y and, hence, in particular
a CCPSR manifold. The case k = % is a little more complicated since then ny = (§), for

which in particular 0y P3(n+) vanishes, see (5.19) and (5.20)). Instead of 1. consider for ¢ > 0
the point
1

1
P= g (ava ) Il =1
One can check that dPs|, € R(p,-) and

2702 + 2
3V3V2T2 + 1’

(Ps(p)) = <\/237\€/2_%> '

Ps(p) =

For ¢ = 0 we have Ps(p) = % and since 9y(Ps(p)) > 0 for all £ > 0 we deduce that

2

Ve>0: P > —.
3(]9) 3\/3

This proves that for k = %, ¢ = 0 is the only value allowed for ¢ € [0, %} For k = %,
¢ = 0, the connected component H of {h = 1} is equivalent to the CCPSR surface b) in

Theorem which follows from equation (3.16)). Hence, H is a CCPSR manifold.
Now, as stated before, we will use ([5.13]). Considering (4.5)) in Lemma for points in

the set
ye]R}: {(%) ER?| ye (—fﬁ)}

(3(dy? + =) = 9P (1) -,-) + (ydy + =d2)?)

(Rsg - F0) N {(%) € R3

yields

(£)=(3)
= (v — 2v/3y + 3)dy® + (3 — 3ky)dz>
= (y—V3)" dy* +3(1 — ky)d=>.

With (5.13]), that is k € [—l, LL and y € (—‘/§ \/§) we deduce

37 /3 20

(y - \/3)2 dy? +3(1 — ky)dz* > 0.

This means that the line segment { (%) cR?

Yy € (_é, \/3)} C RR? consists only of hyper-
bolic points of h, independently of the choice of k € {—%, %} We project the line segment
Yy € (—?, \/3)} C R? to H via point-wise multiplication with L

() ew Yranor)

Since being a hyperbolic point of h is an open condition in R3, we are in the setting of
Proposition and can transform h with linear transformations of the form (3.7)) along
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oy RS 2,\/§> C H.

W

0

that set[] that is along

In order not to confuse coordinates with parametrisation of said subset of H, we replace y in
the above set with the parameter T' € (—?, \/3) We start with £ =1 in 1} and assign

for T € (—?, \/3)

1 2T 0
:§/17T2+%T3 V3T+3
AT)=|—%t—— 1 0] e€GL(3). 5.22
D= | s ® (5.22)
0 0 1
We obtain
\ 3(1-12+ 3\2TT3)% 1 — kT
h(A(T)-(y))zﬁ—x y? + 2
: (T +v3) w—T? 2T
2, 2 73
2(1-T +MT) T 2, pu3
VA k- | y2® + €25 (5.23)
(T +v3)’ V3T +3
Note that 1 — 7%+ 273 > 0 and 1 — kT > 0 for all T € (—%,v/3) and all k € [- 2, &],
which is in accordance with equation (3.10]). We have already shown that for k € {—%, % ,
max P3((Y)) = % implies / = 0 and that the corresponding surfaces J are indeed

()=
CCPSR manifolds. We will from here on assume that k£ € ( T f) Before brmgmg h in

5.23) to the standard form ([3.12]) we will check that we can always solve k — fT+3 =0 (the

left hand side of which can be viewed as the “transformed k”, up to scale) for k € ( %, %)
We obtain

Ty oo o Bk
V3T +3 2Bk

), T(k) € (—ﬁ \/§> For the limit points

2

T(k).

We have to check that for all k € (—l

k;e{ \/3,\[} we have

(3 o)
" HT(k) = — 0 <

(2~ v/3k)?

ONote that this subset of H is connected and contains the point (1,0,0)”. Furthermore 9,h = 322 — v,
which is positive at all points (1,4,0)7, y € (—— \[) Hence, we can in fact transform h along these
points via transformations of the form (3.7).
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for all k£ € (—l, ! ) Hence,

V3
Vk € (—2 1) . T(k) e (—?ﬁ)

Sl

V3 V3
as required. Considering (5.23)), we rescale y and z with
T+v3
V33 /1-T2+_2_T3
E(T) = - | (5.24)
6 1,T2+%Ts
V1-kT
set T'=T(k) to obtain that h is equivalent to
h(AT)- (1 (y)) =2 -2+ 22+ —= \/ 23. (5.25)
The next question one has to ask is if k& € (—%, %) and ||(m31|>|<_ P;((Y)) = % (for the
Ps-term in h, ie. P3((¥)) = 3%/:,;3/3 + kyz% + £23) imply
1- sl () 2
\/ < (5.26)
(1 - k;T(k:))’ 33

which is a necessary requirement for

- ( \/1 — T(k) z3> _ 2
1)) \3v3” (1—kT(k)) 3v/3

and thus also a necessary requirement that the transformed cubic in (5.25) needs to fulfil
so that the corresponding connected component of its level set {h (A(T) (tg)- @)) = 1}

which contains the point (g) = (é) can be a CCPSR manifold, cf. Corollary . Instead of

1=T(k)>+32=T (k)
attempting to calculate the supremum of ¢ i) with conditions k € (—%, %)

and max P3((¥)) = % directly, we will choose another way to prove that (5.26|) does, in

I1(2)]l=1

fact, hold true.
For k = 0, h is of the form h = 2% —z(y* + 2%) + %yig +¢23. Consider for T' € (—@, \/3)
arbitrary, A(T) and E(T) as in (5.22)) and (5.24]), respectively,

h(AT) - (Memy) - (1)) = xg—x(y2+22)+3\2/§y3—23Tyz2+€z3\/1 T2+ 3\2/§T3- (5.27)

For the following calculations, we define

2 2T 2
P V) = — Ty 4 — T2 4 273, 5.28
ain (2 = S’ = Ty -1 (5.29)
We will show that
2 V3 2
V> -—"_VT¢ —,\/§>; max P, vy > 5.29
5T e (- e Pon (1> 57 (5.29
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holds true. To do so we will for T" € ( ‘[, V3 ) and ¢ = study a critical point of

2 2T 2 2
P y el R S N R
) ()= g = 0t ﬁ\/ -

on the set {||(¥)|| = 1}, namely the point

(1) =70 (avarss) =< 520

Note that ( is well-defined for all T' € (—@ \/§), and it is indeed a critical point of

2
. . . 2
P(3’%’T> ((¥)). Using the factorisation 1 — T?% + 3\2[T3 = ﬁ (T — \/3) (T + ?) and
T—+/3<0foral T e (- 3), we find

(B (s 2 2|
= o (2).
\/§

The corresponding critical value is given by P<3 ) T) () = 3—\2/§, independent of 7' €
amv
(—ﬁ \/§> Note that dz(¢) > 0 for all T € (—?, \/5) and consider the derivative

2

Op (P(S,Z,T) (é’)) = \/1 -T2+ V

Hence, 0y (P(3737T) (Y)) >0forall T € (—@, \/g) and all z > 0, in particular for z = dz(().
We conclude that ((5.29)) holds true.
We can now use ([5.29) to show that ([5.26]) holds true for all k£ € ( \/g, \[) For ¢ =0

equation ([5.26) is automatically true independently of the chosen k € ( 7 f) Suppose

that there exist k € < \/3, \1[) and ¢ € (0, %}, with corresponding polynomial h = 23 —

r(y?* + 2%) + :T/ﬁy + kyz? + 023, fulfilling

2
max P ((Y +kyt + 023 = —, 5.31
5 ) = i 1<3f . ) 33 (531
such that for T'=T(k) = 2_3\’;%
\/1— T(k) N
(1—kT(k)) 3v3’

which precisely means that (5.26)) does not hold true for the chosen k, ¢. Combining ([5.25)
and ([5.27)), one obtains that h is equivalent to

h:w3—x(y2+22)+iy3 yz 1l 3\/1_ sl (0’ \/1 Tz_i_iTB»
3v3© 3 (1- kT(k)) 3v/3
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for all T e (—?, \/§> Furthermore, (5.29) implies that for all T € (—?, \/§>

2 3 2 \/1_ T(k) 2y 2 7
||< )|| 1(3\f 37 (1—k;T(k))’ \/1 T +3\FT) 3v3
(5.32)

rlihe above estimate must thus in particular hold for T = —3k = T(k) (note that
T(k) € (=, V/3) for allke( 2., 2)). But

2, 2T W= T2 + 55 TR [y
3\/§y 3 yz + 027 (1—k:T(k;))g \/1 T(k)? + T(k)

3 4 ky2? 028,

3f

which implies that (5.32) for T = T(k) is a contradiction to the assumption ((5.31). We
conclude that (5.26]) holds true.

In order to complete the proof of this theorem it thus suffices to show that for all ¢ €
[O, 3—\2/5] and corresponding polynomial h, := 2% — z(y? + 212) + 37\2/§y3 + £z3, the connected
component H, C {h, = 1} that contains the point @) = (8) is a CCPSR manifold. Define
the Py-part of hy as Pz ((4)) := %y?’ + £z3. One can easily check that

i max Yy 3 = max 2 \/§ = 2
3V—<H(H\£%@«Z»<H@NIiWFOm I') {&@%wﬁ} 35

which shows that max Piso((Y)) = ﬁ as required. We use the linear transformation

z

1 00
B=|v3 1 0| € GL(3)
0 0 1

and transform h, to

Y T x 2 2 2 3 3
hg((g)) = h@(B (g)) :x(y —Zz )+ﬁy + 027

In the new coordinates, #, := B~ (Hy) C {71 = 1} is given by

-t

T y? 22 2 2

H= y y<0, y">=z2
z

1
This follows easily from B - <_5/§ ) = (é) € H, and that x — oo for all sequences in

{y<0 y2 > 22 ={y <0, y* > 2%} that convergetoapoint ind{y<0, y>>2*}={y>
0, y*> = 2%}. The latter follows from f + 0 < 3\f < 1forall /e [0, 3\f} We know that

1
(\/3) =Bt ( ) € ﬂ{g is always a hyperbolic point of hy for all £ € { , } Hence, in
0 0 3\[

order to show that F{, consists only of hyperbolic points of ;Lg, it suffices to show that
0 —y z
1 5+ 9
det <—2a hg> —det| -y —o—2y 0
z 0 x— 3z
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1

2
_ Y — 025 + 30yt — =yt + ——y32 — 2P —P 4+ 22 <0
(3\/_ f

V3 3

::Rl(yvz)

for all (¥) € {y < 0, y* > z?}. The prefactor ﬁ%zg is always positive if y?> > 22, and
the term —y? + 2% is always negative. Hence, it suffices to show Ry(y,z) < 0 for all (¥) €
{y <0, y2 > 22}. We calculate

2
Ro(y, +y) = ¢° 0430 — 20| =0,
(v, £y) =y <3\/§3F \/— \/—:F )

which implies that R,(y,2) vanishes on d{y < 0, y? > 2?}. Since the set {y < 0, y* > 2%}
is a cone and Ry(y, z) is for all £ € [O, 3%/3] a homogeneous polynomial of degree 5, it only
remains to check that

Vs € (—1,1) Wl € losf/g] . Ri(~1,) <0. (5.33)

We find that s = 1 and s = —1 are roots of R,(—1,s) for all £ € [O, 3%}, which allows us to
consider

Rg(—l,S) . Rg(—l,s) . 3 2 2 2
GoDetD 21 ls +\/§s 3£s+3\/§.

The condition ([5.33)) is equivalent to

Ny(s) :=

2
Vse (—1,1) Ve e |0,——=| : Ny(s) > 0. 5.34
e o2 me (531
This motivates checking solutions of Ny(s) = 0. We get
2 352+ 1

Ni(s) =0 & (= : :
(s) 3v3 s(s2+3)

We will show that M(s) := s?(’jjj[é) ¢ [0,1] for all s € (—1,1), which implies that there exists

no pair (¢,s) € [O, 3—\2@} x (—1,1), such that Ny(s) = 0. Since Ny(1) = % > (, this will then

shows that N,(s) > 0 for all (¢, s) € {O, 3%/3] x (—=1,1) and in particular imply ([5.34). We see

that

1, Vs>0,

which implies that we can reduce our studies to s € [0,1). The first derivative of M(s) is
easily seen to fulfil
—3(s* — 252 + 1)

<0 5.35
s2(s? + 3)2 ( )

OsM(s) =

for all s € (0,1). Furthermore
lim M(s) = oc. (5.36)

s—0, s>0

The estimate (5.35)) and the limit ((5.36)) imply
Vs e (0,1): M(s) > M(1) =1.
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Hence, the equation M (s) = 1 has no solutions in the half-open interval [0,1). We conclude

that - holds true.
Summarising, we have proven that for all ¢ € [O f‘l H, is a CCPSR manifold of
dimension 2, which implies the same statement for 3,. This finishes the proof of Theorem [5.6]
O

Remark 5.7 (Direct application of Theorem [5.6). Theorem [5.6] might be a little surprising,
since now we have a relatively easy way of checking if a connected PSR manifolds H C {h =
1} is closed. We have to transform h to the form h = x* —z(y, y) + Ps(y) as described in
Proposition (this involves possibly the task of diagonalising a positive definite quadratic

form), calculate ﬁn\\a—}i P5(z) (which should always work with a computer algebra system like
MAPLE since P; is a cubic polynomial, i.e. the related equations are n quadratic equations

for dim(H) = n), and whenever |I|nHai>§ Ps(z) < % we know that H C R"*! is closed and

in particular complete (cf. [CNS| Thm.2.5] or Proposition [4.17)). On the other hand, the
connected component H of the level set {h = 1} for any h of the form (3. 12 which contains
the point () = () is automatically a CCPSR manifold if mlax Ps(z) < 3\[

Together with Theorem we have obtained the following characterisation of the moduli
space of CCPSR manifolds of dimension n > 1 under the action of GL(n + 1), cf. Definition
0. 2)

Proposition 5.8 (Characterisation of the moduli space of CCPSR manifolds). Foralln € N,
the set of hyperbolic homogeneous cubic polynomials

en::{x3—x<y,y>+P3<y> max Py(2) < - f} (5.37)

is a generating set for the moduli space of n-dimensional CCPSR manifolds under the action
of GL(n + 1), i.e. for every CCPSR manifold H of dimension n there exists an element
h € @, such that the connected component H C {h = 1} which contains the point (%) =
(3) € {E = 1} C R™ s equivalent to 3. The set C, C Sym® (R"1)" is a uniformly bounded

n3+3n24+2n
6

compact convex subset of the affine -dimensional affine subspace

{933 —z(y,y) + Ps(y ’ P; € Sym® (R")* } C Sym® (R"+1>*.

The boundary of C,, that is 9C,,, is a continuous submanifold of Sym?® (R™1)*. Purthermore,
h € 0C,, if and only if the initial H does not have regular boundary behaviour.

Proof. The existence of h € @, follows from Proposition and Theorem . h € 0C, =

{x3 —z(y,y) + Ps(y) | max Psy(z) = V if and only if the initial 3 does not have reg-

ular boundary behaviour follows from Lemma [4.6) and Theorem [5.3] It remains to show
that G, C {x3 —2(y,y) + Ps(y) ‘ Py € Sym?® (R")*} C Sym® (R™1)" is compact and that

0C, C Sym® (R"™*1)" is a continuous submanifold. For compactness we need to show that

the condition max Ps(z) < % automatically implies that Ps(-,-, ) viewed as a symmet-

ric 3-tensor is bounded entry-wise, and we need to show that €, is closed in the subspace
topologyﬂ. This is equivalent to showing that all third derivatives of P3(z) are bounded

n +6n +11n+6

' With respect to the topology induced by the linear homeomorphy of Sym? (R”H) and R
Note that said topology on Sym® (R"*1)" does not depend on the choice of the linear homeomorphism.
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on {||z|| = 1}. This follows from the fact that for all P; fulfilling max P;(z) the

- _2_

I12l1=1 3V3’

corresponding h=2*—z(y,y) + P3(y) € €, defines a CCPSR manifold and, hence, we can
use Lemma and conclude that each entry in Ps(-, -, -) is indeed bounded. C,, being closed

follows from the continuity of ‘1‘rn”ax P5(z) with respect to the prefactors of the monomials in

Ps(y), or equivalently the prefactors in the corresponding symmetric 3-tensor Ps(-,-,-). We
conclude that €, C Sym® (R™!)" is compact in the subspace topology. The fact that OC
is a continuous hypersurface in Sym® (R"*!)" also follows from the continuity of the map

Py — ﬁn‘laxi P3(z). However, note that this map is for n > 2 in general not smooth, or even
2zl|l=

differentiable. To see this, consider the one-parameter family Pi(y) = yi + ty3, t € [O, 3%],
in Sym® (R"*!)* and observe that

1. 0<t<1
t — max Pj(z )—max(zl+t22>: L, %
I2l|=1 I2l|=1 t, lsit=gm

does depend only continuously on ¢ and is not continuously differentiable at t = 1. O

Remark 5.9 (Comparison of €, with other bounded generating sets obtained via rescal-
ing of the A’s). Note that for any compact set C' C Sym?® (R"™)" of dimension dim(C) =
dim (Sym3 (]R"H)*), such that C contains 0 € Sym® (R"*1)") and any given CCPSR. mani-
fold H C {h = 1}, we can always choose r > 0, such that rh € C. Then H is equivalent to
i H C {rh = 1}. This shows that one can choose a generating set for the moduli space of
n-dimensional CCPSR manifolds that is contained in a compact set C' and, hence, bounded.

It was however until now for n > 2 not known whether one can choose a compact generating
set like €, in Proposition For n = 1 it was already shown in [CHM, Cor.4] that the
moduli space of CCPSR curves is generated by the set {z%y, x(2% —4?)} C Sym® (R?)", which

is a compact set. One can show that z%y is equivalent to z3 — xy? + %y?’. By comparing

with €, = {x3 —zy® + Ly? ‘ L] < %}, we see that z(2? —y?) = 2% — zy? is an inner point
of €; and 2® — xy® + %yiﬁ is one of the two points in 9C;.
Proposition allows us to answer the initial question at the beginning of this section.

The polynomial h = 2 — z(y,y) + Ps(y) + eV (y) as in defines a CCPSR manifold

H. C {h. = 1}, (}) € H,, if and only if e (P3(2) +V(z)) < 32 Additionally to the

answer to that question, Proposition yields a geometric result for the moduli space of
n-dimensional CCPSR manifolds (cf. Deﬁnition B-2).

Corollary 5.10 (Path-connectedness and convexity of moduli space of CCPSR manifolds).
Forn € N ﬁxed let h,h € C, and let H C {h = z* — z{y,y) + P3(y) = 1}, respectively
H c {h=a*—x(y,y)+ Ps(y) = 1}, denote the corresponding CCPSR manifolds containing
the point () = (§). Then the smooth curve

v:100,1] = €, C Sym® (R"H)*, v(t) = (1 — t)h + th,
defines an n-dimensional CCPSR manifold H; C {fy(t) =(1—t)h+th= 1} as the connected
component containing (3) for all t € [0,1)]. Furthermore, Ho = H and H, = H.

Proof. For all t € [0,1], () = 2® — z(y, y) + (1 —t) P5(y) + tPs(y). Theorem [5.6 implies that

it suffice to show max ((1 —t)Ps(z) + tE(Z)) < % for all t € [0,1]. We get

max ((1 = t)Ps(2) + tPs(2)) < (1—1) <max Py(z )> +t (max Py(z ))

l[=l=1 l[=l=1 Il
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2 2 2

+1 =

3v3  3vV3  3V3

as required. O

<(1-1t

Remark 5.11. Two distinct points in v([0, 1]) need not be equivalent in general, and they are
also not inequivalent in general. Recall that in general we have seen in Lemma that the
representative of a CCPSR manifold H, dim(H) = n, in €, is never unique. For example for

a CCPSR manifold H C {h = 2*—2(y,y) + P3(y) = 1} with max Pi(z) = 3%/3, which is never

equivalent to H C {h = 2® — 2(y,y) = 1} (since K is singular at infinity and ¥ is a CCPSR
manifold that is not singular at infinity), we define y(t) = #* — x(y, y) + (1 — 2t) Ps(y). Then
H = Ho C v(0) and FH;v(1) are equivalent (via sign-flip in the y-coordinates), but H 1= H.

Next we will present an application of the generating set €,, for the scalar curvature of
CCPSR surfaces. Recall that we already have an estimate of the scalar curvature Sy of n-
dimensional CCPSR manifolds that does not depend on the considered CCPSR manifold, see

Theorem We will now show that (4.15]) is indeed not a sharp (Remark |4.11]) estimate for
dim(H) = n = 2, that is for CCPSR surfaces, and give a sharp estimate in that dimension.

Proposition 5.12 (Sharp Ss-bounds for CCPSR surfaces). The scalar curvature Sg; of a
CCPSR surface H fulfils the global estimate

9
— 1< Sk <0. (5.38)

More specifically,
Sie=0 if H={axyz=1, x>0, y >0}, i.e. Thm.[2.45a),

9
Sy = 1 if H={x(zy—2%) =1, >0}, i.e. Thm. |[2.45b),

9
—1<S§]{<0 if HE{zyz=1, >0, y>0} and H % {x(zy — 2°) =1, x > 0}.
Proof. We can for H C {h = 1}, @) = (é) € H, h = 2° —z(y* + 2%) + P ((¥)),

H(rggm’}‘( P ((Y)) = r%, r € [0,1], which covers all possible CCPSR surfaces (cf. Theo-
E

rem [5.6)), assume after a possible orthogonal transformation in the (y, z)-coordinates assume
that

Py((2) = (3\2@;,3 +hy+ ez3> | (5.39)

Note that Proposition ensures that we can for any p € H always choose a linear trans-
formation of the form 1) which maps (é) € H C {h=1} CR3to p, so that we only need
to consider all cubics P3 ((¥)) of the form to prove the claim of this proposition. We
use Proposition , equation , to obtain

Sy ((§)=—2+7r (Zk? - ‘fk) : (5.40)

Observe that Sy ((¥)) does not depend on ¢ € R. Hence, we only need to be concerned with
the domain for k£ € R. For r = 0, I is equivalent to Thm. m d) (see the proof of Theorem
part d)). Hence, H is in particular not equivalent to Thm. a) or Thm. b). We
obtain

S ((3) =2 (~3,0). (5.41)
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With that in mind we will now assume that r € (0,1]. Then

Yy :ri max z z :i. )
(LB = @ ||<z>||1<3fy+ky +g> wi o O

We have shown in the proof of Theorem |5 ﬂ in the part where we have proven (5.13) that %
needs to be an element of [ 7 f} The condition for (5.13)) is precisely ((5.42)). We deduce

that for all r € (0, 1], the allowed domain for k is also { 7 f} Consider the function

3., V3
@(k) = ZkQ — 7,

so that Sy ((3)) = =2+ rO(k). One can easily verify that
1 1
min Ok)=0—F4|=—,
ke[-2/v3,1/v3] (k) <\/§> 4

el ) = <—j§> 2.

Hence, with (5.41) we have shown that for all r € [0, 1]

1
—2 - r < Su(($) < 2242
k=1/v3 k==2/V3

For r=1ke { T f} implies with (5.42|) that ¢ = 0, see also the proof of Theorem ,
and the following discussion. There we have also seen that for r = 1 and £ = 0, H is

equivalent to

2

1
7
For Thm. a) respectively r = 1, k = — 2, and £ =0, Sy ((§)) = 0. Furthermore in
that case JH is a homogeneous space. This can be seen by showing that

Thm. P45 b) if k =

wyz = a(y? — 22) = h,

hence the (flat) Lie group SO(1,1) x R.( acts transitively and isometrically on the corre-
sponding CCPSR surface, where the R.g-part acts via

-2

xXr S "
Yyl — SY ) s € IR>07
z Sz

and SO(1, 1) acts on the quadratic form y* — z2. This shows that for H withr =1, k = —%,
and £ =0, Sy = 0.

For Thm “ 5| b), for which the corresponding CCPSR surface is equivalent to the case
r=1kF= \/g, and E 0, H is also a homogeneous space. This is a bit more difficult to find
than for Thm. [2.45(a), but one can show that the Lie group corresponding to the Lie algebra

1 0 O 0 00 3
g ‘= span Al =10 -2 0 ) A2 =10 0 2 5 [Al,AQ] = A1A2 — A2A1 = —§A2,
0 0 -— 1 00

1
2
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acts transitively and isometrically on the corresponding CCPSR surface. Note that in the
untransformed coordinates in Thm. a), one can show that Ry x Ry acts simply
transitively on H via unimodular diagonal matrices, cf. [CHM| Ex.1]. Hence, for the case
r=1k= %, and ¢ = 0, we have shown that Sy = —%.

It remains to show that —% < Sy < 0 if H is not equivalent to either Thm. m a)
or Thm. [2.45|b). Observe that for r € [0, 1), —% < Sg < 0 follows from k € [—%, %],

(5.40), and (5.41f). For r = 1, the existence of a point p € H, such that the corresponding

cubic polynomial h can be brought to the form (3.12) with k& € {—%, %} via a linear

transformation of the form (3.7)) already implies that H is equivalent to either Thm. a)
or Thm. b). Hence, H not being equivalent to either Thm. a) or Thm. b)
implies that with respect to each p € H, the form (3.12)) with P; as in (5.39)) implies that

rel0,1)ork¢ {—%, %} and, hence, that —% < S5 < 0. This finishes the proof. O

The newly acquired estimate ([5.38]) for the scalar curvature Sy of CCPSR surfaces is thus
indeed sharp. The general estimate for Sy derived in Theorem that is (4.15)), reads for
CCPSR surfaces

which is as we have seen not sharp, neither from above nor from below. One might be able
to find a better estimates for CCPSR manifolds H of dimension dim(H) > 3, we leave this
as an open problem for future studies.

Proposition [5.12] also shows that the sectional curvature of CCPSR surfaces, which is
just a smooth function Kg = Ky(9,,0.) € C°(H) for CCPSR surfaces, can also be sharply
bounded since Kq = %Sg{, cf. equation .

One application of Proposition lies in the theory of Kéahler cones. Since this is not the
focus of this thesis, we refer the reader to [We| and more specifically [Ma]. For the following
remark, see also [CHM| p.8, Ex.|

Remark 5.13 (Relation to geometry of Kéhler cones). Let X be a compact Kéhler manifold
of complex dimension 7. Then on the Kéhler cone X in the (1, 1)-cohomology H"!(X,R) of
X, one can define a homogeneous polynomial h : X — R of homogeneity-degree 7 by

h(w):wU”:wU...Uw:/w/\.../\w, (5.43)
T times X

where U denotes the cup product. Then
H:={weX|hw) =1} c H"(X,R) (5.44)

equipped with gsc = —%82h]Tyng{ is a generalised projective special real manifold of dimen-
sion dim (H"(X,R)) — 1.

One more specific field in this area is the study of Kéhler cones of Calabi-Yau manifolds
and their geometry, specifically in complex dimension 3 [Will Wi2l [KW]. For complex
manifolds of complex dimension 4, examples have been studied in [T]. One specific conjecture
in this field is the following.

Conjecture 5.14 (P.M.H. Wilson, [Wi2]). Let X be a complex 3-dimensional Calabi-Yau
manifold and let H be as in (5.44]). Then the sectional curvatures of (.‘H, %gg{) are bounded
by —% from below and O from above.
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Note slightly different conventional factor in gs¢ in comparison with our conventions.
While we have not found a complete answer to the above conjecture, we have found a partial
answer for the case where H is complete and dim (H>!(X,R)) = 3, i.e. when K is a closed
PSR surface in R?.

Corollary 5.15. Conjecture holds true if 3 is contained in a complete PSR surface.

Proof. This follows immediately from Proposition where we note that there exist only
one sectional curvature in the case of surfaces, and keep in mind the conventional factor of %
for the metric used in [Wi2]. O

At this point, to my knowledge, it is however not clear which complete PSR manifolds
can be realised as in ([5.44)). Cubics of the form are subject of active study [KW]J.

Lastly in this section we will give a second alternative completeness proof for closed PSR
manifolds, additionally to Proposition [£.17 While the proof is similar in comparison with
the proof of the latter proposition, it makes use of Theorem 5.6, which is a stronger statement
than Lemma [4.10, However, the second alternative proof of CCPSR completeness requires
much less calculating. We will make use of the following lemma.

Lemma 5.16 (Family of compactly embedded geodesic balls). Let M be manifold of di-
mension n > 1 with a locally finite atlas, C C RY be a compact subset for some N € N,
and g() : C = T (Sym2 (T*M)), c — g(c), be a family of Riemannian metrics depending
continuously on ¢ € C' in the sense that the map

g:Cx M — Sme(T*M), (c,q) = g(c)g,

is continuous. Let p € M be arbitrary and fized. We denote by B9 (p) C M the geodesic
ball of radius r > 0 around p € M with respect to the Levi-Civita connection of g(c). Then
the following is true:

iné sup r|>0. (5.45)
e B$<C) (p)CM compactly embedded
Proof. Suppose (5.45)) is false. Then there exists a sequence {¢;,i € N} C C, such that

lim sup r=20.

1—>00 ETTCRIEN
BI'°Y (p)C M compactly embedded

=T

Since C' C R¥ is compact, we can restrict to a subsequence if necessary and assume without
loss of generality that {¢;,i € N} converges to a point ¢ := lim ¢; in C. Then, by assumption,
71— 00
sup r= limr; =0.
? 1—00
BZ'“) (p)C M compactly embedded

But this is a contradiction to the fact that g (¢) is a Riemannian metric and, hence, around

every p € M there exists a positive maximal radius r > 0, such that BI® (p) C M is
compactly embedded (recall that independent of the considered Riemannian metric on M,
the induced metric topology coincides with the given topology on M). Hence, ({5.45]) holds
true. u

Proposition 5.17 (Alternative closed PSR manifolds completeness proof Ne2). Closed PSR
manifolds (3, gsc) are geodesically complete.
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Proof. Let n = dim (H). Assume without loss of generality that H is connected, i.e. a
CCPSR manifold. Using Theorem [5.6, we can without loss of generality assume that H =
Hp, C {hp, = 2* — 2{y,y) + P3(y) = 1} is the connected component that contains the point

() =(3) € {h =1} and that Pge{mang( ) <

max < 3\[} C Sym® (R™)*, where we view the

set {ﬁﬁ)g Py(z) < 335} as a compact subset of RY for N = dim Sym? (R")" = nlt3n’t2n

Consider the set
M = N dom (Hp,) .

Pg,E{rznaLX1 P3(2)< f}

Lemma |4.4 implies that M = {||z|| < } C R", in particular M is a smooth submanifold of
R™. Recall that with Bp,(z) := hp, ((1 )), (f}fps, g}fps) is isometric to

9?Bp, | 2dP% )
dom (Hp,), — 2+ E
< ( PS) 3/61)3 9/812_73
for all P; € {m”a}i Py(2) < 3\2/5}, cf. (3.33). Since M C dom (Hp,) independent of P €
< 2

3v3

{maxP()

m } we can consider the family of Riemannian metrics on M
z

O*Bp,  2dP3,

g(.)ini—)—gﬂps 96]233

llzll=1
in the sense of Lemma (where we identify Sym® (R™)* with R" as above and note that
M as an open submanifold of R™ is in particular equipped with a finite atlas consisting of a
single chart), we can use Lemma and obtain that there exists r > 0, such that

Since ¢(-) depends continuously on the compact subset {max P3(2) <5 f} C Sym?® (R™)*

B! (0)y c M

is compactly embedded. Together with Proposition this implies that for all Py €

max P3(z) <

ma < V and all p € Hp,, By P3( ) C Hp, is compactly embedded. Hence,

|l

Lemma [2.21] shows that (J{PS, ggfp3) is complete for all Py € {|max Ps(z) < 3\2/3} ]

Note that the ideas behind the proofs of Proposition and Proposition [5.17| are very
similar, but in the proof of Proposition we needed to explicitly construct the compactly
embedded geodesic balls.
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6 Multi-parameter families of projective special real
manifolds

One subject of this thesis is the explicit construction of a multi-parameter family of inequiv-
alent CCPSR manifolds of dimension n > 3, see Theorem . Until now[T_ZI, only one one-
parameter family of inequivalent CCPSR manifolds has been known, that is the Weierstrafl
cubics and the corresponding CCPSR surfaces in Theorem f).

Let n > 3, n € N. We will give two examples of (n—2)-parameter families in Sym?(R"+1)*,
each consisting of pairwise inequivalent hyperbolic cubic polynomials, of which each defines
a singular-at-infinity CCPSR manifold of dimension n. We will use this result to find a curve
in Sym®(R"1)*, such that each point in the curve is a hyperbolic polynomial which defines
a CCPSR manifold which is singular at infinity and that the endpoints of that curve are
linearly equivalent to the polynomials a) and b) in Theorem m

In the following we will denote z = (z1,...,2,-1)7 and by (,-) the standard Euclidean

scalar product on R"~! c R+ = { (%)‘ z€R" w,x € R}.

Theorem 6.1. The (n — 2)-parameter families
n—1
F = {h:x(—w2+ (z2) +wd bzl | 1=b > ... > by > o} (6.1)
i=1

and

n—1
G:= {h =z (—w2 + Zb1222> +w(z,z) | 1=b>...>byq > O} (6.2)
i=1

consist of pairwise inequivalent hyperbolic cubic polynomials. The corresponding projective
special real manifolds

%(h)z{hzl’x<0,w<0, w2>(z,z>}, hed, (6.3)

and

n—1
}C(h):{hzl z <0, w<0, w2>2biz§}, heg, (6.4)

i=1

respectively, are complete.

Proof. Let M, N € Mat((n—1)x(n—1),R) be symmetric positive semi-definite matrices, such
that rk(M) = (n—1) or rk(N) = (n — 1), and denote by M(z,z) = 2T Mz, N(z,z) = 2T Nz.
We will show that

h=x (—w2 + N(z, z)) +wM(z, z)

is hyperbolic for any such M and N on the set H :={h =1 |2 <0, w <0, w? > N(z,2)}.
Consider the vector fields 9,, and wd,, — x0,, which are both non-vanishing along H. One
can check that they are orthogonal to each other with respect to

1
g = —iﬁzh = —aN(dz,dz) — wM(dz,dz) + zdw? — 2M (z,dz)dw — 2N (z, dz)dx + 2wdwdz,
and that g(dy,dy) = ¥ < 0, g(wdy, — 20y, WD, — x0,) = —rw? > 0 along H. In the above

formula dz is considered as column vector with components dz;. We will now show that g
is positive definite on the orthogonal complement of spang{d,,wd, — xd,} along H with

12That is, until [CDJL]. The results related to multi-parameter families of CCPSR manifolds in [CDJL]
are part of this thesis.
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respect to g and thereby prove our claim. One can easily verify that every vector field Y
along H which is perpendicular to spang{d,, wd, — xd,} can be written as

N(z,X)8w+ wM(z,X) —aN(z,X)

Y =X+ ;
w w

O,

n—1 .
where X = 3> X'0,,. Note that Y = 0 if and only if X = 0. We obtain
=1

2

g(Y,Y) = U; (2w’ N (X, X) = w*M(X, X) = 20M (2, X)N (2, X) + 2N (2, X)?) .

If 0 # X € ker N it follows by assumption that M > 0 and, hence, ¢g(Y,Y) > 0 along K.
Assume now that N (X, X) # 0. Observe that h = 1 is equivalent to —zw? = 1 —wM(z,2) —
xN(z, z). Hence, along H we have

— 2w N(X, X) +2N(z, X)?
= N(X,X)—2(N(X,X)N(z,2) — N(2,X)?) —wM(z,2)N(X, X)

> —wM(z,2)N(X, X).

Using this estimate and w? > N(z, z), we obtain

g(V.Y) > 2 (M(2, 2)N(X, X) + 2M (2, X)N (2, X) + M(X, X)N(z, 2))

—w
along H. If z € ker N, it follows that g(Y,Y) > 0. Assume that z ¢ ker N. Consider
Q(z,X,%,X) :== M(Z,2)N(X,X) + 2M(Z, X)N(z, X) + M (X, X)N(z, 2).

One observes that Q(z, X, Z, X)>0forall 2, X,z X e R if M(Z,2)M (X, X) > M(Z,X)?
for all Z, X € R*!. The latter estimate is true since M is positive semi-definite. Hence,
Q(z,X,2,X) >0 for all 2, X € R which shows that g(Y,Y) > 0 for Y # 0. This proves
that the pullback of g to H is a Riemannian metric, so that H is a projective special real
manifold.

We will now show that H C R"™! is closed in the subspace topology. Notice that H can
be written as a graph over U := {w < 0, w? > N(z,2)} C R" by rewriting the equation
h=1asx= %N((zzzz)) We need to check that © — —oo for (w,z) — OU. Observe that

OU = {w <0, —w?+ N(z,2) = 0}. For (z2,w) € U we have

1 —wM(z,2) < 1
—w? 4+ N(z,2) = —w?+ N(z,2)

xr =

and the right-hand side goes to —oo for all sequences in {(z(j),w(j)), 7 € N} C U with
the property lim (—w(j)* + N(2(j),2(j))) = 0. This shows that K is empty and, hence,
j—00

that H is closed in R"*!. By [CNS| Thm. 2.5] this implies that the projective special real
manifold H is complete.

Summarising, we have shown that H(h) is a complete projective special real manifold for
all h € Fand all h € G. It remains to show that F and G each consist of pairwise inequivalent
polynomials.

We will start with the family F. We define

K = {z(—w?® + (2,2)) + wM(z,2) | 0 # M > 0}
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and see that forallh € K, H(h) ={h=1 | h€ K, 2 <0, w <0, w? > (z,2) } is a complete
special real manifold. This follows from setting N(-,-) = (-, ). Furthermore, ¥ C K. In order
to study equivalence classes of elements of K, it turns out that we have to study the cases
(i) dimker M # 1 and (ii) dimker M = 1 separately. In both cases we will make use of
properties of the singularity set {dh = 0}. For a given h € K we will determine all possible
A e GL(n+ 1), such that ho A € K. In case (i) we will see that this set of transformations
is independent of the chosen h. In case (i7) it will turn out that this set of transformations
will depend on the chosen h. We will then use the results to show that ¥ C K consists
of pairwise inequivalent polynomials and that for each polynomial h € K there is a unique
representative in F of the GL(n + 1)-orbit of h.
For case (i) we will employ the following lemma.

Lemma 6.2. Let h € K and M the corresponding positive semi-definite bilinear form, such
that dimker M # 1. Then for A€ GL(n+1), ho A € K if and only if A is of the form

r 2B

A= r

I

, r>0, E€0O(n-1).

r

Proof. (of Lemma Observe that for all A € GL(n+1), dh, = 0 if and only if d(hoA) 41, =
0,1i.e. {d(hoA) = 0} is precisely the image of {dh = 0} under A~!. First we describe {dh = 0}
explicitly. We have

dh = 2x(z,dz) + 2wM (z,dz) + (=2xw + M (2, 2))dw + (—w? + (2, 2))dz.

To determine the points p = (2, w, z) such that dh, = 0 we distinguish the cases w = 0 and
w # 0. If w =0 then dh, = 0 if and only if 2 = 0. If w # 0 then dh, = 0 if and only if
w? = (2,2), 2 € ker M, and x = 0. To see this it suffices to substitute 2zw = M(z, 2) and
w? = (z,2) into 2zw(z,dz) + 2w?*M(z,dz) = 0 and insert the position vector z on the left
hand side of the latter equation. We have thus determined the set {dh = 0} and see that the

cone {dh = 0} \ {0} has the following components :
{dh =0}\{0} ={2=0, w=0, x> 0}{z=0, w=0, z <0}

U{z € ker M\ {0}, w=/(z,2), = =0}
U{z € ker M \ {0}, w= —/(z,2), 2 =0}

The latter two sets are either smooth manifolds of dimension dimker M in the case that
dimker M # 0, or empty if M > 0. By assumption they are not of dimension 1 and,
hence, connected. Since A~! maps connected components of {dh = 0} \ {0} to connected
components of {d(h o A) = 0} \ {0}, we see that if h = h o A is contained in K and, hence,
associated with some M > 0, then M and M have the same rank and A maps the line
{z=0, w=0, z € R} to itself. Note that it is precisely at this point that we have used the
condition dimker M # 1. This means that A has the following form:

A:<(QTBﬁ) . ), B € Mat(nxn, R), a e R"! B3R, reR\{0}.

By writing down (h o A)(z,w,z), one can easily verify that » > 0 and B = 20, C €
O(n—1,1), are necessary for ho A to be contained in K. Here O(n—1, 1) is the automorphism
group of the quadratic form —w? + (z, z) on R". Using the notation C' () = (53) we obtain

(ho A)(z,w,z) = 2(—w?® + (z,2)) + r 2(({r2a, 2) + r2 Bw)(—w? + (2, 2)) + GM(Z, 3)).
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C' is of the form

o= (-

: i),EeMat<<n—1>><<n—1>,R>,n,£ewl,ueR,

(oo ()

The left hand side of the above equation equals

( ETE—n®(n.-) | ET¢—un )
E—un™ (- )’

and fulfils

which in particular implies that 1 # 0 and tk £ = n — 1. To see the latter, suppose that
there exists 0 # v € ker E. Since ET¢ — un = 0, it follows that n = p~'ET¢. Hence,

(ETE—-n@ () v=E"Ev—p?E"¢(ET¢,v) = —p BT¢(€, Bv) =0,
which contradicts the assumption that ETE —n ® (n,-) = 1. With & := rza and p = T%B,

(ho A)(z,w,x) = z(—w* + (2, 2))
+ 773 (W (M€, €) — p)
+w?(2uM(Ez,§) + (1, 2) M(,€) — (k, 2))
+w(uM(Ez, Ez) 4+ 2(n, 2) M(Ez,£) + p(z, 2))

+(n,2)M(Ez, Ez) + (K, 2){(z, 2)). (6.7)
The requirements for h o A to be contained in K are (6.5) = = =0 and
pM(Ez, Ez) +2(n,2)M(Ez, &)+ p(z,2) >0 Vz e R*" 1 (6.8)

We will show that this implies k = 0 and p = 0 and, consequently, @« = 0 and § = 0. Firstly,
we will show that p = 0 implies kK = 0, and secondly that a transformation with p # 0
contradicts the requirement C' € O(n — 1, 1).
Assume p = 0. Then is equivalent to M(£,€) = 0. Since M > 0, this implies
¢ € ker M. Equation is thus equivalent to (k, z) = 0 for all z € R"~!. This shows x = 0.
Now assume that p # 0. Then by equation (6.5])

M(&,&) =p'p.

Note that this implies #~'p > 0 and in particular £ ¢ ker M. Inserting the above equation

in yields
2uM(Ez, &) + (n, 2)p"" p = (K, 2).

Using that, (6.7) becomes
(1. 2)(M(Ez, E2) + ™ plz, 2)) + 2uM(E2 ) (2. 2) = 0.
Since C € O(n — 1,1), we have n = p~*ET¢ and, hence,

(2, ETE)(M(Ez, Ez) + u~'pz, 2)) + (2, BT M&) 2% (2, z) = 0.

>0 Vz#0 >0 Vz#£0
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An immediate consequence is that ET¢ and ETM¢ are linearly dependent. Since ker ET =
{0} and £ ¢ ker M this is equivalent to ETM¢ = sETE for some s € R\ {0}, which shows
that M¢& = s&, that is € needs to be an eigenvector of M. This also shows s > 0. Hence,

(=, ETE)(M (B, B2) + (5™ p + 2%)(2,2)) = 0.
>0 Vz#0

This shows that ET¢ = 0 which contradicts ker E = {0}. This proves p = 0, k = 0, and
¢ € ker M.

Summarising, we have shown that A needs to be of the form

A:(%), CeOmn—1,1), r>0.

For such A, equations (/6.5 and are automatically fulfilled, and equation (6.7)) becomes
(n,z2)M(Ez,Ez) = 0. (6.9)

Since rk £ = n — 1 we know that M (Ez, Ez) is a non-vanishing quadratic polynomial.
Hence, is true if and only if n = 0. As we have seen before, n = 0 implies £ = 0 since
C € O(n —1,1). Observe that ¢ = 0 and C € O(n — 1,1) also imply —pu? = —1. The
inequality becomes puM(FEz, Ez) > 0, from which we deduce that ¢ = 1. Hence, all
possible transformations such that ho A € K with

h=x(—w?+ (z,2)) +wM(z,2), M >0, M #0, dimker M # 1,

can be written as

i
Il

N
NI

, E€O(n—-1), r>0, (6.10)

independent of the choice of h € K. O

Next, we will deal with case (7).

Lemma 6.3. Let A € GL(n+ 1), h € K and M the corresponding positive semi-definite
bilinear form, such that dimker M = 1. Then ho A € K if and only if M has at least 2
distinct positive eigenvalues and A is of the form or, if M has precisely 1 positive
eigenvalue, A can be written as a product of transformations of the form and

1

1 | —1
2 13 11
Sl E-EE
21210

Furthermore, in the case when M has precisely 1 positive eigenvalue the two sets
{hoA|A€eGL(n+1), hoAe K}

and
{ho A | A is of the form (6.10)}

coincide.
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Proof. (of Lemma In case (i), that is dimker M = 1, {dh = 0} consists of 3 distinct
lines that intersect at 0 € R™+!,

{dh =0} ={2=0, w=0, x € R}
U{z € ker M, w =/(z,2), x =0}
U{z € ker M, w = —/(z,2), x =0}.

Note that each of the latter two sets is not a line, but their union is a union of two distinct
lines. Contrary to case (i) we can no longer assume that a transformation mapping h =
r(—w?+(2,2)) +wM(z,2) € K to h = x(—w? + (z, 2)) + wM(z, z) € K preserves the line
{z=0, w=0, z € R}, since all connected components of {dh = 0} \ {0} are of dimension
one. Note that we can, after a possible orthogonal transformation of the z-coordinates,

assume that B
)\1 /\1

which in particular implies ker M = ker M. Thus in addition to the transformations (6.10]),
considered in case (7), we need to consider transformations of the form

E | ¢ v
A= ( RS ) , v € ker M\ {0},
al | B 0

which map {z = 0, w = 0, x € R} to either {z = rv, w = r||v|, = =0 | r € R} or
{z =rv, w= —r|jv|, x =0]| r € R}, and are required to preserve {dh = 0} = {dh = 0}. By
calculating (h o A)(z,w,z), we obtain the following system of equations, which is equivalent
toho A= h:

F2[vll B+ 2B(8,v) £ [Jo| M (€, €

(o, 2)(F2llvll(n, 2) + 2(Ez, v)) £ |[v]| M(Ez, Ez
_2M<O‘a Z><777Z> + 2<a,z>(Ez,§> - 5< m, >
+B(Ez,Ez) +2(n, 2) M(Ez,&) + uM(Ez, E2) = M(z,2) (6.17)

F2|v][B(n, 2) + 26(Ez,v) £ 2||v[| M(Ez,§) F 2|v]|p{a, 2) + 2(§, v){(ev, 2) = (6.11)
B(—p? +(&,€)) + uM(&,€) = (6.12)

(o, 2) (=% 4+ (€, €)) + (n, 2)(=28p + M(E,€)) + 26(E2,€) + 2uM (E2,£) = (6.13)
—(a, 2)(n, 2)* + {a, 2)(Ez, E2) 4+ (n,2) M(Ez, Ez) = (6.14)

) = (6.15)

)= (6.16)

< 2)

We will show that such a transformation exists if and only if A\ = ... = \,_o.

Claim 1: dimker £ < 1.

Proof. In general, dimker(c, ) > n — 2. Suppose dimker £ > 1. Then there exists Y €
R\ {0}, such that Y € ker(a,-) Nker E. Hence, by equation (6.16)), 0 = (Y,Y), which is
a contradiction to Y # 0. O

Claim 2: dimker £ =1 = ker E ¢ ker(a, -).

Proof. Suppose dimker £ =1 and ker F C ker(a, -), and let 0 # Y € ker E. Again, equation
(6.16]) implies 0 = (YY) and, hence, contradicts Y # 0. O
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Claim 3: dimker F =1 = ker E' C ker(n, -).
Proof. Let 0 #Y € ker E. Equation (|6.14]) reads
- <O‘7 Y> <77> Y>2 =0,
——
#0
which shows that Y € ker(n, -). O

Claim 4: dimker £ = 0.

Proof. Suppose that dimker £ £ 0. We have shown that the only other possible case would
be dimker F = 1. For 0 # Y € ker E, we have also shown that Y € ker(n, ). Now equation
implies 0 = (YY), which, again, contradicts Y # 0. Hence, we have shown that
ker £ = {0}, i.e. E € GL(n —1). O

Claim 5: o # 0.

Proof. Suppose a = 0. Equation (6.16) is now equivalent to +||v||[ETME = 1. Since E €

GL(n — 1), this implies that M is invertible, which contradicts the assumption dim ker M =
1. O]

Claim 6: 1 = sa, s # 0.

Proof. 1f n € Ra\ {0} then there exists Y € ker(n, -), such that («,Y) # 0. Together with
E € GL(n — 1) this implies (o, Y)(EY, EY') # 0, which contradicts equation (6.14)). O

Claim T: A(@) — (ngn).

Proof. Suppose on the contrary that A (%) = (—Evll). Then for all Y € ker(q,-) equation
(6.16]) implies —||v||M(EY,EY) = (Y,Y). But M is positive semi-definite, hence this is a
contradiction. Note that this means that in equations 7, every “£” needs to be
“4+7 and every “F” needs to be “—". [

Claim 8: £ € ker M.
Proof. By construction, A is required to map the set {dh = 0} = {dﬁ = O} onto itself, that

0 v v
is it induces a permutation of the three lines R |0 |, R | ||v]| |, and R | —||v|| |. We already
1 0 0
know that the first line is mapped to the second. Therefore, either
v 0 v v
Alllef | eR{0] and  A|—[jv]| eR| =[] ], (a)
0 1 0 0
or
v 0 v v
Al=|lv||| eR|0|] and Aflv]| eR| ]| |- (b)
0 1 0 0
In case (a), Ev + ||v|]|{ = 0, and, hence, using the second equation in (a), Ev — |[v||{ =
—2||v[|§ € Rv = ker M. Similarly, in case (b) we have Ev — ||v||{ = 0, showing that Fv +
lullé = 2ljol € Re. .

In the following we will write £ = kv, k € R.
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Claim 9: 5 # 0.

Proof. This follows from the previous claim and equation (6.15]). ]
: | _ 1 _ 1 _ AR2 T

Claim 10: ¢ = By 1= DB 5= — R &= 4B°E" v.

Proof. We have shown that § # 0 and £ = kv € ker M. Hence, (6.12) implies u = +k||v|].
Furthermore the previous results imply that (6.15)) is equivalent to —2||v||Su+28k(v,v) = —1.
This shows that yu = —k||v|| and, hence,

1 1

"= By M a

One can easily check that equation (6.13]) is equivalent to (a, z)(—28us) + 26(Ez,£) = 0,
which shows that

1
(a,2) = (Ez,v)
sllv
Using this, equation (6.11]) is equivalent to
kel 1
B 467 |v
Hence, (a, z) = 48*(Ez,v). O

The restrictions derived from the equations (6.11)—(6.17) in the above series of claims
already imply the equations (6.11)), (6.12)), (6.13]), and (6.15)). With the above results, one
can show that the remaining equations (6.14)), (6.16]), and (6.17)) are equivalent to

1 5 B
o) (Ez,0)*+ (FEz,Ez) — WM(Ez,Ez) =0, (6.18)
168%(Ez,v)? + ||[v||M(Ez, Ez) = (2, 2), (6.19)

S (a0 4 Bz, B2) + o M(Fz, B2) = WG, -
_(v,v><Ez’U> + BBz B >+45||U||M<E Ez) = M(z, 2), (6.20)

respectively.

Claim 11: M(z,z2) = z,2) — 22 (Ez, v)2.

1
28(v,v) < (v,v)
Proof. By multiplying both sides of equation (6.18]) with —3 and adding them to (6.20)) we

obtain

1 _
” HM(Ez,Ez) =M(z,2).
v

26

By considering equation (6.19) we see that mM(Ez,Ez) = m@,z) — <§i> (Ez,v)?,

which proves the claim. O
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B
Claim 12: E is of the form £ = ( T 1 ), B € GL(n — 2).
4p|lv||

Proof. By the assumption M(z,z) = S7-72 \z2, it follows that either v = ||v||d., ,, or
v = —|[v]|0,,_,. Note that the sign does not depend on the cases (a) and (b) described in
Claim 8. Using this, one can easily check that Claim 11 restricts £ to be of the form

p— 1 .
0]

Recall that by Claim 8, Ev = —||v||{ = mfu in case (a), or Ev = ||v||¢ = —mv in case
(b). This shows that E needs to be of the form

0
o= ()
LI

where “+7 corresponds to case (a) and “—” to case (b). This and the requirement FE €
GL(n — 1) show that FE is of the claimed form. O

This shows that under our assumptions the equations (6.11))—(6.17)) can only be satisfied

if M has precisely one positive eigenvalue, i.e.

L 1 n—2
M(z,2z)=

— 2
23(v,v) ;Z’

This also shows that 8 > 0 is a necessary requirement.

Claim 13: F is of the form £ = Qﬂhvll ( ¢ T ), C €0(n-2).
2

Proof. Observe that Claim 12 shows ETv = FEwv, which implies (Ez,v)? = 72=1. Hence,
equation ((6.19) is equivalent to

n—2

|v[|[M(Ez,Ez) =Y 2} (6.21)

7
=1

and equation (6.18)) is equivalent to

|v|M(Ez, Ez) = 45*(v,v) <B (;) ,B <12)> : (6.22)

On the right-hand side of (6.22)), (-,-) denotes the standard scalar product on R"~2. Note
that, since F is invertible, (6.22]) shows that

n—2
M(z,z) = 48%||v]| Y_ 22,
i=1

so M also has exactly one positive eigenvalue. By comparing (6.21]) and (6.22) we see that

B = 726%\0 for some C' € O(n — 2). This proves that E = 2Bﬁvll (C i%), CeOn—-2). O
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2

n—2
Since M(z, z) is a positive scalar multiple of > 27, h is invariant under transformations

=1
of the form
C—l
A 1
C= 1 , C€0O(n—2).
1

Replacing A with the matrix CA, we can assume without loss of generality that F =
m ! +1 ). Summarising, we have shown that in case (a), depending on the choice of

the sign of v = £||v]|0., _,,

1
28]l . —
A= W\{JH 46!@” £|jv| ’
Ly | e | 1
3 | B 0
and in case (b)
1
28]l - —
A= | gy | T
L e | el |
48|v|l | 48]l
8 | B 0

which again depends on the sign of v = £||v|0,, ,.
Since both h and h are invariant under the transformation

1

—1

1

we see that, up to automorphisms of h and h, in each of the four possible cases we only need
to consider

1
Bl | |
A= 45]ell | 35T o]
ol | 3l | (1]
gl B 10

n—2 n—2
We set \ := 432||v]|, so that M(z,2) =\ 3 22, M(z,z2) = —8523 S 22, and
(3 A )
i=1 i=1

28
<1
A
_ 1
A= ZETE
A X | 1
g | B8]0
We define
rl 1
T —1
-~ s | =1
R, = d ) A= 31 % 1
r 2 |2
1 1 1
r2 2 2
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One can now verify that A = R/\_ 1 AR 15 . Note that A2 = 1 and that A is an automorphism

of the polynomial hy := x(—w?* + (2,2)) + w 3 22.
i=1
Claim 13 shows that the additional transformations obtained in the special case that

h is equivalent to hy when compared to the other considered cases are all conjugated to a
composition of the additional automorphism A of hy and transformations of the form (6.10).
This shows that

{hoA|AeGL(n+1), hoAe K} ={hoA| Ais of the form (6.10)}.

Hence, for choosing a representative of an h in & when h has the property that the corre-
sponding M has exactly one positive eigenvalue and dimker M = 1, it suffices to consider
transformations of the form (6.10)). This finishes the proof of Lemma . ]

With the help of Lemma [6.2] and Lemma [6.3] we will now choose a unique representative
in F for the GL(n + 1)-orbit of an element h € K. For a given positive semi-definite bilinear
form M there is a unique bilinear form

A1
M: ,)\12-~2/\n—1207
An—l

such that there exists E € O(n — 1) with the property that ETME = M. The ); are
the eigenvalues of M. M # 0 implies that M has at least one positive eigenvalue \; > 0.

Applying the corresponding transformation (6.10) with r = A\{, we see that h = z(—w? +
(z,2)) + wM(z, 2) is equivalent to

n—1
hed, h=a(—w*+ (z,2) +wd biz?, by=1, by >...>b, 1 >0,
i=1

and the b;’s thus uniquely determined by M. Summarising up to this point, we have shown
that the (n—2)-parameter family J consists of pairwise inequivalent hyperbolic homogeneous
polynomials, all of which define a complete projective special real manifold of dimension n.

We will now consider the family G and proceed similarly as for the family F. Consider
the set of homogeneous cubic polynomials

L:={x(—w?*+ N(z2,2)) +w(z,2) | 0 # N > 0}.

It is clear that § C L and that any element in L is contained in the GL(n 4+ 1)-orbit of some
element in §. For a given h = z(—w? 4+ N(z, 2)) + w(z, z) we want to determine all possible
A € GL(n+1), such that (ho A)(z,w,x) € L. We will see that the answer is independent of
the chosen h.

For dimker N = 0, h is equivalent to some h = z(—w? + (2, 2)) + wM(z, z) € K with the
property M > 0. In this case we know that there is a unique representative of h under the
GL(n 4 1)-action in F of the form

n—1
?L:$(—w2+ (z,z>)+waizi2, by=1, by >...>b,_1 >0,
i=1

which can easily be checked to be equivalent to

. n_lbn, nf
hzm(—w2+zblzz~2>+w(z,z>, 1:b L> . >

i=1
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Hence, h € G. The uniqueness property can be shown the following way. Assume that
h == (—w2 + 3yt czzf) +w(z,2) € Gand h = x (—w2 + ! @zf) + w(z,z) € G are

equivalent. The polynomials h and h are equivalent to

n—1
Wo=x(—w’+(z,2) +w)_ Cn*lzf eF

i=1 Cn—i

and

-/

n—1—
= z(—w* + (z,2)) +w Z Sn_lziz e,

i=1 Cn—i

>

respectively. We have shown that i/ and i are equivalent if and only if 2=t = ?—*1 for all

Cn—i n—

1 <7<n-—1. Since ¢; = ¢ = 1, this shows that ¢,_1 = ¢,_1. Hence, ¢; = ¢, must ilOld for
all1 <i<n—1.

Thus, we can reduce this question and assume that the h € L we are starting with has
the property that N > 0, N # 0, and dim ker N # 0.

Lemma 6.4. Let h € L\ {z(—w?+ N(z,2)) + w(z,2z) | N > 0}. Then ho A € L,
A € GL(n+ 1), if and only if

riF

A= r-

, FeOn-1), r>0.

[N

r

In particular the possible choices for A do not depend on h.
Proof. Let h = x(—w* + N(z,2)) + w(z, z). We obtain
dh =2z N(z,dz) + 2w(z, dz) + (—2wz + (2, 2))dw + (—w? + N(z, 2))dx.

We will determine the set {dh = 0}. Observe that for w = 0 it follows that (z,z) = 0 and,
hence, z = 0. Then all entries of dh are 0 for all z € R. For w # 0, substitute the equations
2wz = (z,z) and w? = N(z,2) into 2wz N(z,-) + 2w?(z,-) = 0, which is the first equation
in dh = 0 multiplied by w. We obtain (z,2) N(z,-) + 2(z,-)N(z, z) = 0, which in particular
implies 3(z, z) N(z, z) = 0. This shows that z € ker N. But then w? = N(z,2) = 0, which is
a contradiction to the assumption w # 0. Summarising, we have shown that for all N > 0

{dh =0} ={2=0, w=0, z € R}.

Hence, A needs to be of the form

A:<<aTBﬁ) r>’ Be€Mat(nxn, R), a e R"! BcR, reR\{0}.

Let h = z(—w? + N(z,2)) + w(z,2) and assume that h (A (72})) = E((Zj)) Denote by
(1%> =A (%) We obtain

h(A(%)) = (o, 2) + B+ ra) (=@ + N(Z,2)) + @z, 2).
Since w(Z, Z) does not depend on the variable x, this shows that

—W? + N(z,2) =r"" (—w2 + N(z, z)) .
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Hence, B = r~2C with

o (M) o= (M), cecum

For C' = ( 77ET1 i > the above equation is equivalent to

N

( E'NE —n® (n,-) | ENE&—pn >:<
§'NE —pun™ | N(&,6) —

Note that this shows u # 0. This is equivalent to

p? =1+ N(E€),
ETNE =,
E'NE -n®(n,-) = N.

In particular p # 0. Up to this point, we have shown that

1

r2F r’%ﬁ
A= rfénT rf%#
o 6] r

We calculate
H(A(3)) = (2. 2)
+w? (=B~ + 7R e, €))

+w” (=N, 2) + 172 (0, 2) (6, €) + 2r 2 (B, €))
+ w (ﬁr‘lﬁ(z, 2)+r 2Bz E2) + 2r % (n, 2)(Ez, 5>)
+ 1 Ya, 2)N(z, 2) + 1"_%@7, 2 (Ez, Ez).

By assumption, the entries of A need to fulfil the equations

Claim 1: £ € GL(n —1).
Proof. Substituting (6.25)) into ((6.28]) yields

Br (N(Ez, Ez) — (n,2)%) + r 2pu(Ez, Ez) + 2r 3 (n, 2)(Ez, €) = (2, ).

We multiply both sides of (6.30) by u? and substitute (6.24)) to obtain

\—1

)

(6.23)
(6.24)
(6.25)

(6.30)

Br1(p*N(Ez, EZ)—N(EZ,§)2)+T_%,M3<EZ, Ez)+2r_%uN(Ez,£)(Ez,§> = u*(z,2). (6.31)

Assume y € ker E. Then (6.31]) implies 0 = p*(y,y). Since u # 0 this implies y = 0. This

proves our claim.

[
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Claim 2: a = 0.
Proof. Suppose « # 0. Substituting (6.25]) into (6.29)), we obtain

r~Ha, 2)(N(Ez, Bz) — (n,2)*) + 172 (i, 2){Ez, Ez) = 0. (6.32)
Multiply both sides of (6.32)) by ru? and substitute (6.24]) to obtain
(a,2)(U*N(Ez, Ez) — N(Ez, &)%) + r*%/VLN(Ez,ﬁ)(EZ, Ez) =0. (6.33)

Claim 2.1: a #0 = ETN¢ = sa.

Proof. Equation (6.33) and E' € GL(n — 1) show that y € ker(c,-) implies N(Ey,¢{) = 0.
Hence, N(E-, &) = s{a, ). O
Claim 2.2: a #0 = s#0, { ¢ ker N.

Proof. Suppose that s = 0. Then (6.33)) becomes («, 2) N(Ez, Ez) = 0 for all z € R""'. But
E € GL(n — 1), N # 0, and a # 0, so this is a contradiction. Since ETN¢ = sa # 0, it
immediately follows that £ ¢ ker N. O
Claim 2.3: ET¢ =ta, t # 0.

Proof. Equation (6.27) implies that o, 7, and ET¢ are linearly dependent. Since n =
pPETNE = p'sa, it follows that ET¢ = ta. Then t # 0 follows from ET € GL(n — 1) and

£ 40. O
Claim 2.4: sgn(u) = sgn(—s) and dimker N = 1.
Proof. Observe that Claim 2.1-2.3 and a # 0 show that is equivalent to
12N(Ez, Ez) — s*(o, 2)? + r 2 ps(Ez, Ez) = 0.
Thus, for all y € ker(a, -) we have
> N(Ey, By) + r’%us<Ey, Ey) =0.

N > 0 and E € GL(n — 1) imply that pus < 0, which shows sgn(u) = sgn(—s). Since
(E-, E-)|ker(a,y > 0 it follows that N(E-, E-)|xer(a,y > 0. Hence, N is of rank n — 2 or n — 1,
the latter being excluded by the assumption that N > 0 but not N > 0. O

Claim 2.5: sgn(s) = sgn(t).

Proof. We have o = s 'ETN¢ and o = t 1 ET¢. The invertibility of E shows N¢ = st 1€,
Since ¢ ¢ ker N and N > 0, it follows that sgn(st™!) = 1. O

To conclude the proof of Claim 2, multiply both sides of equation (6.27) by ru and
substitute (6.24)) to obtain

— o, 2) + 7RG EN (B2, €) + 2r (B2, ) = 0. (6.34)
Claim 2.1-2.3 and « # 0 show that ((6.34) is equivalent to
—u+r’%<£,£>s+2r’%u2tzo. (6.35)

We have shown that all terms are non-vanishing and, by Claim 2.4-2.5, have the same sign.
Hence, ((6.35)) cannot be true. This completes the proof of Claim 2, that is o = 0. ]
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Claim 3: £ =n=0.
Proof. Since o« = 0, using (6.23) and ((6.24]) shows that equation ([6.29) is equivalent to

N(E-§) =0. But £ € GL(n — 1), thus it follows that £ € ker N and n = 0. Equation (6.27))
and F € GL(n — 1) now show that & = 0. O

Claim 4: =0, p=1, andE:r%F,FGO(n—l).

Proof. Equation (6.26)), ¢ = 0, and » > 0 imply 5 = 0. Using £ = 0 we see that equation
(6.31)) is equivalent to

r_%u(Ez,Ez> = (z,2). (6.36)

Equations (6.23) and (6.36) are satisfied if and only if 4 = 1 and r1E € O(n — 1), that is
E=riF with F € O(n—1). O
This finishes the proof of Lemma |6.4] O

Now one can show in the exact same way as for the family F that each element of L
has a unique representative in §. Hence, the (n — 2)-parameter family G consists of pairwise
inequivalent hyperbolic homogeneous cubic polynomials, each defining a complete projective
special real manifold of dimension n. This concludes the proof of Theorem ]

A consequence of the Lemmata [6.2] [6.3, and [6.4] is the following corollary.

Corollary 6.5.  The automorphism groups of elements h € G and h € F, h # hy =
n—2

r(—w? + (2,2)) +w X 22, are of the form
i=1

k
Aut(h) = O(mq) x ... x O(my), 1 <k<n-—1, > m=n—1

=1

The automorphism group of hy is generated by O(n — 2) and A defined as

1
1 | =1
_ T =1
A= —21% )
AN
21310

i.e.

Aut(hy) = O(n — 2) X Zs.

In view of Corollary also recall that the CCPSR manifolds associated to the polyno-
mials a) and b) in Theorem are homogeneous spaces (cf. equations (6.46)) and (/6.48)),
respectively and for a more detailed description). Next, we will show that the
CCPSR manifolds defined by elements of F and G of the form and , respectively,
are always singular-at-infinity CCPSR, manifolds, cf. Definition |3.16]

Proposition 6.6 (Singular-at-infinity property of & and G). Each CCPSR manifold H(h)
forhe F and h € G as in and , respectively, is singular at infinity.
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Proof. Let h = x(—w?+ N(z,2))+wM(z,2), H(h) ={h=1] 2 < 0,w < 0, —w?+ N(z, 2) <
0}, where M > 0or N > 0, and let (zy,. .., z,_1,w, )’ denote the linear coordinates of R™**.
We can assume without loss of generality that M and N are diagonal matrices, i.e.

251 m
M = , N= , >0, >0vV1i<i<n-—1. (6.37)

Hn—1 Tin—1
We want to transform h so that it is of the form h = 2® — x(y,y) + Ps(y) and that F(h) is

equivalent to the connected component H C {ﬁ = 1} that contains the point (3 ) = (§). We
startl| with the linear transformation A € GL(n + 1) of the form

273321 | z
A= —273 s |, A |w|=|—25w—2sz]. (6.38)
1 1
X

Then

-z (2_131112 +2723M(z,2) + 273Nz, z))
+ (—2’%103 +w (—2’13]\/[(2, z) + 2’%3]\7(2, z)))

:l‘g

n—1
—z (2—Hhu2+-§[j(2—%3ui+-2—%hh)z§>
i=1
1 nl 1
+ (—2_2w3 +w Z (—2_13m + 2_53772-) zf) .
i=1

After rescaling and relabelling the coordinates

1

2 (2_%3,1“ + 2713771)_5 (7
27;1 — (2,%3%%71 n 2_1377”71)—% s | (6.39)
. ~21377y,
x
we see that h is equivalent to
h=1"—2(y,y) + Ps(y)
::x3—thy>+yn<3vryn+ 2§f»fﬂ;igi§>' (6.40)

Since A maps (EZE’) _ (%) e H C {Ezl} to (2

described in equation (6.39) maps the point (z,w, z)” = (0,0, 1)T to itself), we see that H(h)

0
2% ) € H(h) (note: the linear map

oa\»—A

13The matrix A has been obtained with equation (3.7) in Proposition up to the ordering and names
of the coordinates.
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is in fact equivalent to H as required. Observe that
2
3v/3

max Ps(y) > E((O,...,O,l)T) =
llyll=1 _/—T/

independently of the considered M and N, and since we already know that H is a CCPSR

manifold we conclude that ”mHa>§ IDV:&(ZJ) = 3%@, cf. Lemma H Now we use Lemma and
yll=

deduce that K and, hence, H(h) are singular-at-infinity CCPSR, manifolds independent of
the considered M and N. In particular this shows that H(h) is singular at infinity for all
heJFuUS§. ]

Theorem [6.1] and Proposition [6.6] now imply the following.

Corollary 6.7. Forn >3, n € N, there exists a smooth curve v : [0,1] — Sym® (R"**)",
such that v(0) = z(—w? + (2, 2)), that is the polynomial a) in Theorem and (1) =
z(—w?)+w(z, z), which is equivalent to the polynomial b) in Theorem with the property
that for each t € (0,1), the level set {~(t) = 1} contains a CCPSR manifold that is singular
at infinity.

The above corollary is also true for n = 1 and n = 2. For n = 1, the polynomials a) and b)
in Theorem are equivalent, cf. [CHM, Cor.4]. Furthermore, the corresponding CCPSR
curve is equivalent to the connected component H C {x?’ —xy? + %y?’ = 1} containing
(y) = (§). Hence, they are both singular at infinity. For n = 2, one choice for + is

v(t) == (—w2 +(1- t)zQ) + twz?

If we compare these polynomials with [CDL, Thm. 1], we see that v(0) is equivalent to a),
that is zyz, (1) is equivalent to b), that is z(xy — 2?), and () for all ¢ € (0, 1) is equivalent
to e), that is z(y* — 2%) +y>. The corresponding CCPSR surfaces a), b), and ¢) are all singular
at infinity, cf. the proof of Theorem where this is shown.

Remark 6.8. Note that Proposition automatically implies that there exists a continuous
curve of singular-at-infinity CCPSR manifolds connecting the singular-at-infinity CCPSR
manifolds corresponding to Theorem a) and b), respectively. However, in Corollary
we show that such a curve can be chosen such that it is smooth and not only continuous.

Another important question about the structure of CCPSR manifolds defined by elements
of F and G is whether they are homogeneous spaces or not. We will show that they are, in
fact, never homogeneous spaces.

Proposition 6.9 (Inhomogeneity of H(h), h € FUG). Let h € FUG and H(h) be the
corresponding CCPSR manifold as in respectively . Then H(h) is inhomogeneous as
a Riemannian manifold™.

Proof. Recall that for h equivalent to an element in ¥ U G, we have shown In the proof
of Proposition that the corresponding CCPSR manifold H(h) = {h =1]| 2z < 0,w <

0, —w? + N(z,z) < 0} is equivalent to the connected component H C {h = 1} containing
the point () = (§) € {E = 1} C R™ with

2n1 ;
h:x3_$<y7y>+yn< 2 \/_T] 2)7

33l fzmzw ‘

14And H(h) is in particular also inhomogeneous in the sense of Definition

(6.41)
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for fittingly chosen pp > 0 and 9, > 0, 1 < k < n —1, cf. . Note that the result
corresponding to the formula hold also true if h corresponds, up to equivalence, to the
cases M > 0 and N = 0, respectively M = 0 and N > 0. For M > 0and N =0, h is
equivalent to

hin = 2(—w?) +w(z, 2),

and its equivalent polynomial of the form ((6.40]) is given by

2 1 n—1
By =2 —(y,y +yn< Y2+ — yf) 6.42
= el )t (Gt S (642)
For M =0 and N > 0, h is equivalent to
hon = x(—w? + (2, 2)),

and its corresponding form ([6.40)) is

Bgm =" — (Y, y) + Yn (3\/_yn — \3_712:1%> ) (6.43)

The CCPSR manifolds
ﬁ{l,n {hl n — } , ((1)) - g{l,nv (644)

and B
j‘fg’n C {hgyn - 1}, ((1]) € %277-” (645)

are homogeneous spaces. By applying the supergravity gq-map to each of them, H, , yields
a symmetric quaternionic Kahler manifold and J,,, yields a homogeneous non-symmetric
quaternionic Kéahler manifoldEL see [DV] [C]. In fact, one can show with the notation

{hl,n =2(—w?) +w(z,2) =1, £ <0, w< 0} = Hip, (6.46)
{hon =2(—w? + (2,2)) =1, <0, w <0} = Iy, (6.47)
that
Hin ERogx R (6.48)
Hy,, = =R H"™ , 6.49
2, SO(n _ 1) >0 X ( )

where (A, v) € Ry x R"! acts on points in {h;, =1, x <0, w < 0} via

2 %(z%—wv)
No)-[w] = Aw ,
) \ih(o+ (o, 0w+ 2(2,0))

3
(A1, v1) (A2, v2) = ()\1)\2, v+ A7 v2> for all (A1, v1), (Mg, v2) € RxR"™ and H"~! denotes the
(n — 1)-dimensional oriented hyperbolic space. In the following we will use the abbreviation
_ e \/§nk
V24, + i

15We only consider n > 3, the corresponding space T(p) for p = n —1 > 2 is always not symmetric, cf. [C].

(6.50)
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In particular, the Ps-term of & as in (6.41)) is of the form

2n1

Ps(y) = <3\2f 32 Z Uzyz> (6.51)
and fulfils

3\[015%52, 1<i<n—-1,1<57<n—-1,1<k<n,
Ps(0;, 05, 0k) = 0, 1<i<n-—1,j=k=n, (6.52)
s, i=j=k=n

In order to show that for all h € FU G the CCPSR manifolds H(h) = {h = 1| z <
0,w < 0,—w? + N(z,2) < 0} are inhomogeneous as Riemannian manifolds, that is are
never isometric to some Riemannian homogeneous space, we will study the first derivative
of the scalar curvature of the corresponding CCPSR manifolds H at the point (§) € H, i.e.
dS:;C‘ () We use Proposition [3.30 equation (3.40)), and obtain

(0;) =0 (6.53)

forall 1 <7<n-—1, and
i3] 3y 0 =" + (ZU’> i (S) 7 ()
S (z Uiaj) (z "o ) | 6.54)

Note that 1) and ‘D also hold for H, and ﬁl, and actually vanish identically for Ho
and H; as one would expect. Next, consider 1} as a symbolic equation in the variables
(01,...,04-1), so that

1;&]4 i#£k

a(zk (d%}‘(é) (&z)) = 6o} + ( Z%) g + 2 \/_ \/—Z (\/_02 +0; ) (6.55)

forall 1 < k <n—1. We will treat the cases N > 0 (corresponding to F) and M > 0
(corresponding to G) separately.

Case 1: N >0and M >0, M # 0.

After a possible linear transformation we can assume without loss of generality that N(z, z) =
(z,2). Then h = x(—w?*+(z, z)) +wM(z, ) is equivalent to h, := x(—w?+(z, z))+rwM(z, z)
for all » > 0. This can be seen by considering the rescaling

z r3z
wl = | rsw |. (6.56)
T r s

Hence, H(h) is equivalent to H(h,) for all » > 0 (since this is a continuous family of trans-
formations with r = 1 associated to the identity transformation 1). Thus with

V2 =2 )

9
hy = 2% — 2y, y) + yn | —= 6.57
2’ —x{y,y) +y (Bﬁyn ZT\/—MIH (6.57)
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(cf. (6.41)) we see that H(h) is equivalent to the CCPSR manifold K, C {ET = 1}, (8) € H,,
for all ¥ > 0. We define

_ Tk — /2
= —_—— 6.58
O-k<r) T\/§Mk 1 ( )
and obtain forall 1 <k <n-1
Yoy =3 (6.:59)
or O L = ol .
and
0% )
W(Uk(r)) = —6v2p;. (6.60)
r=0

and M = 0. Note that equation (6.54) shows that dSz

For the limit r — 0 of h,, we obtain hy = Egm, see 1) which corresponds to N = 1
(1) (0p) is an analytic function in r

around r = 0. Equation (6.55)) at Hs,,, that is at r = 0 respectively o0y = ... = 0,1 = —\/5,

reads
V3
01=...=0n—-1— _f \/_

forall 1 <k <n—1. Thus, for n # 5, p > 0 for all 1 < k < n — 1 and the existence of at
least one such pg > 0 imply

(—n+5) (6.61)

0 33 >0, ne{34)
ar <dS~ (5)(an)> r:ozkzl \/5( n S { <0, n>5. (6.62)

(0n) = 0, this shows that for all n # 5, n > 3, and for all M > 0, M # 0,

Since dSs,,, (3
0

M of the form ([6.37)), we can choose r > 0 small enough, such that dSx ’ L) # 0. Since

X, is equivalent to H(h) for all r > 0, we conclude that FH(h) is inhomogeneous.
It remains to take care of the cases with dim(H(h)) = n = 5. With the definitions above,
Proposition [3.29| yields

S5 () = nl1=m) =5 (i}l ai> +3 (i}l 03> . :le 010 (6.63)
i#j

We use the above equation (6.63)) and obtain with o}, = &x(r) for 1 < k <n —1 (6.58) and
the equations ((6.59) and for the first r-derivative

0 3
Yo (1 =5
S5, (1) = 5l W
and for the second r-derivative
32
2S5 ()]
—n+11) (Zﬁ) - Z it
7 1
,;]

5

3
[

(8 (13 + 13 + 13 + 13) — 2 (papaz + papss + piajia + pofis + ppia + piapia) ) -

N
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> (. One sees that

r=0

We want to prove %Sﬁ ((3))

02 9 i m
a5 ()] :4V(<><)>
with
8 —1 —1 —1
1 8 -1 -1
V=11 1 8§ _1
-1 -1 -1 8

viewed as a bilinear form. It thus suffices to show that all eigenvalues of V' are positive,
and indeed one finds that V' has precisely one simple eigenvalue \; = 5 and an eigenvalue of
multiplicity 3, namely A» = 9. Recall that, independent of n > 3, the map r — S5 (&)
is analytic around » = 0. Since all pq,..., s are non-negative and at least one value of
[, - - ., fg is positive (M >0, M # 0), we have shown that

o | O (1Y (i
oS )] =7v () (8)) >

0

Hence, there exists € > 0, such that 7 + Sz ((§)) is strictly monotonously increasing for all

€ (0,¢), and in particular Sz ((§)) > Ss,, ((§)). Since H, and H(h) are equivalent for all
r > 0, we have shown that Sy is not constant for any allowed initial choices of py, ..., 4.
This proves that the CCPSR manifold H(h) cannot be homogeneous.

Case 2: M >0and N >0, N # 0.

We proceed similarly to [Case 1] There is no special case for the dimension of J(h) in
comparison with for dim (H(h)) = 5. As in we can assume without loss of
generality that M = 1. Then for all 7 > 0, h = z(—w?+ N(z, 2)) + wM(z, 2) is equivalent to

by = 2° — 2y, y) + yn <3\/— \/ERZ 1\/_—:\/5] ?) :

and H(r) is equivalent to the CCPSR manifold 3, C {ET = 1}, (y)=(}) € HK,. Similar to
(6.58)) we define for 1 <k <n-—1

1—7rv2n,

o(r) == Yo R (6.64)
so that 5 5
) = -pn (665)

Equation (6.55) for the limit » — 0, i.e. at H, C {EO = El,n = 1} respectively o1 = ... =

Op_1 = \%2, reads

o <d5~\ )
AR

(—n+2)<0 Vn>3.

V3
oz 22
Hence,
SEXC
—= 2 nk >0
v

r=0
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since n > 3 and at least one 7, is positive, and the others are always non-negative. Since
dSﬁr‘ () (0p) is analytic around r = 0, there thus exists » > 0 small enough, such that
0
dsﬁr‘ (1) (On) # 0. This proves that H(h) is inhomogeneous.
0
Summarising, we have shown that for all h € ¥ U G the corresponding CCPSR, manifold
H(h) as in (6.3) respectively (6.4) is inhomogeneous. O

Lemma 6.10 (Scalar curvature of H,;, and Hs,). Forn > 3,

9
Sa,, = —gn(n - 1),

Sy, = (—Zn + 3> (n—1).

In particular Sy, , <0 and Sy, <O0.

Proof. This easily follows from n > 3 and equation (6.63) with o1 = ... = 0,1 = —= for
Hip,and oy = ... =0p_1 = —/2 for Hy .

O

Remark 6.11. We have seen in Proposition that the limits for r — 0 of ¥, and ﬁr
are H; ,, and Hs,, respectively. For elements h € FU G with rk(M) = rk(N) =n — 1, we
can thus interpret H(h) as an inhomogeneous CCPSR manifold “interpolating” the scalar
curvature between the homogeneous CCPSR manifolds manifolds ¥, ,, and Hs,, along the
curve in H(h) generated by the curve

cf. (6.38) and ([6.56]).

Remark 6.12 (Candidates for sharp Ss-bounds for dim(H) > 3). Note that setting n = 2
in the formulas for Sy, , and Sy, in Lemma @ yields —% and 0, respectively. Recall
that these are precisely the sharp Sy-bounds for CCPSR surfaces H as we have seen in
Proposition [5.12, Thus, the values —3n(n — 1) and (—%n + 3) (n — 1) in Lemma [6.10, or
one of them, might provide general bounds for the scalar curvature of n > 3-dimensional
CCGPSR manifolds, but as mentioned before after the proof of Proposition [5.12] we will

leave this as a problem for future studies.

Recall the definition of €, in , and Definition . With Theorem , the existence
of the pair-wise inequivalent (n — 2)-parameter families of CCPSR manifolds F, respectively
G, and Propositions and[6.9] we have gained following information about the moduli space
of CCPSR manifolds.

Corollary 6.13 (Lower bound of minimal number of parameters of “maximal” parameter
families). Forn > 3 there exists an (n—2)-parameter family of pairwise inequivalent singular-
at-infinity inhomogeneous CCPSR manifolds Hy, . 4, ,) of dimension n. In particular, for
each such H,, 1. o) there exists Py € Sym® (R™)*, such that h = 23 — x(y,y) + P3(y) € 9€,
and [J-C(tl )} = [H], where H C {h = 1} is the CCPSR manifold containing the point
(y) = (%) € {h =1} C R". This also means that a maximal multi-parameter family of
pairwise inequivalent n > 3-dimensional CCPSR manifolds depending on m € N parameters
in the sense that there exists mo multi-parameter family of pairwise inequivalent n > 3-
dimensional CCPSR manifolds that depends on m + 1 parameters fulfils m > n — 2.

7777 tn—2
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Remark 6.14 (Implications and for a possible topology on the moduli-space of CCPSR
manifolds in dimension n > 3). We can use the results of this section to describe one problem
in finding a meaningful topology on the moduli space of n > 3-dimensional CCPSR manifolds
as defined in Definition [3.2] Recall that we have always viewed that moduli space as a set,
see Remark . Consider for r > 0 the cubic polynomial h, in and the corresponding
CCPSR manifold ﬁr C {ﬁr = 1}. Further assume that in 1) i >0foralll <i<n-—1.
Then, when viewing &, as an element of the vector space Sym (R,

lim i, = hyp, lm h, = hy,,

r—0 ’ r—00 ’
cf. and . However, we have seen in Case 1 in the proof of Proposition
that all CCPSR manifolds H, are equivalent to some H(h) for h € FU G (cf. Theorem
independent of r > 0, e.g. for h = z(—w?+ (2,2)) + w(z,z) € FNG. Hence, if
one considers the topology on the moduli space of CCGPSR manifolds of dimension n > 3
induced by the equivalence of hyperbolic cubic homogeneous polynomials, then the moduli
space of CCGPSR manifolds of dimension n > 3 would not be a Hausdorff space since the
then constant sequence of equivalence classes

(fie]. be2)

would have two distinct limits, namely an} for kK — —oo and VLM] for k — oo (recall that

Hapn (6.45) and H, ,, (6.44) are not equivalent for n > 3).
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7 Geometry and examples of quartic generalized pro-
jective special real manifolds

In this section we will be concerned with quartic CCGPSR manifolds, i.e. CCGPSR mani-
folds of homogeneity-degree 7 = 4. Proposition implies that any n-dimensional quartic
CCGPSR manifold H C R™"! can without loss of generality be assumed to be the connected
component of

{h =2t — 2% (y,y) + 2P3(y) + Py(y) = 1} c R™™!

that contains the point (3) = (}) € {h = 1} C R"*'. Recall that CCPSR manifolds are
complete, which was first shown in [CNS| and for which we found two alternative proofs, see
Proposition and Proposition An important and still open problem is the following.

Open problem 7.1 (Completeness of quartic CCGPSR manifolds). Let H be a quartic
CCGPSR manifold of dimension n. Is H being closed in the ambient space R"1 equivalent
to H being geodesically complete with respect to its centro-affine fundamental form?

For dimension n = 1, that is for quartic CCGPSR curves, we know that they are always
complete, see [CNS, Thm.2.9]. But for quartic CCGPSR manifolds of dimension n > 2,
the question of geodesic completeness is not solved yet. We will provide partial results to
this question, that is we will give examples of complete quartic CCGPSR manifolds for each
dimension n € N and we will completely classify quartic CCGPSR curves up to equivalence.

Theorem 7.2 (Classification of quartic CCGPSR curves). Any quartic CCGPSR curve is
equivalent to the connected component H of the level set {h = 1} C R? which contains the
point () = (§) for precisely one of the following polynomials h. The respective level set
{h = 1} contains the following closed connected hyperbolic subsets, and the automorphism
group G" of h has the following properties:

a) h = x* — 2%y? + iy‘l, {h = 1} has 4 equivalent closed hyperbolic connected components,
and
G" 22 807 (1,1) X Zy X Zs,

where the SOT (1, 1)-factor acts by hyperbolic rotations with respect to the metric —2dx? +

dy® (7.47),

b) h=xt—2%y* + %x 8 — Lyt =1, {h =1} has 2 equivalent closed hyperbolic connected

components, and
Gh =R x Z,,

where the R-factor acts on H as described in equation ,

c) h = a* — %% + 37\2/51,@3 =1, {h = 1} has 4 equivalent closed hyperbolic connected
components, and
Gh = Z47

d) h=z*— 2?4+ Ky* =1 for ezactly one K < . The set {h =1} has 4 equivalent closed
hyperbolic connected components if 0 < K < i with

G =7, X 7,
and 2 equivalent closed hyperbolic connected components if K < 0 with

G" = 7y X 7.
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In the cases a) and b) the respective mazximal connected subgroup Gh C G" acts simply
transitively on the curve H.

Proof. Let H be a maximal quartic (not necessarily closed) connected GPSR, curve. Propo-
sition implies that we can assume without loss of generality that H = H x is the
maximally extended quartic GPSR curve contained in the level set {hy x = 1} C R?,

hp i =2t — 2%y + Lay® + Ky* (7.1)

for some (L, K)* € R?, which contains the point (3 ) = (}). This means that P3(y) = Ly?
and P,(y) = Ky* in equation , leading to . We will say that the polynomial Ay gk
“corresponds” to the point (L, K) € R?. On the other hand, note that for all (L, K)* € R?,
the maximal open connected hyperbolic subset of the connected component of {hy x = 1}
that contains (y) = (3) is always a connected quartic GPSR curve. This proof primarily
relies on the properties of 6 P3(y) and 6 Py(y), defined in Definition[3.27 Since dim (Hp x) = 1,
the term dBy in equations (3.31]) and (3.32)) vanishes and we calculate

5Py(y) = (gLQ 4K - 1) Pz, (7.2)
§Py(y) =L <6K + ;) ytdz. (7.3)

In the above formulas, z denotes the induced coordinate of dom(Hy, k), cf. Definition [3.22]
This motivates the consideration of the vector field V € ' (TR?) that is given by

(9, 1
V=1 = <2L +AK 1) 8L+L<6K+2> O, (7.4)
see Figure |8 for a ploﬂ of V. We denote by

v {(@)ex v {0) (D) oo

V has the property that the polynomials

ey = &1 = 2%y + )y’ + k()Y (7.6)
associated to each integral curveE] and in particular each maximal integral curve 7 of the
restricted vector field V|g2\ fv=o},

toat) = (20) eR? Vy =4, 7(0) =L, 7(0) = K,

YK ()

for all initial (L, K)T € R?\ {V = 0}, are equivalent to hy, g. To see that this is true, let 3y, x
be the maximal open connected hyperbolic subset of the connected component of {hy x = 1}
that contains the point (y) = (). We will use the techniques of Propositions and [3.26]
First, we need to calculate A : dom (Hy k) — GL(2) as in and find

_ 2_ 3
T | S (LK T)
A = | A ((0)
- (L, K,T)

yhex((1))

with

16The plot was created with MAPLE, using the option fieldstrength=average (9/16) for better visibility.
1"We assume in the following that integral curves are connected and parametrised over an open interval.
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Figure 8: The vector field V (7.4) plotted with MAPLE. The horizontal axis is the L-axis and the vertical
axis is the K-axis.

r(L, K, T) = \/hpx (+)) (4= 27% + LT?)
(16 — 48LT + (=8 — 96 K)T? + B6LT® + (—8 — 42L* + 128K ) T*
+(16 — 144LK)T" + (—14L* — 8K — 96K?) T°
+(6L° + 8LK) T™ + (6L*K + 16K7) TS)_% .

Note that in order to see that A(T) is actually well-defined for all 7" € dom (Hy, k) and not
just in some neighbourhood of 0 € dom (H,, i) as implied by Proposition we need to
show that d,hr k|e@r) > 0 for all T € dom (Hy k), where @ : dom (Hy k) — Hpx C R?
denotes the diffeomorphism defined as in equation (3.14). To see that this is true, suppose
that there exists a point 7' € dom (Hr k), such that 0,hy, K|q) (7) = 0. We can assume without

loss of generality that T > 0 (after a possible sign-flip in the y-coordinate of the ambient
space R? O K L) and we can further assume that 7" is minimal in the sense that for all

t e {O,T) we have 0,hp k|o@) > 0 (recall that 0,k k|o@©) = 4 for all choices of L and K).
Let pr, : R* — R and pr, : R? — R denote the projections to the z- and y-coordinate of
the ambient space R?, respectively, and write the set ® ({O,TD C Hp x as the graph of a

function p : {O, pr, ® (Tﬂ — R which is uniquely determined by the system of equations

hor () +p@)(d)=1 Vte [O,pryCD (T)} . p(0)=1.
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The function y is smooth on [O, pr,® (T)) and fulfils

(0L i ()01 + Pracl 0) o) (1) + Aunlt) (3)  (9) + Bupet) (1)) = 0 (7.7)

1 1
0 0

for all t € [0, pr,® (T)) Note that the hyperbolicity of points in & ([O,T)), the property
that O,hr k|ow > 0 for all t € [O,T), and equation 1) thus imply that 9Zu(t) > 0 for all

t e [O,T) and, hence, show that p is a strictly convex function. Since the point

gR 0 g

@ (T) = (oryn(r)) + 1 (0, (7)) () € Hrxc
is also a hyperbolic point of hy g and furthermore the vector (}) is tangent to Hy x C R?
at the point ® (T) € Hy i by assumption that 0,.hy k| o(T) = 0, there exists a positive real
number R > 0, such that -

hea (@ (T) + R(})) € (0,1).

With that in mind we now define
pr,® (T) +R

f: {O,I)Fyq) (Tﬂ =R, ()=t pr,® (T)

It follows that the graphs of p and g must have an intersection point <“ @) = (’:@>

t t
for some t € (O,prycb (T)) But by construction hp, ((1:((?))) € (0,1), which by the
linearity of ;1 and the homogeneity of hy, x of degree 4 implies that

() =en ((40) < 0

This contradicts the assumption that (“ @) € ¥ x and, hence, proves the claim that
t

Ozhr x|y > 0 for all T € dom (Hp ), which shows that A(T) is well-defined for all
T € dom (}CL,K)' With

heryxery = hig o AT) = o' — 2y + L(T)zy’ + K(T)y*
we then obtain
L(T> = _2\/5\/ hL,K ((:lr))
- (=8L + (8 = 32K)T — 20LT* + 20L*T® + 40LKT*
+(—2L% - 8K + 32K?) T° + (L* + 4LK) T°)
(8= 24LT + (4 — 48K)T? — ALT® + (317 + 8K) T*)
(8 = 24LT + (—4 — 48K)T? + 28LT° + (—4 — 2117 + 64K ) T"
+ (8L = T2LK) T? + (—7L* — 4K — 48K*) T°
+ (3L +ALK) T" + (3L°K + 8K*) T%) * (7.8)
and

K(T) = (256K + 128LT + (—64 — 192L% — 256K ) T* + (128L — 256 LK) T*

| =
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+ (16 — 80L* + 384K — 256K?) T* + (48L* — 32 — 512LK ) T°
+ (8L + 352LK — 64K — 256K%) T° + (8L* + ALK + 512LK?) T”
+(—3L" — 16L°K + 256 K°) T%)

(8~ 24LT + (4 — 48K)T* — ALT® + (317 + 8K) T*) (7.9)

where L(0) = L, K(0) = K. Note that

o (L(T)

oT \K(T)
as expected. By construction we know that for all 7" € dom (Hy k), hrer)xr) and hr k
are equivalent. Since A depends smoothly on 7', the maximal connected open hyperbolic
subsets of the connected component of {hr ) k) = 1} that contain the point () = () are
also equivalent for all 7" € dom (H k). The velocities of the considered integral curve « of

V|g2\(v=0y and the curve T" — (lL(((?)) will in general not identically coincid, but we will

IL(((?) ) The constant
(maximally extended) integral curves of V are precisely those with initial data as in {V = 0}
described in equation (7.5). One now checks that for (£) € {V =0}, L(T) = L(0) = L and
K(T) = K(0) = K. Hence, for constant integral curves the maps 7" — L(T) in and
T K(T)in are constant and thus the images of v and (L(T), K(T))" in R? coincide.

For all (&) € R?\ {V =0} one can now verify that

=V(1) (7.10)

T=0

show now that the image of v is always contained in the image of T+ (

K(T) K(T)

dL (v (un )) OrK(T) = dK (v (10 >) - OrL(T)

for all T € dom (¥, k). One further shows that for all (£) € R*\ {V = 0}

" (*’(fé&@)) " (“’(@&%)) B (1)

OrL(T) orK(T) \/8 = 24LT + (4 — 48K) T? — ALT3 + (3L2 + 8K) T*
(7.11)

which is well defined and positive for 7' € dom (Hy, x) small enough (a priori we might have
zeros in the denominator of , hence the restriction). Now suppose that there exists a
maximal integral curve v = (yz,vx)" 1 I = R?\ {V = 0} of V|gz\(v—o}, such that at least
two quartic GPSR curves, and thus also the corresponding polynomials, associated to two
points in the image of v are not equivalent. Then for any fixed w € ~(I) there exists ¢ > 0,
such that all polynomials corresponding to elements in

7 ((Hw) =g (w) + <)) (7.12)
are equivalent. This follows from
Y(w) =: () ¢ {V="0}

and equation ([7.11]) which shows that the described ratios are locally positive and bounded,
and thus implies that there exists an open interval

Ig](Lw,Kw C dom (}CLu“K'Lu) , 0 6 Ig]CLw,Kw,

18Exceptions are the constant integral curves of V, although these might not be the only exceptions.
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(recall that being a hyperbolic point is an open condition and, hence, dom (Hy,, k,,) is in all
cases an open interval) such that with L(0) = L,,, K(0) = K,

e { (1) | 7 e e e,

Since the map T+ (L(T), K(T))" is smooth and, by the assumption (L., K,,)* ¢ {V = 0},
non-constant locally around 7" = 0 it follows that the set

{(l?(?)) | T e Ii‘LwaKw} c ~(I)

contains an open neighbourhoodﬁ of y(w) in the subspace topology of the submanifold
v(I) € R%. We can thus choose € > 0 as in ((7.12). This in particular implies that we can
choose a maximal open interval I, C I, w € I, such that all polynomials corresponding to
points in vy (1,,) are equivalent and for any w € (0I,,) N1, which is by assumption not empty,
hrw) and h. ) are not equivalent. Also by assumption we have

v (@) = (i) e R*\{V =0},

hence we can use the same procedure for w as we used for w and find that there exists a
maximal open interval Iz C I, w € I, such that all polynomials corresponding to elements
in v (Iz) are equivalent. The constructed intervals I,, and Iz are both open, and since
w € (0I,)NI it follows that I, NI # (. But this implies that the polynomials corresponding
to y(w) and y(w) are equivalent, which is a contradiction. Summarising, this proves the
claim that for all maximally extended integral curves v : I — R?\ {V = 0} of the restricted
vector field V|g2\(y—oy the corresponding polynomials h., ), defined in and the
corresponding maximal quartic connected GPSR curves F(,, 1), () are equivalent for all
tel.

Observing the complexity of the formulas and , the above discussion suggests
that it might be easier to be concerned with properties of the vector field V|gez\(v=gy €
[ (T (R?*\ {V=0})) and its integral curves in order to find the desired classification result
instead of studying the equations and directly. This is precisely what we will
do from this point on in the proof of this theorem. Note that we have not shown that the
set of maximal integral curves of V|gz\ fv—g} is in one-to-one correspondence with equivalence
classes of polynomials, but rather that for each hy x with (L, K)T € R*\ {V = 0} as in
there exists at least one maximal integral curve v : I — R*\ {V = 0} of V|g2\{v—oy,
such that each polynomial corresponding to a point in (/) is equivalent to hy, k. Note that
since we can assume that hy  corresponds to a point in ~(I) itself, we also get that the
corresponding maximal quartic GPSR curves are equivalent. This leaves us with the task
of checking which maximal integral curves of V|g2\ y—¢; do contain points corresponding to
closed quartic GPSR curves, and then checking if pairwise different maximal integral curves
might still contain points corresponding to equivalent closed quartic GPSR curves. The
quartic GPSR curves corresponding to points in {V = 0} need to be treated as well.

In the following we will assume that H; x is the maximally extended open connected
subset of {hy x = 1} that consists only of hyperbolic points and contains the point () = (§).
Lemma implies that it is a necessary requirement for Hy, x to be closed and thus possibly
be a quartic CCGPSR curve that the function

fLJ((t) = hL,K ((%)) = 1—t2+Lt3+Kt4 (713)

"This is precisely the reason why we consider the restriction V|p2\ fy—o}-
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has at least one positive and one negative real root in ¢. This follows from the fact that the
set of these roots must coincide with ddom (I, ) since otherwise the connected component
of {hr x = 1} that contains the point (3 ) = () would not coincide with H, g, which would
in turn not be closed. Recall that in the cubic case, that is for CCPSR curves, it turned out
that this was also a sufficient condition, see Lemma and Theorem [5.6] This is not true in
the quartic case as we will see. For the following studies we will frequently need the formulas
for fr, k(t) and its first and second derivative:

frx(t) = =2t + 3Lt% + 4K,
Frx(t) = =2+ 6Lt + 12K,

Consider first L = 0. Then fo x(t) =1 —t* + Kt*. For K # 0,

1 1-4K

=0 & tP=——d4—
Jox 2K 1K?

(7.14)

This shows that fo x(t) has no real roots for K > 1. It follows that for all K > 1, fr k()
has no positive real root for L > 0 and no negative real root for L < 0. This shows that
K< i (see Figure @ is a necessary requirement for H; x to be a quartic CCGPSR curve.

0.4

0.2

-0.21

-0.44

Figure 9: {K < 1} C R? marked in grey.
Next, consider K = i. For that specific value of K,

for(t)=0 & t=+V2

’4

Since
for (£V2) =0, fo1(£V2) =4>0,

it follows that t = v/2 and t = —v/2 are both double roots and local minima. Hence, for
L >0 we have f;,1(t) > 0 for all £ > 0 and for L < 0 we have f; 1(¢) > 0 for all ¢ < 0. This

shows that f}, 1 () has a positive and a negative real root if and only if L = 0.

Now consider K < %. For L = 0 we have shown above that fy x(t) has at least one

positive and one negative real root. To analyse the cases L # 0 we will study the (possibly
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complex) roots of fL’ K (t). We will without loss of generality assume that L > 0, since hy x
and h_p i are equivalent via y — —y. Then

| l=2, K=0
fix)=0 & t=0o { t= -+ L ATy K, K40, (7.15)

We want to stress that for K # 0 the latter two of the above roots of f1 x(t) might not be
real. As an example of how the corresponding function fL K( ) looks like when plotted for

specific values of L and K, see the following figures (|1 , and -

(a) f110), te(~5.3). (b) f1,0(®), t€(~35.3). (€) f1,_1 (@), te(~5.3).

Figure 10: Example plots of fr, x(t).

We now use MAPLE to symbolically solve the system of equations

frx) =0, fox(t)=0 (7.16)
for the variable L and, as one of the solutions under the restriction

3L
= = —— B 2 1
t=t, Tl L IR, (7.17)

we obtain for K # 0

L= 3\\//%\/1—36K+\/(1+12K)3 = u(K). (7.18)

We will c0n81der u as a functlon on the interval ( 55 4>, where we note that for K = 0,
L =u(0) =

3 f and t = -2 = /3 solve ([7.16). Before explaining the reason why we choose

this particular lower bound for the interval (—é, i) (see equation ([7.21])), we will analyse
u(K) further. We will show that u(K) > 0 for all K € <_E’ Z) We obtain

1
1—36K + 1+ 12K =0 = (1+12K)°—(1—36K)>=0 = Ke{o,4}.

So the only possible solution of 1 — 36K + /(1 + 12K)3 = 0 that is contained in the set
(—ﬁ, i) K =0. But u(0) = 3\[ We conclude

11
VKG( T3’ 4> u(K) > 0,
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as claimed. Note that for K = 0, u(0) = % which coincides with the unique real solution

of fr.0 (tm|x—0) = 0, where t,,|x— := =, cf. (7.15). Furthermore, for K = 1, u (i) =0, so

T
the point ((u <1> ,i) € R? coincides with one of the fixed points of V. Note that we have

1
in particular shown that
11
O R 1
wigpg) o (7.19)

i.e. that u takes only real values. Next we will show that the graph of u coincides with the
image of a maximal integral curve of the vector field V|g2\jy—o; defined in (7.4)) (see Figure
for a plot of the graph of u). We know that V has no zeroes in the set

() [we(-mpa)fem 0

see equation ([7.5]).

0.257
0.204
0.157
0.107

0.051

-0.051

Figure 11: The graph of u embedded in R? as in 1)

Furthermore dK (V) = L (6K + %) does not vanish if L # 0 and K # —5, so in particular it

does not vanish on the graph of u. Since u converges for the limits K — % and K — —%, u

1 1

— 15 Z] , which shows that the graph of u is precompact

is continuously extensible to the set {
in R%2. One now verifies
6(—2+ T+ 12K) dL(V)

Oxu(K) = =
\/6 _ 216K + 6,/(1 + 12K)p V)

(=)

This shows that the image K — (u(K),K)T, K € (—%, %), is contained in the image of a

maximal integral curve of V|g2\(y—gy. Since

lim (“00) = (2) e (v=0}, lim, ()= (?) € V=0, (7.21)

1 —
K—3 12

we conclude that said image coincides with a maximal integral curve of V|g2\fy—o}. Note that

T
it contains in particular the point (%, O) € R?, which corresponds to the polynomial .
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We will keep that in mind for now. Equation (7.21)) also explains the lower bound —< of

12
the domain of definition of u.
Next we will show that for all K € ( 155 1) and all £ > 0, the corresponding maximal
quartic GPSR curves Hy, i corresponding to points of the form

(£) = ("09+) e R*\ (V= 0}

are never closed (cf. Figure . For K = 0, we need to analyse the functions

0.257

Figure 12: Part of the set {(u(K)+¢,K)", K € (—15,%), ¢ > 0} marked in grey.

2
1—tP4 =+
Fapran®=1-4 (22 4]
for ¢ > 0. Similarly to Lemma , observe that f 2 olt) =1 —1*+ ﬁgt:” has precisely
one positive root t = /3. Since f%,o <\/§) =0 and f%p (\/3) = 2, f%,o(t) has a local

minimum at ¢t = v/3. Furthermore
fﬁgﬁ,o(t) > f%,o(t)

for all £ > 0 and all t > 0. We conclude that for all ¢ > 0, f 2 +£70(t) has no positive real
root and, hence, the corresponding maximal quartic GPSR curve H 20 AN not be closed.
See Figure |13| for an example plot of a function of the form f 2400 (1).

For K # 0, tm, defined in (7.17)) above, is always positive whenever L > 0 and 9L?+32K >

0. For(IL():( K)+ ) KG 12,}1) we have
2 2
9L2 + 32K = 18/u(K) + 9¢* + 3 (1+12K) + 3 (1+12K)3 > 0. (7.22)
—_———
>0 >0 >0

Hence, t,, is real and positive along the considered points for all K € ( 5 4> \ {0} and all
> 0.
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Figure 13: A plot of fu(x)1e,x(t), t € (—2,4), for K =0 and £ = £.

For K € (0, i) and all £ > 0, the function fu(x)+ex(t) =1—t*+ (u(K) + £) t* + Kt* has
a local maximum at ¢t = 0 and diverges to +o00 for t — *o00. Hence, fu(k)+e,x(t) must have
a local minimum at ¢t = t,,. For ¢ =0, t,, is by construction also a root of fyxyx(t). Since
forallt >0

Jury+ex (1) > fum),x (t)

and as we have seen fyu(k) k(t) has precisely one positive real root, we conclude that for all
0 > 0, fu)+ek(t) has no positive real root. Hence, the corresponding maximal quartic

GPSR curve Hy(k)4¢,x can never be closed.
Next con81der K € (—1—12,0). In these cases fu(K)Jrg,K(t) will always have at least one

negative and one positive real root for all £ > 0 since its highest-order monomial t* has a
negative prefactor. Thus in order to prove the claim that H(,(x)4¢,x can never be closed we

need to check that there exists at least one point ¢ in the connected component containing
t = 0 of the set

{teR| fum)rex(t) > 0} ;

such that (%) is not a hyperbolic point of the corresponding quartic polynomial /i K)+£ K-

To do so recall that we have already shown that along L = u(K) + ¢ and K € ( L 0)
(_E’ Z) \ {0}, the term 9L* + 32K is positive, see ((7.22)). Hence, (7.15) implies that for

all £ > 0, fu(K +e, K( ) has exactly three local extrema, namely at t = 0, ¢, = —w +
221/9 (u( 2 4 32K, and with
3L 1
M Sk 8K 9L* + 32K, (7.23)
at ty = — SK — 3K \/9 2 1 32K. Since K < 0, it follows that both t,, and
ty are positive and ([7.22 1rnp11es the strict inequality t,, < tj;. For all K € (—%, i)

and all £ > 0, the function fyx)4ek(t) is a quartic polynomial in ¢, which implies that
it has at most three distinct local extrema. Hence, we have shown that fyx)4ex(t) has
precisely three extrema at the distinct points ¢ = 0, ,,,, and ¢, fu(x)4¢,x(t) = —00 for both
t — %00 and furthermore that fu(x)+ex(t) always has a local maximum at ¢ = 0, we deduce
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that fuix)+e, k(t) will always have a local minimum at ¢, and a local maximum at ¢,;,. We

will now show that for all K € (—%,O) and all ¢ > 0, t,, is contained in the connected

component that contains t = 0 of {t € R | fu(rx)+er(t) > O} and that (,! ) is indeed not a

hyperbolic point of hyky4r k. To show the first statement, it suffices to show that always

Ju(k)+e,ix (tm) > 0 since we have seen that for all K € ( 112,0) and all £ > 0, fuk)+ek(t)

has a local maximum at ¢ = 0, a local minimum at ¢,, > 0, and no extremal point at any
€ (0,t,). We view fuk)+e,k (tm) as a function in the variables K and ¢ and calculate

1
13824 K3

3
+\/6 + 72K + 64/ (1 + 12K)3 + 186\/6 — 216K + 64/(1 + 12K)3 + 8162) .

O (fatorrex (tn)) = (—9€ - \/6 — 216K + 6,/(1+ 12K)3

At £ =0,

aﬁ (fu(K)Jrf,K (tm))’€:0
: \/ \/
= ——— | —/6 — 216K 1+ 12K)3 2K 1+ 12K)3
13824K3< 6 6/ +64/(1+ )3 +14/6+ 72K +64/(1+ )>>0

, )and€>0,

which is easily seen for all K € ( 155 ) Suppose that there exists K € (
such that 0, (fu (K)o, (t )) = 0. Then

12

90 + \/6—216K+6 (1+ 12K)3

—~ \/6 + 72K +6,/(1+ 12K)3 + 186\/6 — 216K + 6,/(1 + 12K)3 + 8142

= K =0,

by taking the square of both sides of the first equation. This is a contradiction to K €
(—1—12,0). We conclude that for all K € (—i 0) and all £ > 0, 9, (fu(K)+e,K (tm)) >

12
0. Since fuk)x (tm) = 0 by construction, this shows that ¢,, is in fact contained in the

connected component that contains t =0 of {t € R | fu)+e,x(t) > O} as claimed. In order

to show that () is not a hyperbolic point of hyk)+ex we will use Lemma In the
one-dimensional case, i.e. in our case where dim (3 x) = 1, the function § : R — R defined

n (3.22) and fr x : R — R coincide. Using formula (3.33) yields that the pullback of the
centro-affine metric at t = ¢,,, € dom (fHu( K)+4, K)

* o fu(K +, K( ) 2
(® gg{u(K)Jré,K)tm - 4fu +e K( ) dt (724)

where here ¢ denotes the coordinate of dom (ﬂ-(u( K)4e, K) But we have shown that fu(x)+ex ()
has a local minimum at t¢,, for all K € ( 12,0) and for all ¢ > 0, which implies that

lef'u K)+¢,k (tm) < 0. Hence, (,1') is not a hyperbolic point of hu(ry+e,x as claimed, and we
deduce that for all K € ( 55 O) and for all £ > 0, the maximally extended connected quartic

GPSR curve Hy(x)+e, i is never closed in R?.
1

Summarlslng up to this point, we have determined for each K > —<5 a positive lower

bound for L (and by equivalence also a negative upper bound for L), such that the maximally
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extended connected quartic GPSR curve Hy, i is not a CCGPSR curve. These points form
precisely the set

{K > i} U {K: %1’ L] > 0} U {K € <—%}1> L > u(K)}, (7.25)

see Figure

-0.24

~0.4-

-0.67

Figure 14: Part of the set 1} marked in grey.

Next we will deal with K = —=;. It turns out that we can use the same strategy as for K €

5
< 5 ) by considering u(K) at the limit point K = 12, u ( —) 2\[ For all £ > 0 and

the corresponding function f,3 e (t), the points ¢t = 0, ¢, = % <2‘[ +0— ,/ﬁf + €2>

22
7.17), and t); = (2‘[ +{+ \/ 20+ €2> 7.23)), still fulfil 0 < ¢,, < tj; and are also still

L 0) that

120

critical points of fays ,

, (t). Also, we can show similarly as for the case K € (
33 5 12

0 (Faz oy () >0

V3 v 12

for all ¢ > 0. Since f2f+£
vathoT =
points of fgf g , (t) for all £ > 0, We conclude that for all ¢ > 0, t,, is contained in the

’ 12
connected component of the set

(tm)‘ =0 and t = 0, t,,, and t), are the unique critical

{te]R ‘ For iy o (D) >o}

EVCRAE
which contains the point ¢ = 0. From equation - ) for the limit K = —% it follows
that (3) = (.} ) is not a hyperbolic point of h,ys 2.,_1- Thus, for all £ > 0 the maximally

33 10 12
extended connected quartic GPSR curve H, 5 5. ,_1 isnot closed in R?, i.e. not a quartic

3v3 0T 13
CCGPSR curve.
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Lastly in this stage of the proof we will study the case K < —%. For K < 0and L >0
the points t,, (7.17) and ¢, (7.23)) are both real numbers if and only if 9L? + 32K > 0, and
coincide if and only if

4V -2K

91?4+ 32K =0 < L= 3

=:v(K).
The function v is smooth and positive on { K < 0}, but we will consider its restriction
1
A\ (—oo, —) — Ry,

with smooth continuation to V( 12) = g% Observe that the limits u (—1—12) =v (—%)

coincide (see Figure , and that the image of (v(K), K)T for K € (—oo, —i) is contained

12

0.2+

0.1

-0.11

-0.24

_0'3.

_0'4.

_0.5.

_0.6.

S

T
1
7_72>

in R?\ {V = 0}. Along points of the form (v(K), K)" € R?, fy(x) x(t) has a saddle point at
tm = tar. We will now show that fy(x) x(t,) > 0 for all K < % We view t,, as a function
depending on L, K and obtain along points of the form (v(K), K)T € R?

Figure 15: The respective images of u and (in part) v in R2, and the limit point (L, K)T = (i

S

marked with a black diamond.

14+ 12K
fv(K),K(tm) 12K >0 (7 6)
for all K < —<. Since fy(k)x(t) is monotonously decreasing for ¢ > 0, this shows that ¢,

is contained in the connected component of {fy(x)x(t) > 0} that contains the point ¢ = 0.
But t,, is a saddle point of fy(x) x(t), which implies using (3.33) that

(q)*g%V(K)’K)tm =0

for all K < —=. Hence, for all K < —= the maximally extended connected quartic GPRS
curve Hy k) k 1s not closed.
Next we will show that for all K < —ﬁ and all ¢ > 0, the maximally extended connected

quartic GPRS curve Hy (k)44 i is not closed. In these cases, t,, (7.17)) and ¢y, are both
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real numbers and fy (k) i (t) always has a local minimum at ¢, > 0 and a local maximum at
tya > . We will show that fu(x)4ex(tm) > 0. Since fy(x)1e,x(t) = —oo for t — Fo0, this
means that t,, is an element of the connected component of {fv(x)+e,x > 0} that contains
t = 0. This will imply that (, ) is not a hyperbohc point of the corresponding hy(x)+¢,x and
thus that Hy(x)+e x is not closed forall K < —= and all £ > 0. We proceed snmlarly to the
calculations for fu(x)4ex(t) with K € ( 12,0) € > 0. Along (L, K)T = (v(K) + ¢, K)T w

have

3(v(K
tyy = — VAR TE) 2K
” SK \/9 243
4/ 2K 14
_8[(—’_3 —+ SI(\/24V —2K/0 4+ 9¢2 (727)

and

(fv Yo (t )) forrex (tm) - Optn + 12,

Hence, t,, being positive, a critical point of fy(k)4¢x (t), and smooth in ¢-dependence for
¢ > 0 implies that

Op (fV(K)Jr,&K (tm)) = tfn >0

for all £ > 0. We have to be careful with the limit case ¢ = 0 since the first /-derivative of ¢,,
(7.27)) is easily seen to diverge as ¢ — 0, £ > 0. However, (7.27) also implies that t,, can be

continuously extended to £ = 0 for fixed K < —ﬁ (namely, t,, and t); viewed as branches

of a bifurcation behave nicely), and hence it follows with fy(x)+ex (tm)‘#o > 0 (|7.26]) and
Or (Fotzer e (tm)) > 0 for all K < —% and all £ > 0 that

fv(K)—f—Z,K (tm) >0

for all K < —ﬁ and all £ > 0. We conclude that fv(K) ¢k (t) has precisely one positive
and one negative real root for each pair K < 12, ¢ > 0, and that thus t,, is indeed
contained in the (unique) connected component of {fy(x)4e,x(t) > 0} that contains ¢t = 0.
Hence, () is by the local minimising property of fy(x)+sx(t) never a hyperbolic point of
the corresponding cubic polynomial Ay (k)¢ x and the maximally extended connected quartic
GPSR curve Hy(k)4¢,x can never be closed

Up to this pomt we have shown for all

@ i qjulre [l s u{r <z v} cr

where u : [—i 1} — R is the unique continuous extension of u (7.19)), that the maximally

127 4
extended connected quartic GPSR curve Hy, i is not closed (see Figure . The next step
might seem a little non-canonical at first. We define

V6 — 216K

i (—oo, 112> - R, w(K)= 5

(7.28)

The function w is positive and can be (uniquely) smoothly extended to K = —-% via

w(-m) =2 (m) - ()

see also Figure . The definition of w is motivated by considering (symbolic) solutions of
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0.4+

Figure 16: A part of the set {K > 1} U{K € [-5,1], |L|>u(K)} U{K <-4, |[L| > v(K)} C R?

120

T
marked in grey. Similar to Figure (15| the points (L, K)T = (:I:%, —%) are marked with black diamonds.

the system of equations

(©0), =0 5 (#F0.)) =0 (729

which can be obtained with the help of a computer algebra system like MAPLE. It turns out
that the graph of w embedded in R? via K (W%{)) consists of solutions of ([7.29). Observe
that

1
viK)=w(K) & K= T3
when considering their continuous extension to K = —%, and that v (—%) = % > % =
W (—%) thus implies
1
V(K) > w(K) VK € (—oo, —12> | (7.30)

We will now show that for each K < —ﬁ the maximally extended connected quartic GPSR
curve Hp, i is not closed for all L € [w(K),v(K)) (see Figure [I8). The inequality
implies that for each such pair (L, K)T € R? the corresponding function f7, x () has precisely
one negative and one positive real root, and furthermore only one critical value at ¢ = 0
(since the corresponding points t,, and ), are not real-valued in these cases).
We start by showing that the graph of w coincides with the image of a maximal integral
curve of V|g2\fy—oy. Firstly note that the graph of w,

() e (-} =

is contained in R? \ {V = 0}. Similarly to the consideration of the graph of u, we note that
dK(V)=1L (GK + %) does not vanish if L # 0 and K # —-L, hence it does not vanish along

12
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0.2

0.1

_0‘1.

_0.2.

_0‘3.

_0.4.

-0.54

_0‘6.

Figure 17: The images of u, (in part) v, and (in part) w in R%. The graph of w is a dotted line, the limit

. T 22 1 T . . .
point (L, K)" = (ﬁ’ —ﬁ> is marked with a black diamond.

the graph of w. Also note that

o{) | (mmf)} 0= () -0

We check that

12 _dL(V)
V6 —216K dK(V) <f<>:(W§?> '

We conclude that the graph of w does coincide with a maximal integral curve of V|g2\ (v—g}.
In order to show that each Hy(x) i, K < —1—12, is not closed it thus suffices to check the latter
for one arbitrary K < —1—12. This follows from the fact that each pair of maximally extended

quartic GPSR curves Hy k), K < —1—12 is equivalent as we have shown in the beginning of

this proof. We choose K = —% with w (—%) = @. Now, we solve

(q)*g%w(é),é)t =0 (7.31)

for t and obtain as one solution tg = \/%3, and we have

aKW(K) = —

<¢T1/_2_3> = 6v/21 — 27 > 0. (7.32)

Hence, tg is contained in the connected component of { fw(_ 1,1
6/’ 6

Tw(-4)-

5
(t) > O} that contains ¢ = 0.

fo 1y 1 Hence,

But (@*gg{ N
w(-4)-4
in<_ 1,1 is not closed. We conclude that for all K < —1—12, the maximally extended quartic
6/’ 6
GPSR curve Hy k) x is not closed.

Next, we will consider K < —2 and L € (w(K),v(K)). With the help of MAPLE or

another suited computer algebra system we can solve the equation

(q)*gg{w(K)’K)t =0 (7.33)

) = 0 implies that (/) is not a hyperbolic point of hw(_ )
to



7 Geometry and examples of quartic generalized projective special real manifolds 139

0.2

0.17

-0.11

_0.2_

-0.31

-0.4

-0.51

-0.67

Figure 18: The area {(L, K)T € R? ’ K <—1L, L e[w(K),v(K))} between the graphs of w and v marked
in grey.

for ¢ explicitly and obtain as one solution

V6 - 216K —3v/—2 — 24K

t() == to(K ) . 9
The point ¢ty is real and positive for all K < —ﬁ as the equation ¢y = 0 has no solutions
for K < —% and one can check that ¢, (—%) = %3. Thus, at K = —%, to coincides with

the point used in equation (7.32). Since w(K) < v(K) for all K < —5, the corresponding

127
functions fw(k)x(t) have precisely one negative and one positive real root. We calculate

3
fwir) ke (to) = 162K + 3888 K + 23328 K° + (2 + 45K + 324K2) V6 — 216 K/ —2 — 24K

and obtain (again preferably by using a computer algebra system)

1
Jwik)x(to)) =0 & K=-——

12°
Equation ([7.32)) thus yields that
Jw(r),x(to) >0 (7.34)

for all K < —1/12 and together with the uniqueness of the positive and negative real roots
of fw(k)k(t) we conclude that for all K < —1—12, the point ty is contained in the connected
component of { fw(x),x(t) > 0} that contains ¢ = 0. This motivates studying the expression

fvzv(K)—&—Z,K(tO) ’ (®*gg{w(K)+£,K)

to

as a function of K < —< and, depending on K, ¢ € (0,v(K)— w(K)) via canonically
identifying sections in Sym? (R*) — R with smooth functions on R. We obtain with the
latter identification

. 27
Fatrerrexc(to) - (@95t ),. = (—8 + 243K + 4374}(2) Iz
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27 243
+ (16 + 4K> V6 — 216KV -2 — 24K (?

+ (81K + 972K2) V6 — 216K ¢
+ (Z ~ 81K — 2916K* ) V=2 — 24K,

Note that for all K < — 12,
for all £ € R. In order to show that Hy k)¢ x is not closed for any K < —<5 and depending
on K, ¢ € (0,v(K)—w(K)) it thus suffices to show that ffv(K)M,K(tg) . (<I> gg{w(K)H,K)to <0

for these points. We will make use of

f‘?v(K)M’K(tO) : ((I)*QU{W(K)%K)% is also smooth when considered

o7
~ L+ 486K + 8748K2> ¢

<27 243
(
(

Oy (f K4tk (fo) - ((P*g%W(K)“’K)to) -

N + 21{) V6 — 216 K/ —2 — 24K/(
81K + 972K2) V6 — 216K

(g — 81K — 2916[(2) V=2 - 24K.
Solving 0, <f K)+€K(t0) (q)*g%wm)H,K)tO) = 0 for ¢, we obtain

O (f\?v(K)JrZ,K(tO) ’ ((I)*gj{w(K)+Z,K)to) =0
4 (—18K —216K2) /6 — 216K + (—1 + 18K + 648K2) /—2 — 24K

& l=ly:=<-
073 —2 4+ 144K + 2592K2 + (1 + 36K ) v/6 — 216 Kv/—2 — 24K
(7.35)
Furthermore, we get
1 1
— Kel—— — .
l=0 & e{ 12,36} (7.36)
and
1

lh=v(K)-wlK) & K=-——.

This shows that ¢y is not contained in the boundary of the open interval (0, v(K) — w(K))
for all K < —1—12. We check that

, 2/2 (3@ — 14)
ol = 15121 — 69

and further calculate

(D) () I,

6

6

It follows that ]
VK < BT ly & (0,v(K) —w(K)).

Since 0y (ffv(K)MK(to) : (Q*gg{w(xw K)t ) can be smoothly extended to ¢ € R as mentioned
’ 0

. We have seen in ([7.35]) and

before, we now consider 0, (f (K)+ZK< 0) - ((I)*gg{w(K)_"_é’K)tO) o
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1

75, and

is constant for K < —
£=0

1
5—0,](——6

We deduce that 0, (f2 Ky, (to) - (q)*g%w(m%x)to) < 0 for all K < —% and correspond-

7.36]) that the sign of 0, <fv2v(K)+e,K(t0) : (@*gﬂw(K)HyK)m)
it thus coincides with

sgn (86 <fv2v(K)+€,K(t0) : ((I)*gﬁw(K)H,K)tO)

w

ingly for all £ € (0,v(K) — w(K)). Since by construction ([7.33])

=0

f\?v(K)-l-K,K(tO) ’ (i)*gg{w(K)-‘rl,K) -0

to

for all K < —5. We conclude with (7.34) that

((I)*gfl{w(x)+e,1<>to <0

for all K < —55 and correspondingly all ¢ € (0,v(K) — w(K)). This finally implies that
for all such K and ¢, the corresponding maximally extended connected quartic GPSR curve
Hew(r)+e,x is not closed and thereby not a quartic CCGPSR curve.

We have now, as it will turn out, identified all (L, K)* € R?, such that the corresponding
maximally extended connected quartic GPSR curve H, k is not closed, namely

(é) e{rx>ulrel-o3] wswmbulr <o mzwm), @an

see Figure We will now show that every point (L, K)T not contained in the set ((7.37)

Figure 19: The set (7.37) marked in grey.

does indeed define a quartic CCGPSR curve H;, g, and we will show that we can choose for
each equivalence class of such a curve a representative which is either @L or contained
in the one-parameter family of quartic CCGPSR curves @

We start with the points contained in the image of (u(K), K)T, K € (—1—12, i), cf. (7.20).
We have shown that this set coincides with the image of a maximal integral curve of Vg2 fy—o} .
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Thus it suffices to show that one point in that set defines a quartic CCGPSR curve to conclude
that all points have that property, and furthermore that the corresponding quartic CCGPSR
curves are all equivalent. We choose to check

(1)~ (") - ()

In this case, the corresponding function 5 = ((t) as defined in (3.22)) coincides with f 2 o()
3v3’
and has the form § =1 — >+ ¢ ft3 In 1-} we have seen that

. _PB, 34}
(Cb g%“)t =B 1682

3V3

Note that the connected component of < f 2 o(t) > ()} that contains ¢ = 0 is given by
3v3’
(—@, \/§) The form of § and Theorem motivate considering the cubic polynomial

E—x3—xy +

3\/_

with B(t) = h ((})) = B(t), corresponding CCPSR curve K, and centro-affine metric

LN B 24
('), = 350 * 9200

3 a5

o* =—.(®*g~ .

(00s0), =3 @), g =
N—_——

>0

Since the PSR curve (JA-E, gﬁ) is equivalent to the curve A) in Theorem [2.45 and, hence, is

in particular a closed PSR curve, this shows that dom <.'H 2 0> = dom (5{/) = (—?, \/g),
3

which coincides with the connected component of { fz 0( ) > O} that contains t = 0 and,
hence, proves that H 20 is indeed also closed. Thus fJ-C 20 is in fact a quartic CCGPSR

curve, which proves the claim that all points in the set described in - define quartic
CCGPSR curves, each equivalent to H _2_ o As mentioned once before in this proof, this is

3
precisely the quartic CCGPSR curve | It remains to determine the closed hyperbolic con-
nected components of < h 20= zt — 22y + 3 f$y = 1 and show that they are equivalent
as quartic CCGPSR manifolds. To do so we will determine the connected components of

{h 2 > 0} C R2. Since the quartic polynomial hif o is homogeneous, it suffices to study
3v3’

{h3 0 ((;)) > O} and {hs%’o (1)) > O}. We obtain

vefiza(())>0) & ve(-5va)u(va)

o g

S
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and, usmghffo(( ))—$<I+ f) (x_%f’

xe{hgjg((f))>0} & z€ —oo,—\%)U(O,\%)U(\}g,oo).

Hence,

ve (0, ;3)} | (7.38)

The quartic CCGPSR. curve [c)|is contained in the set Ry - g(;) € R? ‘ Yy € (—@, \/g)},
and we see that it is equivalent to the unique quartic CCGPSR curve contained in the set
R>0-{— (1) € R? ‘ y € (—@, \/§)} via (3 ) — — (3 ) . We will now show that the remaining

connected components of {h 220 > 0} also contain a (unique) quartic CCGPSR curve that
3v3’

is equivalent to . It suffices to consider the set Ry - {( ) € R? ‘ T E (O, f)} One can

easily check that the point 7\/ € {hff 0= 1} is a hyperbolic point of h. Consider the
ES 3v3’

linear transformation of the form ((3.7))

1 1 41
4
v 75 | Vs

mapping (§) € 9{%70 to said point. Then

£ TN _ 4 2.2 4 4 4
(oot () () = e oo

We find that u (%) = 2% and deduce that the maximal extension of the quartic GPSR
1

curve contained in {h\zﬁ 0= 1} which contains the point p = (E}) is equivalent to the
3v/3’ ES
quartic CCGPSR curve [c)| and, in particular, closed and connected. Summarising, we have

S

shown that <A 20 = = 1} has 4 equivalent closed connected hyperbolic components, one of
3

which is given by the quartic CCGPSR curve H 20 which is precisely the quartic CCGPSR
3v/3’

h_2_
curve H in I In order to determine G 35", it remains to show that the only linear map
A € GL(2) mapping H 20 to itself, that is AU-C 2 0= =X 20018 the identity transformation

A =1 € GL(2). Using the condition A - (}) € f]-C 20> One can check that A must be of the
form A = A(p) asin (3.7)), where we view F(p) as an element of R\{0}. But then, independent

of the sign + of F(p), we find with p = m (+), T € dom <fH 2 0) = (—7, \/_>,
3v/3’
and with the formulas (7.8)) and ([7.9) and the notation

ho(AD) - (5)) =o' = 2 + L(T)ay’ + K(T)y"
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that

T (—T7 1 4/3T6 + 18T5 — 84+4/3T* + 6373 + 432/3T2% — 1404T + 432\/3)

K(T) = 2
12 (—T4 + 2373 — 972 + 124/3T — 18)

(7.39)
Using a computer algebra system like MAPLE, one can show that the denominator of K (7")

in the above formula ([7.39) does not have any roots in dom (J—C?f 0) = (—?, \/3), and the
3V3’

3v3

numerator has only one root in dom | H _2_ 70), namely 7" = 0. We conclude that the only
linear transformations of the form ([3.7) can either be the identity, or (corresponding to a

possible minus sign of £ ((}))) the linear transformation A = . But we can quickly

—1
check that b > jo A =a2' —2%® — 2 # h > ;. We can now use the previous results and
3v3’ 3V3 3v/3’

. 3V3
obtain

ha_ o
G 33 IZ4.

Now we will study all maximally extended quartic GPSR curves of the form H g, K <
that correspond to points of the form

(f}) c {K < i, L= o}. (7.40)

We will prove that each of these curves is a quartic CCGPSR curve, and furthermore that
they are pairwise inequivalent. We have seen in that the connected component of
{fo,x(t) > 0} that contains the point ¢ = 0 is precompact for all K < {. For each K < 1, we
have fy k() = B(t) as in and, hence, the pullback of the centro-affine metric gs(, , to

dom (Ho k) (3.33) fulfils

1
49

12,0 <(I)*g%7K)t _ (_ fo,K(t)Zlfo,K(t) + 3f0£(t)> dt?

K 1 1
= (= ( — BK) 12 ) dt? =: G (£)dt?.
(2 +13 +5 gk (1)

First consider K < 0. Then fO,K(t) = —2+ 12K1? < 0 for all + € R. This immediately
shows that (CD*gg{OyK)t > 0 for all ¢ contained in the connected component of {fo x(t) > 0}
that contains ¢ = 0, which thus coincides with dom (Hy x). We deduce that for all K < 0,
the corresponding maximally extended quartic GPSR curve H x is closed and, hence, a
quartic CCGPSR curve. Next, we will show that for all 0 < K < i the smooth function
gk : R — R has no real roots and is positive. For K = 1, we will show that gk (t) = 0 if
and only if fo x(t) = 0. This will then imply that for all 0 < K < § the set dom (Ho k) and
the connected component containing ¢ = 0 of {fo x(t) > 0} coincide, which shows that the
maximally extended quartic GPSR curve H x is closed, and thus a quartic CCGPSR curve.
We obtain for 0 < K < 1 the (symbolic) equivalence

2 —14 12K + 144K2? — 40K + 1
N 41K '

For t to be real, one of the two possible terms —1 + 12K + /144K2 — 40K + 1 must be real
and non-negative (since 0 < K < 1). We find that

Ir(t)=0 <

| |
HAK? 0K +120and K e (0.) & Ke (0,5,
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and we observe that % < i is a root of 144K? — 40K + 1. This shows that gx(¢) might only
have real roots in the considered domain (O, i) for K if K € (0, %} One now verifies that
—1+4+ 12K — /144K2 — 40K + 1 has no real roots. Since 144K? — 40K + 1 > 0 restricts K

to be an element of (0, %}, we evaluate

o+ V17
———<

0.
6

—1+ 12K — VIM4K? —40K +1| _, =
-T2

We further obtain

14+ 12K +V144K2 —40K+1=0 < K=0

. _ \/77 .
and deduce that the sign of the term —1H2E+ i}l;“@ 20K+ §s constant for K € (O, i}. We

36
— V1
—1+ 12K + VIAK? 40K +1| _, = —567 <0.
-T2

) . _ VKT 10K 1
We conclude that there exists no K € (O 1), such that either =1H12K ii‘?Kz A0KFL op

)4
—14+12K+V144K2—40K +1
4K

(0, i) the function gx(t) is positive on R and, hence, that each corresponding maximally
extended quartic GPSR curve H g is a quartic CCGPSR curve.

Now consider the case K = } and note that (%) = (2) € {V =0}. We calculate

evaluate

are positive. This and gx(0) = % proves the claim that for all K €

Gt)=0 < t=+V2

1
1

which are precisely the roots of f; 1 (t). Again, g1 (0) =  implies that g1, restricted to the
connected component { Jo, 1 (t) > O} that contains the point ¢ = 0, is positive. Similarly to

K e (0, i) we conclude that the maximally extended quartic GPSR curve 3{0& is closed
and, hence, a quartic CCGPSR curve. The case K = i and the cases K < i correspond

to the polynomial @ and the one-parameter family of polynomials [d)| respectively. The
quartic CCGPSR curve J—CO& is furthermore a homogeneous space under the action of the

h
corresponding Lie group GOO%, cf. Definition |3.13| This follows from Proposition [3.34] since
T
(0 1) e {V =0} 1} Note that, using [CNS, Prop. 1.8], the homogeneity of 9{0& would

g
also have been sufficient to prove that 3, 1 is closed as a subset of R?, since Riemannian
homogeneous spaces are always complete, cf. Remark [3.10]
It remains to prove the claim that the quartic CCGPSR curves H i for K < i are pair-
wise inequivalent. While proving this statement we will also determine the closed hyperbolic
connected components of {hg x = 1} and show that these are always equivalent for each fixed

K <3
T
Since (0, %) € {V =0} and (0, K)" € R*\{V = 0} for all K < 1, we can use Proposition
3.34) which implies that the connected component of the automorphism group of hy x acts
transitively on H x if and only if K = ;. In particular this shows that Hp,1 is not equivalent

to Ho x for any K < %. It remains to show that for K < i the quartic CCGPSR. curves

Ho,x are pairwise inequivalent. For fixed K < § we want to determine every A € GL(2),

11 Q12
A= ,
Q21 Q22
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such that
(hox o A) ((3)) = 2% — ay? + Ky = hy (7.41)

for some K < + with the additional restriction that the quartic CCGPSR curves H x
and H, = are required to be equivalent via A : H = — Hox. For A to fulfil (7.41) and
addltlonally map 3, = to Ho g it is necessary that h ((aal)) =1 and furthermogg}) is
required to be a hyperbohc point of hg . We will treat the two cases a;; # 0 and a;; = 0
separately. We start with assuming that a;; # 0. Then

(ho.c © 4) ((5)) = dhgass ) ((512)) @y + rest,

where the “rest” in the above equation does not contain a non-trivial multiple of the monomial
x3y. Hence, up to a scaling factor r € R\ {0},

oh

<a12> —o | G (7.42)
a Oh
22 O (all)

a21

Then, for as; = 0,
(hox o A)((y)) = anx — 167 a11x2y2 + 256 K7t a112y

In these cases we thus immediately obtain with ((7.42)) that A € GL(2) needs to fulfil precisely

el ()01

to solve 1' Note that in these cases K = K. For ag; # 0 consider
(hoA)((y))

= 64’)"3&11&21
3 2 (4,2 6 8 8 6 2 2 6 8 6 2 3
( AK ay + K (4%1“21 + a21) + K (4%1 — 4ay,a3; — a11a21> —ap + a11a21) Y
+ rest,

where the “rest” in the above equation does not contain any other xy3-monomial. In order
for (7.41)) to be fulfilled, we thus need that (since by assumption ay; # 0 and a9 # 0)

— 4K?a3 + K* (4a%1a21 + agl) + K (4&?1 — 4af a3 — a%lagl) —afy +ayyaz = 0. (7.43)

Solving equation ((7.43) (symbolically) for K, we obtain

743) < Ke{l _ai (a1 —a3) “4111}'

4 ) 4
4 aay a9y

a2 a2 _a2
The value K = 1 has already been excluded. For K = —% we get
21

(hox 0 A) ((y)) =0,

hence we can also exclude this (symbolic) solution for K. For the last possible solution for
4

K, that is K = ;%, consider the condition

21

ho a (@) =1 « at, (2@?1 - a§1> =1
Ty
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Hence, a2, = 2a%, — a;f and, consequently,

However

>
(2af; —1)2 " 4
for all a;; # 0. We deduce that this solution for K also does not fulfil our requirements, in

this case the requirement K < i. Summarising, we have shown that for a;; # 0 the only
linear transformations A € GL(2) that fulfil (7.41]) for K < § are given by

e ()

and that in each case K = K. Next consider the case a;; = 0. In this case, for |j to
be true, hox ((o0,)) = Kaj, must fulfil Kaj, = 1. We see that this can only be the case
for positive K, and thus can already say that for all K < 0 the transformation A solves

7.41)) if and only if A € {]l, —1, <_1 1) , <1 _1>} and that in these cases K = K. For

0< K < i we obtain
1

TR

Under the assumption that a;; = 0 and aq; = i%ﬁ we find that

Ka‘él:l & a9 ==+

(hor o A)((3)) = 4K a3 axr’y + rest = +4vV K aga®y + rest,

where the above “rest” does not contain any z3y-part. Since the z3y-part of (ho o A) ((y))
must vanish for ((7.41)) to be fulfilled, we deduce that as; = 0. So A must be of the form
0

A= " a62>. Now for the final step we check that
21

2
hox o A) ((2)) = —a?,a%,2> 2—i—rest:—&x2 %+ rest,
(ho, y 214127 Y Y

VK

the above “rest” not containing any z2y?-part, which shows that as; = +v/K. Summarising,
we have shown that the possible A € GL(2) that fulfil (7.41]) for 0 < K < § can only be of
the form

el () )
(o ")l ) ) e T e

and one can easily check that these matrices actually solve with K = K. We now
conclude that the quartic CCGPSR curves Hy g for K < i are pairwise inequivalent. Now,
similar to the quartic CCGPSR curve , equation , we will determine for each K < %
the connected components of {hgx > 0} C R% We have

h07K((;>>:1—y2+Ky4, h07K<(gf)):$4—ﬂf2+K,
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and obtain
for K = = {h01>0}—R>0-{<;>€R2 y € —\/5\/5)}
N R

UR>0-{—<;>ER2 y € —\/5\/5)}

(note: for K = 1, hy

1
4

for K € (O,1>:

(oe o [T D
)

{hO’K > 0} - R>0 .

|
e () e [T )
o (] x| ve (R 4D
UR>0-{—<T>€R2 xe(—\/l_‘/;_ﬁ,\/l_g_ﬁ)},
for K =0: {h0,0>o}=R>O.{<;>eR2 ye(—l,l)}
UR>0-{—<;>ER2 yE(—l,l)}7

and

for K <0: {hox >0}

_@ERQ ye —J2<1+ Ff))d“”ﬂ)

For K < 0 we see that {hg i > 0} has exactly 2 connected components, and the corresponding

unique contained quartic CCGPSR curves are equivalent via A = —1, cf. (7.44]). For
0< K< i, {ho.x > 0} has exactly 4 connected components, and the corresponding unique

. . . . - —1
contained quartic CCGPSR curves are equivalent via compositions of A = ( 1) and
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VK L
A= 1 , cf. ([7.45). In the case K = 7, {hoi > 0} has exactly 4 connected
VK ’
components, and one can check that transformations A € GL(2) of the form ([7.45)) are also
automorphisms of /i, 1as for0 < K < i and map the corresponding unique contained quartic

CCGPSR curves bijectively to each other. Now, for the automorphism groups G".x of hg
for K < %, (7.44) and 1) imply that

VK <0: Ghx=27,x17,

and 1
VK € <0, 4) L Gl 27, % T,

h ho 1
In order to explicitly find G' 1, we need to determine G00’4 . To do so we will derive a suitable

h
basis for T]IGOO’i as a Lie subalgebra of gl(2). For this we will use the techniques used in

Proposition [3.34] and calculate the derivative of the corresponding map A : dom (j{o,i) —

GL(2) (3.23) at z = 0 € dom (9{07%), cf. (3.60). Note that the corresponding dB, €
Lin(R,so(1)) is always zero since dim(so(1)) = 0. We find

0o 1L
— 2
and obtain )
0 5 X .
ol ((13) () =
as expected. Let a1 := /2 1 (2] . Then a7 =1 and
4 4
00 tk . (9] t2k 00 252k—i—1 COSh(t) sinh(t)
t = — a1 = ]]_ —I— B — = \/5
exp ( ai) g) e (};0 (2K)! ,;) 2k+ 1)) % V/2sinh(t) cosh(t)

(7.46)

h
for all t € R. Now we have an explicit description of GOO’%. In order to find a well known

ho 1
and commonly used Lie group that is isomorphic (as a Lie group) to 000’4, observe that

() ()

ho 1
This implies that the Lie algebra T3G, 7 is isomorphic to so(1,1), that is the linear au-

h
tomorphisms of the Lorentz vector space (R, —2dz? + dy?), and that GOO’%[ ~ SO0*(1,1).
Hence,

= 0. (7.47)

a

FNAR
S

Gt 2 SOT(1,1) x Zy x Zo.
With Proposition [3.34] and (7.45) this also shows that

3,1 = SO (1, 1),

since the only transformations in lb that map 3,1 to itself are A = 1 and A = (')
and the latter is not contained in SO™(1,1).
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Now we will consider points

(é) S {K < —1—12, IL| < w(K)} C R?

and the corresponding maximally extended quartic GPSR curves H; x. We will proceed as
follows. We will show that for any such point (L, K)T € {K < —15, L] < W(K)}, the image
of the maximal integral curve 7 of V|gz\(y—oy with 7(0) = (L, K)” contains a point of the

form (0 K )T € R K < —% This will thus imply that Hj g is equivalent to J-CO =, and

since we have already seen that H, z is a quartic CCGPSR curve for all K< 1 this will show
that Hp i is also a quartlc CCGPSR curve. We will without loss of generahty assume that

0 < L <w(K) for K < —55 fixed, as we have already dealt with the case L = 0 above
and since Hp, g and H_ L, K are always equivalent. Instead of checking the maximal integral

5 0<L<w(K)}

directly, we will first transform this set using a suitable diffecomorphism. Recall that w(K) =

V6—216K
9

curves of V|g2\yv—q}, respectively their restriction to the set {K < —

> 0 for all K < —% and consider the smooth map

1 1
F: {K<_E 0<L<W(K)} {¢<—E 0<(p<1}

Fo(i) - ()

where (i) denote the coordinates of {@D <—5, 0<p< 1} C R? (see Figure . The

12’

Figure 20: Parts of the domain and co-domain of F', marked in grey.

differential of F' is given by

1 162L
dF — (W(K) (1—36K)\/6—216K>
0 1

and we see that F'is, in fact, a diffeomorphism. We obtain for the inverse of F’
-1 4 _ w ()
(7)) = (737)
and for the push-forward of the vector field V restricted to {K < —1/12,0 < L < w(K)}

9(1—¢?) (—14+4¢) . (1 +12)y/6 — 2169
Ry =(F V)(i) 6 — 2160 18

0, + 0.
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Since dv (F,'V) < 0 for all (i) € {w <—=,0<p< 1} we can define the smooth function

127

R : {w <- 112
oy L de (FY) 11— 27(1 — 4¢))
R((ﬂ’)) Tdp(RYV) T o (T+129) (=1 + 36)

0<¢<1}%R,

Instead of studying the images of the maximal integral curves of the vector field

FV| (e

=, 0<<p<1}

we can now study the images of the maximal integral curves of the vector field
X = R0, + 0y. (7.48)

defined on the set {w < — 12, 0<p< 1} = F({K < — 12, 0<L< W(K)}) C RR?, since
there is a one-to-one correspondence between them, which follows from di (F.V) # 0 on
said set. It turns out that we can, in fact, find the general solution of the equation for

integral curves of X. For t < —% and some a < —%, consider with ~ : (a,—%) —
(¥ <—% 0<p<1}a(t) = (*0),
X, =7
o 27(1 — 4t)

=

1—¢2 (=14 36t)(1+12¢)
- 90(’5>:J1_C —(1—1—1215)37

1 — 36t

where ¢ € Ry is chosen in such a way that the initial condition

’V(to):( to)) {¢<— 0<g0<1}

is met, see Figure [21] . 1| for an example of such a curve ~ (note: in our construction, the initial

time ¢, fulfils #p < —15). Note that for all ¢ < — such that ¢(t) is defined we always have

e(t) < 1, in partlcular arbitrarily close to t = —i. We will now show that ¢(f) cannot

converge to the value 1 in finite negative time. Sollifing ©(t) = 1, we obtain as the unique
negative solution ¢ = 12, but this is the upper bound of the domam of definition of ~(t)
and, hence, ¢(t). This shows that for all ¢ < —15, for which ¢(¢) is defined, we indeed have
(t) < 1. Thus, if we can prove that each such curve v independent of the initial condition
(to,v(to)) converges to a point in the set {w < -1, p= O} in finite negative t1mt < —35,
then we will have shown using the fact V|{ K<—1/12, L|<W )y # 0 that each maximal integral

curve of \7|{K<_1/12,|L|<W(K)} meets the set {K < — 12,
finite negative time. This means that we have to solve

\ll cy/—(1+12t)3 0 ¢ 1
Y B D
1

& 17282% + (43267 +1296) + (36¢2 — 72) 2 +1 =0, t < -7

L= 0} in either finite positive or

20A1l possible integral curves v move toward {w = ——} in positive time-direction, hence negative time.
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0.2

1.5

Figure 21: Example of a curve v (in black) fulfilling X, = 4 with initial condition ¢ (%) = (marked

SiS

with a small cirlce).

with the restriction that we are interested in the biggest possible negative solution in .
Replacing t = s — % and dividing by 16, we observe that

1728243 + (432c2 + 1296) + (3602 - 72) 241=0,t< —1—12

& 108c%s% +81s* — 185 +1=0, s < 0. (7.49)

We see that equation ((7.49) always has a negative, and in particular uniquely determined
biggest negative, solution'|in s since it takes the value 1 for s = 0. We deduce that each
maximal integral curve of X does meet the set {7,[1 < — 12, Y= 0} in finite negative time

and, hence that each maximal integral curve ~ of V|gr2\v=0y With initial condition v(0) €
{K <-4, |L] < W(K)} meets the set {K < -3,
positive tlme Hence, for each maximally extended quartic GPSR curve Hp ., (L, K)T

{K < =15, |L] < w(K )} is equivalent to a maximally extended quartic GPSR curve of the

form 5{ ~ with K < —L. We have already shown that the quartic CCGPSR curves Hy g,

K<t 1, are pairwise 1nequ1valent. Hence, the value for K is unique. We deduce that Hy, g is
closed in R? and thus a quartic CCGPSR curve as claimed.

Now consider the set {K =—5, Ll <w ( ) ?f} and the restriction of V to it. It
turns out that this set coincides with the image of a maximal integral curve of V|g2\fv—qy-

This follows from the fact that {K = |L| < } C R?\ {V = 0}, and that V is parallel
0 {K =

L= 0} in either finite negative or finite

12 ’
|L| < } in the sense that

dK |V =0.
( |{K:—%, |L|<%})

Hence, we only need to consider the point (L, K)T = (O, —%)T € {K =—=, |L| < %}

127

21This solution coincides with the minimal possible value a that was used to denote the domain of definition
(a,—15) C R of (t), respectively ¢(t).
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and the corresponding maximally extended quartic GPSR curve 3}, _ 1, but we have already
seen that it is in fact a quartic CCGPSR curve.
Next, we will show that every maximally extended quartic connected GPSR curve H; _

) € Hy 1, with [L] <u ( 112> = g? is equivalent to the quartic CCGPSR curve fHO 1

) € }Co,—ﬁ To do so, we will study the restriction of V to the set

{K: 1 L] < gg} C R%,

which is an embedded open connected intervall in R%2. We find that

dK (V|(_L>) =0,

and since furthermore {K = |L| < } N{V = 0} = () we obtain that for any point

e {K=
age precisely the COIlSldel"ed set {K = 12, |L| < B f} Hence, every considered maximally
extended quartic connected GPSR curve 3, _ . is equivalent to the quartic CCGPSR curve

Ho -1, (3) € K, 0, 4> as claimed and thus also a quartic CCGPSR curve.
Lastly, we have to consider the maximally extended quartic GPSR curves Hy x with

L 1 1
—— < K<-, |L K)} C R?
<K>6{12< <3 L=< )}C :

respectively the restriction of V to said set. Recall that

12’

-+, L] < } every maxunal integral curve of V|g2\y—gy through p has as im-

V2 \/
u(K)=—=4/1-36K + /(1 +12K)3,
()= 2 (1+ 12K)
cf. . We proceed similarly to the case where we considered points of the form (%) €

{K < <,
vector field V|{_7<K<l Ll<u(K)} contains a point of the form
12 4

(%) € {—112 <K< L < u(K)}

To do so, it suffices to consider points in {—% <K< i, 0<L< u(K)} which provide the
initial value for said integral curves. We define

|L| < w(K )} We will show that any maximal integral curve of the restricted

~ 1 1 1 1
Fii——<K<—-,0<L<ulK);=1——=<9¢v<—-,0<p<l1
{12 ) u()}{12¢4 SD}’

~ L _L_

. u(K)
Felk) - ()

see Figure . The map F is a diffeomorphism with
1 27v3L(2—V1+12K )

~ u(K
dF = o \/2<1—36K+ (1+12K)3>3
0 1
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0.25 0.25

0.20 0.20

0.15

0.10 F 0.10
0.05 ; 0.05

0.15

0 0

-0.05

Figure 22: Parts of the domain and co-domain of ﬁ, marked in grey.

and

F((5)) = ("59).
Note at this point that the term 1 — 36t + /(1 + 12¢))3 is positive for all K € (—é, }1), and
in fact it vanishes for K > —% if and only if K = i. The push-forward F.V then is of the
form

Fy— (171\7) ($> _ 3v3 (1 — ?) <—1 + 400 — 144942 + (=1 — 8 + 481?) m) ;

\/2 (1= 360 + /(1 + 120)%)’ %’
N %go(l + 12¢)\/1 — 360 + /(1 + 12¢)%9,

The term dv (ﬁ;\?) is positive for all (ﬁ,) € {—é <P < L—i, 0<p< 1}. Thus, the smooth
function

dp (FV) @ (1+120) (1360 + /(1 +12¢)?)

—_ dp (V) 1 - —27(1 — 49
R((2)) = (FV) _1-¢ ( )

is well defined. Note that R is positive on its domain of definition. Similarly to the definition
of X ([7.48]) we define the vector field Y on the set {—% <Y< }l, 0<p< 1} C R? as

Y =R, + Dy
Since dv <]5*\7) and, hence, F,V do not vanish on the set {—1—12 << ;11, 0<p< 1}, it

follows that the images of the maximal integral curves of Y and ﬁ’*\? are in one-to-one cor-
respondence. As for the vector field X we can give a formula for the integral curves of Y
(although not as explicit as for the X-case). For an open interval (a,b) C (—%, }1),

Yy =4, ()= (1), vr(a,b)%{—i<¢<1, 0<90<1}, 7(to) = o

12 4
- P _ —27(1 — 4t)
L=9® (14 126) (136t + /(1 + 12t)3)

=:J(t)

< pt) = \ll — cexp (—Q/J(s)ds), (7.50)

to
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where ¢ > 0 is chosen such that the initial condition () = (¢(to),t0)” is met (for an
example of such a 7 see Figure 23)). Observe that (t) < 1 for all ¢ € (a,b), and that

0.25

0.20
0.15
0.10

0.05

-0.05

Figure 23: Example of a curve v fulfilling Y., = + with initial condition ¢ (%) = %

(11 _ —27(1 — 4t)
J'(12%>_H& ) (1+12¢) (1= 36t + /(1 +12)2) (751)

is a well-defined negative functiorﬂ We will now show that v being maximal implies

b < 1 and that . 1%)Iltl<bg0(t) = 0. This will imply that the corresponding maximal integral
% )

curve of \7|{_ ) has a limit point in {—1—12 <K<i L= 0} bounded away

1 1
13 <K< T 0<L<u(K)

from K = }1 and, hence, that each maximal integral curve of V| . )} meets

S<K<i |Ll<u(K
{—% <K<i L= O} in one point (recall for this step that {—% <K <1 |Ll< u(K)} is
contained in R?\ {V = 0}). To prove b < 1 it suffices to show that for all ¢ > 0, the equation

o(t) = |1 —cexp (—2/J(s)ds) =0 (7.52)

t
is fulfilled for some t € (a, }1) Since J(s) < 0 for all s € (—%, }1) and the term —2 [ J(s)ds
to

is thus strictly monotonously increasing in ¢, it is sufficient to show that for all ¢, € (—1—12, i)

t

lim /ﬂ@m:—w. (7.53)
(=1/41<1/4,
0

22Note that we can actually give an explicit formula for () as in equation (7.50). By setting ¢ty = =5 one
¢

can show that [ J(s)ds = —3In(1 +12t) + 11In (1 —36t+ /(1+ 12t)3), but we will not need an explicit
to

formula for this proof.
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_ L
127

that (14 12t) € (1,4) for t € [0, ﬂ implies that (7.53)) is equivalent to

Since J is smooth on ( i) we can without restriction of generality assume ¢y = 0. Observe

t

14
lim / i ds = oo. (7.54)
/at<1/a) 1 36 4+ /(1 + 125)3

We replace s by —r + 1 in (7.54)) and see that it is equivalent to

1

1
.
l / dr = 0. 7.55
050 ] O — 24 (<6r VT3 (7.55)

Note that both the numerator and denominator of the integrand in ((7.55)) are positive and
, i) and both converge to 0 as » — 0. To prove (|7.55)) it is enough
to show that there exists ¢ € (O, 1) and A > 0, such that

smooth on the interval (O

4
Vr e (0,e): 9r—2+4 (—6r +2)v1—3r < Ar’. (7.56)
The condition ([7.56]) on the other hand can be proven by showing that

I 9 — 2+ (—6r +2)y/1—3r
im

r—0,r>0 7’2

(7.57)

exists and is positive. Using L’Hdopitals rule for limits yields
L=+ (62T 9(1-vI=3r) 9
im = lim =—.

r—0,r>0 7’2 o r—0,r>0 2r 2

Hence, holds true, and since (7.57) = (7.56) = (7.55) = (7.54) = (7.53), we have
proven that for all initial values ¢y € (0,1) and corresponding ¢ > 0, there exists t = ¢ €
(a,b), t > tg, such that equation is fulfilled. Summarising, we have shown that each
maximal integral curve of V|gz\jy—o starting in {—ﬁ <K<, |LI< u(K)} meets the set

{—ﬁ <K< i, L= O} in one point. We have already shown that the quartic CCGPSR

curves Hy g for K < i are pairwise inequivalent and can thus deduce that this point is

unique. This proves that every maximally extended quartic GPSR curve H, ;¢ with (L, K)T €
{—% <K <1, |Ll<ulK )} is equivalent to a uniquely determined quartic CCGPSR curve

Ho 7 K e (—é, i), and thus in particular itself a quartic CCGPSR curve.
We have shown up to this point that the maximally extended quartic GPSR curves
corresponding to @, andare closed and, hence, quartic CCGPSR curves. The remaining

case @ corresponds to the point

<IL<> = (351%) € {V =0} CR?

T 12

and we will now show that the corresponding maximally extended quartic GPSR curve
Hypz 1 is closed. Note at this point that H,5s , and H ,,5 , are equivalent, and

33l 12 . . 3v3) 12 3va L2
so this is indeed the last remaining maximally extended quartic GPSR curve we have to

study. To do so, it suffices to show that 3,z , is homogeneous in the sense of Definition

33 12
Riemannian homogeneous spaces are automatically geodesically complete and we can
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then use [CNS, Prop. 1.8] to conclude that H,,5 ; C R?is closed and thus a quartic CCG-

ava 12

T
PSR curve. In fact, (%, —%) € {V = 0} and the formulas 1) (7.2)), and 1' show that
for H,5 , we have 6 P3 = 0Py = 0, which implies with Proposition|3.34] the homogeneity of
3V 12
H,ss 1 asclaimed. It remains to determine the closed hyperbolic connected components of

337 12
hoys 1 = 1} and show that they are, as quartic CCGPSR curves, equivalent. To achieve

3v3’ 12

that we will determine the hyperbolic connected components of {h 203 1 > 0}. We find
3v3' 12

g () = o)’ v+ %2)

and

Hence,

that is {hg\/ﬁ > 0} has precisely two connected components, both of which only contain

3v3) 12
hyperbolic points and each a unique quartic CCGPSR curve. These two curves are the

connected components of {hm .= 1}, and they are equivalent via (3 ) — — (). Note

that H,s 1+ C Rog - {(;)SSR;‘ Yy e (—%, \/6)} In order to find the automorphism

5V 12
h

5

_ 1
3012

S

group G" of h,5 , , we now only need to determine G* and check that there are no
V3 12

havs
. C R? to itself. For G,**

/30 12

—
w""

additional discrete symmetries of A

2

=

2vz _ 1 mapping H,ys
3v3’ 3

ho 1
consider, similar to h% respectively G00’4, Proposition |3.34] and calculate the derivative of

the corresponding map A : dom (i}CQﬁ 1) — GL(2) (3.23) at z = 0 € dom (:}Cgﬁ ) >,

3v3’ 12 3v37 12
cf. (3.60). Again, the corresponding linear map dB, € Lin(R,so0(1)) automatically vanishes

since dim(so(1)) = 0. We obtain

0 3
V3

0 1
With @ := 2 ( f@), one can check that
1 V2
V3
dhays o (@-(y)=0
Al

as expected. Let {c¢;}ien be a sequence of real numbers, defined as follows:
2 L 2

= G = Ci— G

V3 T3

C1 = ]_, Cy = Ci—1 Vi Z 3.
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If we further set ¢_; := 1 and ¢y := 0, we get the identity ¢; = ¢;_o + \[cz 1 for all 7 > 1.
Now for the exponential map of @ € gl(2), one can verify that

_ tk~ oo tk oo tk oo tk
exp (ta) = Z E ak Z o (k11 + cpa) = <Z k'ck_1> 1+ <Z I{;'Ck) a. (7.58)
k=0 "

Note that @, when viewed as an element of gl(2), has eigenvalues v/3 and —% and is thus

(as an endomorphism of R?) equivalent to

"= (ﬁ —;g)’

eVt
exp (ta) = ( e_\;§> :

and (R, +) are isomorphic. More precisely, we find that @ can be

L 2
V3 VB

which shows that we can view the action generated by a as a one-parameter subgroup of
the conformal group CO(1,1) of the Lorentz vector space (R?, dzdy). The quartic CCGPSR
curve thus fulfils H,,5 , = R as Riemannian homogeneous spaces via the corresponding

and

|~

1

o

hava _
It is clear that G,*"*
written as

337 12
havs
action of G;*¥* . Now, again similar to the cases Ho x for K < 1, we need to find all A €
hava 1 2? .
G 33 12 C GL(2) which are not contained in G,* , such that AH, 5z  =Hopm o
3v3' 12 33 12
With
A= ail a2
Qg1 A22
it is immediate that a;; # 0, since otherwise
aiy 0 1 4
hM _1 ((a21>x> :hM _1 ((a21)‘r) = CL21QZ
337 12 3v37 12 12
but hos 1 ((81)x) = 2* is a necessary requirement for A to be an automorphism of
3v3' 12
hys .. Furthermore, () € Hype 1 is mapped to (git ), which is required to be an
337 12 3v37 12
element of H,,5 ;. The hyperbolicity of H,s ; C R? then implies that a;; > 1. Since
337 12 3730 12
(ast) € Hys 1, A must thus be of the form 1} With Definition [3.13| and the fact that
3v3) 12
hava
G 3v3 acts transitively on H,,5 , , this shows that A can be written as
33 12
A=A - A
hﬁ — ~ h2 V2 1
where Ay € G,*¥* 7 and A € G 35 ™ is contained in the stabilizer of the point (}) €

hava
. Hence, we need to determine all A € G 375’73, such that A - (}) = (}). A must

&
g

w
B
sl
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be of the form

athﬁq—B

_ 3v3
i 1 Dahoys 1 "1_ (10
el [Tl

0 r

2 2 9 2\/§ T44

has s (A-(5)) = a* = 2%y +0° Wi vy’ = 5"
which shows that » = 1. Summarising, we have shown that

hovz 1

G sv3 QgRXZQ,

where R acts as described in and Zs acts via (y) — —(y).

In order to complete the proof of Theorem we still need to prove that the quartic
CCGPSR curves @, @L , and elements in the family of curves|d)| are pairwise inequivalent.
We already have seen that this is true if one considers two elements in the one-parameter
family . Since the quartic CCGPSR curve |57|, that is 1 has a transitive action of the

hy 1
corresponding Lie group GOO"‘ , cf. Definition |3.13, it might only be equivalent to the quartic

2v2 _ 1
CCGPSR curve H,y5 , , that is|b), which also has a transitive G,*®" -action. But with
3v3' 12
dom (36,) = (~V2.12)
and /3
2
d (}c ) B NG
we find that
dho’l 1 — dh(]’l 1 — 0
1e) )
and 23
32
dhovs 1|/ 1\ = —d:v —=dy#0, dhyys .|, | =0.
3v3’ 12 ( \/§> 9\/_ 3v3’ 12 (\/é)

V3

This means that dhg% vanishes on 0 (R>0 -y, 1 ), but dh,s . vanishes only on one of the

3v3' 12
two connected components of 0 <R>0 - Hups > Hence, the quartic CCGPSR curvesand

3v3’ 12

2v2 1
@ can not be equivalent. Alternatively, we could have used that G 3v3" 2 has 2 connected

h
components, while G' ®% has 8 connected components. Now, in order to prove that there
exist no quartic CCGPSR curve H x in the one-parameter family |d)| that is equivalent to
the quartic CCGPSR curve H 20 that is , we will use a similar argument. We find that
3v3’

for K < 0, the equation
dho i (9,) =y (—2 + 4Ky?)

has no other solutions than y = 0. For 0 < K < i

1
dh 0,) =0, 0 < =+ —.
O,K( y) Yy 7é ) \/ﬁ
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But then ) 1
1
hoc (20 ) =1 4 <0 WK e (0.5).
Hence, for 0 < K < % the points :I:\/% are not contained in 0 (dom (Hy x)). Summarising,
we have shown that for all K < 1, dho k| o(

dom (9{3350 — (=%, v3) and

is nowhere zero. But for H _»_, we find
R>0'}f0,K) 33’

=0.

1
(V)
Hence, for all K < i the quartic CCGPSR curves Hy x and H 20 cannot be equivalent.
3v3’
This finishes the proof of Theorem [7.2] O

dh_2_g
3v3’

Remark 7.3. In [CNS| Thm. 2.9] it has been proven that every CCGPSR curve H C {h = 1}
equipped with its Riemannian centro-affine fundamental form g4 is geodesically complete,

independent of the homogeneity-degree 7 > 3 of h. This in particular implies that the curves
a)—d) in Theorem are geodesically complete.

Remark 7.4 (Comparison with CCPSR curves classification). CCPSR curves have been
classified in [CHM| Cor.4]. One can also use the methods of Theorem to find that
classification. Roughly, it works as follows. We assume without loss of generality that
h = hy = a® — xy? + Ly3, L € R. The first step is to find all L, such that the connected
component H;, C {hy = 1} that contains () = () is a CCPSR curve. It turns out that 3y,
is a CCPSR curve if and only if |L| < % Then, we would study an analogue to the vector

field V (7.4) which was extensively used in the proof of Theorem [7.2] namely (recall (3.30)))

~ 5 0BW)0:), (9., 2
VEr(TR), V= "R, = (2L - 3) oy (7.59)

Then we find that {\7 = 0} = {iﬁ} and that the maximally extended integral curve of
\~7|R2\ {7=0} that contains L = 0 has the image (—%, 3%/5) Up to equivalence there are

precisely two CCPSR curves, Hy and H 2 the latter being a homogeneous space with
3v3
h_2

respect to the action of G,**. We can now verify that H, is exactly the curve b) and H 2
3V3

is equivalent to the curve a) in [CHM, Cor.4]. Note that there exists, up to equivalence, one
more hyperbolic cubic homogeneous polynomial i : R? — R and a corresponding (maximal)
non-closed PSR curve which is not equivalent to neither 3y nor H _2_. In [CHM, Thm. 7], it

3V3

is given by h = z(2? +y?), and in our approach it is equivalent to hy, for all [L| > ;2. Note

that hy and h_j are always equivalent, and that the maximal integral curve of T?]RQ\ (=0}

that contains any point L > % has the image {L > 3%/3} Cc R

Remark 7.5 (Comparison of moduli spaces of quartic CCGPSR curves and of CCPSR
curves). It was shown in [CHM, Cor. 4] that the moduli space of CCPSR curves consists of
two points and is thus compact. In Remark[7.4] we have described how to find the equivalence

class of a CCPSR curve when the corresponding cubic polynomial is of the form (3.12) by

parametrising the set of CCPSR curves over the compact interval {—%, 3—\2/3] A similar

parametrisation of quartic CCGPSR curves over a compact set does not exist as we have
seen in Theorem . Instead, we have identified a suitable non-compact subset of R? over
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which the set of quartic CCGPSR curves can be parametrised. If we, however, restrict to
quartic CCGPSR curves which are singular at infinity, we find that a corresponding compact
interval continuously embedded in R? is given by the set

() e )

see (7.18) and ([7.21). Note that for one-dimensional CCGPSR manifolds, being singular at
infinity as in Definition [3.16[ is equivalent to having non-regular boundary behaviour as in
Definition (.11

Remark [7.5] leads to the following question.

Open problem 7.6 (Possible compactness of non-regular quartic CCGPSR manifolds gen-
rating set). Can we parametrise the set of quartic CCGPSR manifolds with non-regular
boundary behaviour over a compact set in the sense as described in Proposition[5.8 for CCPSR

manifoldf®)?

If we find a positive answer to the open problem [7.6] then we could use an argument
similar to the proof of Proposition [5.17] in order to solve the still open question whether
quartic CCGPSR manifolds of dimension n > 2 are always complete or not.

At this point we will present an example for Proposition , that is for 2P, for quartic
GPSR curves.

Example 7.7 (62P;(y) and 62P,(y) for quartic curves). With Proposition equations

and (3.57), one can show that for hy i = x*—a*y*+ Lay*+ Ky* with Py(y) = Ly?
and Py(y) = Ky*

135 11
52P3(y) = <4L3 + 54LK — 2L) y3d2’2,
9 1
0°Py(y) = <54L2K L+ 24K — 4K - 2) yrdz?.

With L(T) and K(T') as in (7.8) and (7.9), respectively, one can similarly to the relations of
o ( L(T) . .
v and o= (K(T))‘T—O as in (7.10) verify that

0* (L(T) B 513+ 54LK — 4L (02 P3(y)/(y3dz?)
OT2 \K(T))|,_, \P4L’K +JL* + 24K —4K — 3 )~ \&*Pi(y)/(y*dz?)
as expected.

Recall that for CCPSR manifolds H C {h = 1}, h of the form (3.12), and (}) € H, we
have seen in Corollary that all points z € ddom(H) fulfil the estimate § < |z|| < V3.
One application of Theorem is an analogue of the upper bound for quartic CCGPSR
manifolds of arbitrary dimension. We will also see that there exists no such lower positive
bound for quartic CCGPSR manifolds that holds for any fixed dimension.

Proposition 7.8 (||z|| < v/6). Let 3 C {h = 1} be an n > 1-dimensional quartic CCGPSR
manifold, h of the form (3.19), and (}) € H. Then

vz € ddom(H): |z| < V6, (7.60)

ZRecall that an n-dimensional CCPSR manifold H C {h = 1} has non-regular boundary behaviour if and
only if it is equivalent to a CCPSR manifold corresponding to a polynomial in 9C,,.
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where || - || denotes the norm induced by the Euclidean scalar product on R™ used in (3.19).
On the other hand, there exist no general lower positive bound for the Euclidean norm of
points in ddom(H) irrespective of the dimension of H, i.e. for alln > 1 and all § > 0 we
can find a quartic CCGPSR manifold H with dim(H) = n, such that there exists a point
Zs € Odom(H) with ||zs|| < 9.

Proof. First we show the existence of the upper positive bound. For an n > 1-dimensional
quartic CCGPSR manifold H as used in this proposition, consider for v € R™ \ {0}, such
that ||v]| = 1, the restriction h|span{( )(I)) Then with () denoting coordinates of R? we

1
N 0
define i : R* — R as
h((y)) =h(z(5)+y(2)-
One can now easily show that £ is of the form 1) Let H C h denote the quartic CCGPSR

curve that contains the point () € R? Note that H being a quartic CCGPSR curve follows
from the fact that the map

o) 050, ()< ()

is, by construction, an isometric embedding. If we can now show that, independent of the
chosen v € R™\ {0}, for all Z € ddom (9—() the claimed estimate ||Z|| < v/6 holds, we will have

proven it for all dimensions. Since His a quartic CCGPSR curve, we know by the proof of
Theorem [7.2] that H = H, ; C {hy x = 1} with (}) as in (7.1}, with the following possible

values for L and K:

(£) efie (p2). 1<t}

L 1
<K> € {K < -0 L < W(K)},
u and w as defined in (7.18)) and (7.28]), respectively.
T T
For (L, K)T = (0,1)", dom (1) = (=v2,v2), and for (L, K)" = (22, %),
dom <.’J-C2ﬁ 1 > = (—%, \/6> Hence, in these two cases the estimate ([7.60]) holds.

3v3' T 1z
Now we consider (L, K)T € {K € (—i 1) L] < u(K)}. We want to determine

127 4

sup max ||z | -
(LK Te{Ke(~35.3), [Ll<u(k)} \Feddom (3L k)

In general, denote (whenever defined) dom (H x) = (N k., P k) and note that
dOIIl (U‘C_L,K) = <_9)L,K7 NL,K) .

Hence, we can without loss of generality assume that L > 0. Then we automatically have
Prx > [N kl||. Furthermore, for L > L > 0 such that H; ,. and Hy g are both quartic
CCGPSR curves it is easy to see that

L>L = P;,>Pk. (7.61)
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Hence,

sup max ||Z]| sup  Pur)k-
(LK)Te{Ke(-35.1), ILI<u(K)} zeddom (Hz, i ) Ke(-4.1)

It turns out that we can find an explicit formula for Py x, K € ( % %) Recall that

u(K) = 3{/%\/1 — 36K + /(1 + 12K)3.

We find that
V6 (VIT12K - 2)
aKu(K) =
\/1 — 36K + /(1 +12K)3
and claim that Pyx)x = —8Ku(K) for all K € (_Ev Z) In order to show this, first note

that —0gu(K) >0 for all K € ( oL 4) and one can check that

11
B (L, =0u(K)) ey ) = 0 VK € (—12, 4) . (7.62)

We still need to show that —dxu(K) is not just some solution of  (1,%) ) g = 0 for Z,
but actually coincides with Pyx) k. For K =0, —9xu(0) = V3= Puk), k- For K € (O, i),
recall that the corresponding function ([7.13])

fu(K),K( ) = ha(roy, i (1) =1- 2+ u(K)t3 + Kt

4 ) €

have t); < 0. Also recall that for (L, K)T = (u(K),K)", K € <O, %), the point ¢,, > 0
is a positive root of fyxyx(t), cf. (7.16) (7.17) (7.18). This shows that fyx) k() has a
unique positive root t,,, which coincides by construction with Py k) x. One now verifies that,
indeed, for (L, K)T = (u(K),K)", K € (0, %), we have that t,, = —9xu(K). Now we want
to determine

always has precisely one local maximum at ¢ = 0, and two distinct local minima ([7.15)),
which are given by t, (7.17) and ty (7.23). For (L, K)T = (u(K),K)", K € (0,}), w

sup Tu(K),K-
Ke(O,i)

For that we calculate

3v6 (14 12K) +12(1 + 12K)? + (~864K2 — 240K — 14) /I + 12K))
. .

Ik (—0ku)(K) =

(1+ 12K)2\/1 C36K + /(1 + 12K)°

1

i3 4) Using a computer

The denominator in the above formula is positive for all K € (
algebra system like MAPLE, we obtain

11
(1+12K)* +12(1 + 12K)* + (—864K2 — 240K — 14) VI+12K=0 & K¢ {—12, 4} .

At K =0 we find —9%u(0) = —2¥3. This shows that

. 1 1)
P2u(K) < 0 VKE( =1 (7.63)
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hence in particular for all K € (O, i) With u(0) = % this yields

-
—0ru(K). With equation (7.62) and equations (|7.16)), , and ([7.18)), one only has to
check that t,, and —0xu(K) coincide, which turns out to be true. We can now use (7.63))

again and obtain with u (_T12> = %

Next we need to consider K € L 0) and show that for these K we also have Py) x =
A

L:\/E'

12

sup  Puwx)x = im Py = P2
Ke(—%,o) K—=—15,K>—15 3

S

Bl

Next we need to consider points (L, K)T € {K < -1, L] < W(K)} and determine

sup max  ||Z|| | -
(LK) e{K<—%, |Ll<w(K)} \Z€0dom (%L k)

We want to use (7.61)) again. However, contrary to points (L, K)T = (u(K), K)*, maximally
extended quartic GPSR curves Hey () k) corresponding to points (L, K)' = (w(K), K)?,
K < —+5, are not quartic CCGPSR curves, cf. (7.31) (7.32). But we can show that for fixed

K < —55 and all 0 < L < w(K), the corresponding function frx(t) (7.13) has precisely

one positive and one negative real root. Solving fL, k() = 0 symbolically, we obtain ([7.15)).
Hence, f1 x(t) = 0 has precisely one real root t = 0 for K < —5 and 0 < L < w(K) if and
only if 9L + 32K < 0. Thus if we can show that 9w(K)? + 32K < 0 for all K < —%, we
will automatically have proven 9L% + 32K < 0 for all 0 < L < w(K) and all K < —%. We
obtain

2
Iw(K)* + 32K = 3t 8K,

which indeed is negative for all K < —5. This shows that fi k() has exactly one local

extremum at ¢t =0 for all 0 < L < w(K) and all K < —%, and by the sign of the prefactor

of the highest order monomial Kt* (in t) in fr x(t) it follows that fr, x(¢) (7.13) has precisely
1

one positive and one negative real root for all 0 < L < w(K) and all K < —15 as claimed.

Now we use that the prefactors of the monomials in ¢ of f; x(t) depend smoothly on L, K,

and can thus use ((7.61) to get

sup ( max )HZH) = S Pw().K;

(LK) e{K<—, |Ll<w(k)} \Z€ddom(3r,k K<—%

where we denote by Py (k) x the (unique) positive real root of fw (k) k(). Since this is true
for all K < —15 and the prefactors of the monomials in ¢ of fw () x(t) depend smoothly on
K it follows that

1
(—OO7 —12) > K = Pw)x € Ry

is smooth. Furthermore we have for all K € (—oo, —%)

0= 0k (fw(K),K (?W(K)vK))

9 fw(ro), ik (1)

5 O Puwic) 1 + Py i (O wW(K) + Pruiiy i) - (7.64)

Pw(K),K
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Note that fw(x)x(t) is strictly decreasing for ¢t > 0 (this follows from the uniqueness of its
local maximum at ¢ = 0), which implies that

Ofwue.x(t) <0 VK < -~
ot P 12°
w(K),K
We further find
9(1 + 12K 1

Hence, (7.64) implies with Py k), > 0 for all K < —15 that

1
8KiPW( K > 0 VK < —E

Together with w ( 12) gg, this shows

= /6.

S
.

sup  Pw(r)x hm Pwiry,xk = Pavz _

K<— ﬁ K_>_7 K<_7 3 > 1

S

This finishes the proof of the estimate ([7.60]).

It remains to prove the second statement of this proposition. To do so, it suffices to
construct for every n € N a sequence of n-dimensional quartic CCGPSR manifolds J;,
1 € N, such that

min ||Z|| < ¢,
z€ddom(H;)

where {¢;,i € N} C Ry is any strictly decreasing sequence of positive real numbers. As
usual, H; C {h; = 1} is assumed to contain the point (3 ) = (3) and h; is assumed to be
of the form ([3.12). Using the latter assumptions, we define for each n € N a candidate for

Y1

hi : R — R, where we let () = ( : ) denote standard linear coordinates on R™™! with
Yn
standard Euclidean scalar product on R™ denoted by (-,-). Let

hi =t — 2 (y,y) — iy, y)?,

and H; C {h; = 1} be the connected component of {h; = 1} that contains the point
() = (). Then H; is a quartic CCGPSR manifold for all i € N. This follows from the fact
that the corresponding function 3; (3.22]),

BiiR" =R, Bi(z) =hi (1)) =1—(z2) —ifz,2)",

is strictly concave and, hence, firstly the (unique) connected component of the set

{1} x {fi(2) > 0} = (Rso - 36i) N {C)

zE]R"}

that contains the point(y) = (§) C {h; =1} C R"™ is precompact, and secondly the
right hand side of coincides with the pullback of —9?h,; and is positive definite on
said connected component, showing that H; is indeed a quartic CCGPSR manifold and that
dom (3;) coincides precisely with that set projected to R™, cf. . We find that

dom (9€,) = {n | < ”g“}cR
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Now 7”*;?_1 — 0 as ¢ — oo shows that for all 6 > 0 there exists an 7 € N, such that
7“22971 < 6, and we have thus found with the corresponding H; a suitable n-dimensional

quartic CCGPSR manifold, such that for all Z € ddom (¥;), ||Z|| < d. This finishes the proof
of Proposition [7.8] O

We will now use Proposition [7.§|to find a similar statement for quartic CCGPSR manifolds
compared to Lemma 4.8 which describes a property of CCPSR manifolds.

Lemma 7.9 (Hyperbolicity condition for quartic CCGPSR manifolds with knowledge that
|zl < V6). Let h : R"*!' — R be a quartic homogeneous polynomial of the form ,
h = z* — 2®(y,y) + 2P3(y) + Pu(y). Let H C {h = 1} be the connected component of
{h = 1} C R™™ that contains the point (3) = (§), and assume that H C R"™! is a
hypersurface. Then H is a quartic CCGPSR manifold if and only if

I2[| < V6 (7.65)

and
2(dz,dz) — 6P3(z,dz,dz) — 12Py(z, z,dz, dz)

1 ) )
+ m (16(2, dz)* —24(z,d2)Ps(z, z,dz) + 9P3(z, z, dz) ) > 0 (7.66)

forall (1) € Rao-H)N {(l) e R"™ | 2 € R"}.
Proof. The proof of this lemma is very similar to the proof of Lemma [4.8, The differences

are mostly replacing “PSR” with “GPSR” and adding the label “quartic” when appropriate,
and the calculation of det (—82h(1)> which additionally needs Proposition

manifolds see formula (4.6) in Lemma .
Assume that H is a quartic CCGPSR manifold. Then Proposition [7.8 implies that ||z]| <

V6 for all z € dom (%) and we calculate

92

et (~%h 1)

et —12+2(z,2) | 427 — 3Ps(2, 2, )
43R,z )T [ 21— 6Ps(2, -, ) — 12Pi(2, 2, -, )

= (—12+42(z, 2))

(for PSR

- det (211 —6Ps(z,-,+) — 12Py(z, 2, -, )

1

T T
BT (42 = 3Ps(2,2,)") @ (42" = 3P3(2, 2, ))) . (7.67)
Furthermore, the sets dom(H) and (Rsq - H) N {(1) € R**! | z € R"} coincide, cf. (3.13).

Then ([7.67) is equivalent to ([7.66)).
On the other hand, let 3 be the connected component of {h = 1} that contains the

point () = (§), and assume that ([7.65)) and (7.66) hold. Then the sign of det <—82h(1)> is

z

constantly —1 for all (1) € (Rso-H) N {(}) € R™! | z € R"}, and since the point (}) € H
is automatically a hyperbolic point of h since h is of the form (3.12)), it follows that I
consists only of hyperbolic points. Since H is by assumption a connected component of
{h =1} C R™" it is also closed. Hence, H is a quartic CCGPSR manifold as claimed. [




7 Geometry and examples of quartic generalized projective special real manifolds 167

Next we will discuss some additional examples of quartic CCGPSR manifolds.

Example 7.10 (“Homogeneous hat”). Consider the quartic homogeneous polynomial

1
hiR™ SR, h=at— 22 (y,y) + Z<y,y>2,

where () denote linear coordinates on R"* and (-,-) denotes the standard scalar product on
R" induced by y = (y1,-..,yn)’. Then the connected component H C {h = 1} that contains
the point (3) = (§) € R™ is a quartic CCGPSR manifold for all n > 1. Furthermore G
(cf. Deﬁm’tion acts transitively on H, so that H is a homogeneous space with

H = SO0™(n,1)/SO(n),

where SO™ (n,1)/SO(n) is the oriented n-dimensional hyperbolic space. Here SO™(n,1) de-
notes the time-orientation preserving component of SO(n,1). Furthermore, every point p # 0

in the boundary of U := R<q - H does violate both conditions and in Definition

where in

dim ker (—GQh‘ ) =n,
T(0U\{0})xT(0U\{0})

so one might say that H wviolates Def. and as much as possible.
Note that for n = 1, H and the quartic CCGPSR @ in Theorem coincide (see also

Figure , and one might think of 3 for n > 2 as the higher-dimensional analogues of the
curve [a)]

Proof. In order to show that all of the above claims are true, we check that for any dB, €

Lin (R",s0(n)) (in (3.60)) both 0P5(y) (3.31) and dP,(y) (3.32) identically vanish. Hence,
Proposition tells us that H is indeed a quartic CCGPSR manifold with transitively

acting Lie group G%. We still need to show that H = SO™(n,1)/SO(n). To do so we will
first transform the linear coordinates (3 ) via (y) — (\/%y) and obtain that h transforms to

h=at =2y, y) + (y,y)? = (—“'2 + <y’y>)2 '

Let H C {lNz = 1} denote the quartic CCGPSR manifold that is the connected component of
{7@ = 1} C R™! containing () = (}), and note that H and H are equivalent. We will now
show that so(n,1) C Ty G" and that the corresponding action of SO*(n, 1) on H is transitive.

Let y
L )
0 = (ﬁ) (0,)

for 1 < i < n (note: in the untransformed coordinates, the a; correspond to dA, (9;,) (3.60),
respectively). Then we check that

dﬁ(w)(ar(i)) =0,

Y

and that [CLZ', CLj] = a;a;—a;a; = i+1,j+1_5j+1,i+17 where 5k7g denotes the (n+ ].) X (n+1)—matrix
with only non-zero entry a 1 at the kth row, /th column. The set

{a; | 1 <i<n}

is a generating set of the Lie algebra so(n, 1), where a € gl(n+ 1) is an element of so(n, 1) if

a’ <_1 ﬂ> + (‘1 1) a=0. (7.68)
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This shows that A is s0(n, 1)-invariant and that we have an isometric action p : SO (n, 1) x
H — H. In order to see that this action is transitive, observe that

(:;) Eﬁ g _x2+<y7y>:_]—’ .T>O,

since by assumption (1) € H. With our construction for so(n,1) , SO(n, 1)* acts
transitively on the set {—2?+(y,y) = —1, z > 0} and, hence, SO(n, 1)* also acts transitively
on H. The isotropy group of any point in H, e.g. (%) = (}), is given by SO(n) C SO*(n, 1),
embedded via

SO(n) 3 A (1 A) € SO (n, 1).

Hence, H = SO*(n,1)/SO(n).
For the last claim, that is the violation of both Def. and , observe that for
U =R.( - H we have

OU =Rog- {(1) R | (v,v) =2}
Hence,

T(1y(UA{0}) =R () @ {(9) e R | w e ker((v,))}

for all (1) € OU\{0}. One can now easily check that dh|sy = 0, which shows that H violates
Def. , and that _a2h|T8(6U\{0})><T6(6U\{0}) = 0, showing that H violates Def. in
[

the stated sense.

/

T T
0.5 1 1.5

z

Figure 24: Plot of 8(z) as in lj corresponding to n = 1, h = 2* — 2%y + iy‘l. It resembles a hat.

Next we will present a family of inhomogeneous n > 1-dimensional quartic CCGPSR
manifolds, which might be thought of as a higher-dimensional analogue of the family of
quartic CCGPSR curves |d)| in Theorem with the additional restriction K < 0.

Example 7.11 (h = z* — 22(y,y) — (M(y,y))*-family). Let M : R® x R® — R be a bilinear
form. Then with h = x* — 2*(y,y) — (M (y,y))?, the connected component H of {h = 1} that
contains the point () = (§) € {h =1} C R""! is a quartic CCGPSR manifold. This can be
seen by verifying that the corresponding function

B:R" =R, B(z)=1-(z2)—(M(z,2))?

as in is globally strictly convex for any bilinear form M € Sym ((R™)*) and with the
formula for the pullback of gg¢ to dom(FH).
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The quartic CCGPSR manifolds in Example for dim(H) = n > 2 might be though
of as a higher-dimensional analogue to the quartic CCGPSR curves described in Theorem
d) with corresponding K < 0. It is an interesting question if one can, similarly, generalise
said curves with corresponding K € (0, ﬂ Possible candidates would be the hypersurfaces
corresponding to polynomials of the form h = z* — 2?(y,y) + (M (y, y))?. However, M must
not have eigenvalues of absolute value bigger than %, which follows from the considerations
in the proof of Theorem At this point it is however unknown if that eigenvalue-condition
for M automatically implies that the corresponding maximal quartic CCGPSR manifold
H c {h =1} is closed in R"™! for n > 2 (note: examples of such hypersurfaces are studied

in Example [7.10). We leave that question as a problem for future research.

Example 7.12 (Cubics h times z, same dom(H) and even easier metric). Another way to
obtain quartic CCGPSR manifolds is as follows. Let H C {h = 2% — z(y,y) + P3(y) =
1} Cc R" (1) € K, be a COPSR manifold of dimension dim(H) = n. Then the connected

component H of the set {x - h = z* — 2?(y,y) + xPs(y) = 1} C R"™ that contains the point
(y)=(}) €{x-h=1} CR" is a quartic CCGPSR manifold. In order to see that this is
true, consider the functions 3 for H and B for H, both as in equation . We find that

B(2) = 1= (z,2) + Py(2) = B(2)
for all z € R™. This in particular means that the two sets dom(H) C R™ and dom (ﬁ) coin-
cide. Denote by @y, : dom(H) — H and @5, : dom (/U'VC) — K the respective diffeomorphisms,
cf. . Then we obtain using equation that

. 03, 3d3?
(®J}hgﬁ:’() = - 2
= 4P(z)  165%(2)
3(_ 08, 14
4\ 38(2)  452(2)

3(_ 08, 2P
4\ 38(z)  96%(2)
for all z € dom (ZTC) = dom(H). This shows that (ﬁ,g}?) s geodesically complete, and by
using [CNS, Prop. 1.8] we deduce that Hisa quartic CCGPSR manifold as claimed.

> > = i (®"gac),

The construction described in Example has, however, one important downside to
it, which is that it does in general not preserve equivalence classes. This is meant in the
sense that equivalent CCPSR manifolds need not be mapped to equivalent quartic CCGPSR
manifolds in that way. See Section [J] for an example and a related discussion.

We will end this section with an open problem, which turned out to be more difficult than
expected during the preparation of this thesis.

Open problem 7.13 (Existence of a quartic CCGPSR surface with ||z|| = v/6). Does there
exist a quartic CCGPSR surface H C {h = 1}, h of the form (3.19), ({) e H C {h =1} C
R2, such that
sup |z = V6,
z€dom(H)
or, equivalently, such that there exists Z € ddom(H) with ||Z| = V67

Note that for quartic CCGPSR curves, the curve H in Theorem|7.2|b) fulfils sup ||z|| =
z€dom(H)

\/6, but the existence of a quartic CCGPSR manifold H of dimension H > 2 with that
property is a priori not clear.
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8 Scalar curvature of manifolds in the image of the
generalised supergravity r-map

In this section we will study applications of our previous results to the theory of the gener-
alised supergravity r-map. In particular we are interested in finding a formula for the scalar
curvature and its first derivative of manifolds in the image of the r-map similar to in
Proposition and ([3.39)), respectively (3.40), in Proposition [3.30]

Furthermore, we will provide an application of Theorem for the theory of the super-
gravity g-map, that is, the composition of the supergravity r- and ¢- map. To do so we will
first review basic definitions and results from that field. References for this subject are e.g.
[GST], [FS], [DV], [CMMST], [CMMS2|, [CM], [C et al], [CHM], [CDL], [CDMV], [D].

Definition 8.1 (Pseudo-Kéahler manifold). A pseudo-Kéahler manifold is a triple (M, J,g),
where M is a complex manifold with complex structure J and equipped with a pseudo-
Hermitian metric g, such that

w:=g(J") (8.1)
is closed. w is called the Kahler form of (M, J, g).
Now we will define the generalised supergravity r-map, cf. [CHM., Def. 2].

Definition 8.2 (Generalised supergravity r-map). Let U C R""! be an open connected subset
that is invariant under multiplication with positive numbers, that is for all p € U and all
r>0,rpeU. For a,ngF_‘f] smooth homogeneous function h : U — R<q of homogeneity degree
e R\ {1,0}, H = {p € U | hip) = 1} is a smooth hypersuface contained in U C R
is a smooth hypersurface (which follows from the Euler identity for homogeneous functions).
Further assume that

1
g3 = —;th\T:HxT:H > 0.
Then ]
gu = ——0*(Inh) (8.2)
T
is a Riemmanian metric. Now consider the manifold
M :=U x R"", (8.3)
Let (xq,...,7,,1)T denote the linear coordinates on U induced by the embedding U C R™H
and let (y1,...,Yyns1)? denote the standard linear coordinates on R, so that M is equipped
with the global coordinate system (T1,. .., Tni1,Y1s- - Yns1). - Using the notation
n+1
gu = gidxdz;,
ij=1

we equip M with the Riemannian metric

3 n+1

2,j=1

Then (M, gn) is a Riemannian manifold and the correspondence

(9{7 gﬂ'f) = (Ma QM)

is called the generalised supergravity r-map. If H is a connected PSR manifold, then it is called
the supergravity r-map. In the following, we will also denote M = r(J).

24No restriction on h to be a polynomial or a rational function.
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Note that the generalised supergravity r-map can by applied in particular to CCPSR
and CCGPSR manifolds. In order to describe manifolds in the image of the generalised
supergravity r-map, we need the notion of projective special Kahler manifolds. Instead of
rigorously introducing these this type of Kéhler manifolds here, we refer the reader to [CHM,
Def. 4] and the discussion leading to that definition, since a clean and complete introduction
would go beyond the scope of this thesis. Having the definition of the latter type of Kéahler
manifolds in mind, we can now give to following characterisation of manifolds in the image
of the generalised supergravity r-map.

Theorem 8.3 ([CHM| Thm.4). The generalised supergravity r-map maps complete n > 0-
dimensional Riemannian manifolds (3, gsc) to complete Kihler manifolds (M, gnr) of real
dimension 2n + 2 with a free isometric action of the vector group R"*t. The supergravity
r-map maps complete n > 0-dimensional PSR manifolds to complete projective special Kdhler
manifolds of real dimension 2n + 2.

We are interested in the application of Theorem to CCGPSR and, in particular,
CCPSR manifolds. Parts of the following discussionhave been taken from the proof of [CHM),
Thm. 4] in [CHM]. For an n > 0-dimensional CCGPSR manifold®| 3 C {h = 1} c R"*!,

M =1(H) as in (8.3) fulfils
M=U xR"™ = (Ryq - H) x R

with the usual identification of the connected component U of {h > 0} C R"*! containing H
and R-o - H. Hence, H being connected implies that M is also connected. The Kéhler (or
projective special Kéhler for CCPSR manifolds H) manifold M is in particular a complex
manifold. For chosen linear coordinates (w1,...,2,11)" of the ambient space R"™ of H C
R"*! and induced coordinates of the open cone U C R""' U = Ry, - H, together with
the chosen linear coordinates (y1,...,¥yns1)? of the R* part in , the induced complex
coordinates (z1,. .., z,41)7 on M are given by

(21, zns) = (im0, . Yngr + i)

Hence, we can identify M = U x R*™! with R**! 4+ iU c C""!, where we think of the vector
part R" in (8.3 as the real part, and of the con part U in (8.3) as the imaginary part of
M.

Whenever we are working with our usual standard form of the polynomial A as in Propo-
sition equation (3.12), we denote the linear coordinates of the ambient space R"*! of the
considered CCGPSR manifold H C R"™! by (z,¥i,...,y,)T. For images of the generalised
supergravity r-map M = r(H) = U x R""! | we will then denote the chosen linear coordinates
of the vector part R™*! in by (Z, 71, - .. ,gn)T so that the induced complex coordinates
of M are of the form (% + iz, i1 + i1, -, Jn + iyn) . When considering the induced real
coordinates of M = U x R""! we will use the ordering (z,91,. .., Yn, T, 1, - - ,gjn)T. In the
following, we will frequently identify 0; = 0,, for all 1 < ¢ < n whenever we use linear
coordinates as in equation (3.12)).

Remark 8.4 (Standard form analogue for r(H)). Let H C {h = 1} and H C {71 = 1} be
two equivalent n-dimensional CCGPSR manifolds related by A € GL(n + 1), that is

hoA=h, AKX =H.

25Recall that we view CCPSR manifolds as special cases of CCGPSR manifolds.
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Then their respective images in the generalised supergravity r-map
M = I'(j{) — (]R>(] . g_(:) % Rn+1 C Rn+1 % RnJrl ~ R2n+2

and

M =1 (H) = (Rop- H) x R C R™! x R 2 R

are isometric via the linear map
A .
) M= M, (rp,q) = (rAp, Ag),

where 7 € Reg, p € H, Ap € H, ¢ € R™! in the vector part of M, and Ag € Rn+!
in the vector part of M. This means that we can make use of Proposition [3.18 in the
setting of the generalised supergravity r-map. We are particularly interested in the scalar
curvature Sy, of manifolds M = r(H) in the image of the generalised supergravity r-map,
H c {h = 1} being a CCGPSR manifold. If we want to know the value of Sy, at some
point (rp,q) € M = (Rsg-H) x R r € Ry, p € H, ¢ € R" we use first use the
fact that the vector group R"*! acts via isometries on the vector part of M. This implies
that Sy/(rp,q) = Su(rp,0) for all ¢ € R*™ and all rp € R - H. Then we determine
A(p) € GL(n + 1) fulfilling Proposition [3.1§] (i) and (ii). Together with the isometric action
of Ry on the Ry - H-part of M, this means in order to calculate Sy, at any point, it suffices
to find a formula for Sy, (({),0) depending on the prefactors of the monomials in P, ..., P,
assuming h is of the form (3.12)) (see Lemma for the result). Note the similarity to the
process of determining Si (({)), ¢f. Proposition [3.29]

Lemma 8.5 (Homogeneity of r(H) for homogeneous H). Let H C {h = 1} be a CCGPSR
manifold and assume that the identity-component of the automorphism group of h, that is G§
, acts transitively on H. Then the image of H in the generalised supergravity r-map,
r(H), is a homogeneous space.

Proof. [CHM, Prop. 1] implies that (r(ﬂ-f), gr(g}()) is isometric to

3 n+1
(R X H x RnH, 1 (er + g9¢ + Z gijdyidyj)> )

,j=1

where 7 denotes the standard linear coordinate on R, (xy,...,7,41)7 denotes the chosen
linear coordinates of the ambient space R™* of 3, (y1,...,Yn+1)? denotes the chosen lin-
ear coordinates on R"*' and g;; = gu(0y,,0,;) for 1 < 4,5 < n+ 1 with (8.2) and the
corresponding conventions. It is now easy to see that the product group

R x G x R™**

acts transitively on R x H x R*! via isometries. Here R and R"*! act via translation on the
R- and R""!-part of R x H x R™"*! respectively. Hence, r(H) is a homogeneous space. [

Having introduced all necessary concepts, we will now derive an analogue of Proposition
for manifolds in the image of the generalised supergravity r-map of the form r(H), where
H is a connected GPSR manifold.
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Lemma 8.6 (Scalar curvature of a manifold in image of the generalised supergravity r-map,
[CDL] Corollary 3). Let (M, gn), M = v(H), H C {h = 1}, be a Kdhler manifold in the
image of the generalised supergravity r-map and let Sy, denote its scalar curvature. Let
7 € R\ {0, 1} denote the homogeneity-degree of the corresponding function h : Ryg-H — R.
Then

SM:ZL;—<—(H+1)2+T

i(n—i—l)

h 271 —1 2 2
+Wtr (a ht.9 (det (a h)))

et (P70 (e (0P0)) (0 et (%) ,.>)) )

In the above formula, all derivatives are taken with respect to the linear coordinates on the
R~ - H-part of M induced by the chosen linear coordinates of the ambient space R"1 > (.
The matrices inside tr(-) are viewed as endomorphism fields of R™, so that their trace is
just the sum of the respective diagonal entries.

Proof. Up to the prefactor %T and a different notation, this is precisely one of the state-

ments in [CDL, Cor.3]. The prefactor 2 comes from a slightly modified convention for the
scalar curvature that was used in [CDL], and the prefactor %T comes from a different met-
ric of the base manifold H that was used in [CDL, Ch.5], namely —8?h|rscxr3 instead of
n+1
—%82h|mxT9{, and a different metric used on M, namely > g¢;; (dz;dz; + dy;dy;) instead of
ij=1
n+1
1,)=
Lemma 8.7 (Properties of the scalar curvature of manifolds in the image of the generalised
supergravity r-map). Let (M, gy) be a Kdhler manifold in the image of the supergravity r-
map, such that M =t (H) for a connected GPSR manifold H. Then the scalar curvature Sy,
of (M, gar) is invariant under translations in the vector-part R™™ of M = R - H x R
Furthermore, for any chosen linear coordinates (xy,...,xn41)" of the cone Ryg - H C R
which are induced by a choice of the linear coordinates of the ambient space R"™ > X,
the scalar curvature Sy; is a homogeneous rational function of degree zero in the variables

T1yeoy Tt

Proof. This follows from Lemma , which follows from [CDIL, Thm. 3] or, equivalently, from
[CDL, Cor.3]. All one needs to check is that entry-wise, for any chosen linear coordinates
(x1,...,2n51)7 of the ambient space R"™ > H, the inverse of the symmetric matrix 9?h

(which is by assumption of Lorentz type at any point p € Ry - H) is a rational function in
the variables 1, ..., 2,41, which follows from the general formula for inverse matrices

~1 1
0*h) = ————adj (0*h
() = @2h)" (@),
where adj (0°h) denotes the adjunct matrix of 9%h. O

Proposition 8.8 (Scalar curvature of manifolds in the image of the r-map). Let H C {h =
1} C R™™ be an n > 1-dimensional connected GPSR manifold and h of homogeneity-degree

7 > 3. Assume that h is of the form (5.13), that is h = ™ — 2" *(y,y) + ET: " *Py(y),
k=3

Y1

and that H contains the point (y) = (§), where (3) = ( : ) denote the standard linear

Yn
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coordinates on R"™. Let M = r(H) = (Rsq - H) x R™™! be the Kdihler manifold obtained by
applying the generalised supergravity r-map to 3 and let (z,y1, ..., Yn, T, Y1, ---,Un)’ denote
the induces (real) coordinates on M, where (z,y1,...,y,)T denotes the coordinates on the
R.o - H-part and (Z,71,...,9n)" denote the coordinates on the R"™-part of M. Let Sy
denote the scalar curvature of M. Then at the point

p:: <x7y17"'7yn7§§7g17"'7gn)T: (]‘707"'70’0707""0)T e M?
Sy takes the value

4 2 9
Su (P) = ?7' ( —n®—2n— - + B (Z P3(ai,5j,8k)2> + 62P4(8iaai>aj78j)) . (85)
ik i

For T =3, the Py-part in is omitted.

Proof. In order to obtain the above formula for Sy, we will use (8.4). Recall that for h =
T — 27y, y) + 3 27 F P (y) we have
k=3

0*h = <7’(7’ — 12" 2 = (1 =2)(7 = 3)2" y,y)
T—2
+> (r—k)(T—k— 1)x7_k_2Pk(y)> dz?
k=3
7—1
+2(—%T—Qﬁpﬂ%mﬁ+§:MT—@r”“U%@wuwww0dw
k=3
— 207 Hdy, dy) + > k(k — 1)a" Py, ...y, dy, dy).
k=3
Thus, written as a symmetric matrix, we get at (y) = ()

2 _ 7_(7__1) 2 _ non
8h]((1))—< 51 ) det (0 h)’(%))—(—l) 27 (1 — 1)

and ) ‘
ht = (25D |
(3 ( T
For p € {z,y1,...,yn}, recall that
Oy det (9%h) = det (0%h) tr (9°h" - 9,0°h) (8.6)
We obtain
T(r=1)(7=2)a7 3 —(7-2)(7-3)(T—4)z7 5 (y,y) —2(7=2)(r=3)z""*(y,")
T—3 T—2
+ Z (T=k)(1—k=1)(1—k—2)x" k=3 P, (y) + Z k(t—k)(t1—k—=1)2T %2 Py (y,...,y,")
amaZh - k=i — — — T—4 k=i — — T—1
2(r—2)(t—3)x" %y 2(r—2)z™ 1
T—2 71
+ Z k(T—k)(‘r—k—l)xT’k’2Pk(y ..... y,~)T + Z k(k—l)(T—k)a:""k*IPk(y,...,y,-,-)
k=3 k=3
and, hence,

9 T(r—1)(1—2)
@6M6)2< —uf—m1>‘
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This implies with

0, det (82h)‘(1) =(—=1)"2"7(t = 1)(n+ 1)(7 — 2).
0

As before, e.g. similar to Proposition [3.29 abbreviate 9,, = 9; for 1 <i <n. We then have

—2(1=2)(7—3)z™ "4y, —2(1—2)x73(0;,")

T—1

T—2
+ 3 k(r=k)(r—k—1)a"F 2Py (y,...p,0:) | + Y. k(k=1)(r—k)z"F "1 Py (y,...,y,0:,)

927 k=3 k=3
aza h = —2(r—2)x7 39, T
r—1 k(k—1)(k—2)z™~* P, Oy
+ ; k(k_l)(T—k)IT_k_lpk(y’“~ayvai")T 1623 ) k( h )
=3

and

) - 0 —2(1 —2)(0;, )
0;0 hl(g)) = < —2(r—2)0; | 6P5(0;,-,-) )

Hence, yields
0y det (0°h)| (1) = (=1)"2"r(r — 1) (—32 P3(9;,0;, aj))
0 j=1

for all 1 < i < n. Observe that 82h_1]( 1) is diagonal, which in particular means that for the
det(agh tr (0?h~1 - 9% (det (0°h)))-part of 1' we only need to calculate

82 det (91) = det (9°h) (tr (Ph ™" - 9,0°h) )’
+det (0%h) tr (=0*h™" - 0,0°h - 9*h™" - 0,0°h + 0*h™'0,0,0°h) (8.7)
at () =(}) forall uw e {z,y1,...,yn}. We find
020*h =

T(T*l)(T*Q)(T*3)1’T_4

—2(7=2)(7=3)(1—4)x" 5 (y,
—(r=2)(7—3)(r—A(7—5)z" 5 (yy) 2(r=2)(7=3)(7—4) (y,")

k

4

T—3
+72_24k(‘rfk)(Tfk:fl)(Tfku)(Tfk73)xffk74Pk(y) + ,;3k<T—k)(r—k—l)(T—k—mwT*’“*SPk(y ----- Y:dy)
k=3 -
—2(7—2)(7=3)(T—4)z" Oy —2(7=2)(7=3)z7 "1
T—3 T—2
+ Z k(T—k‘)(T—k—l)(r—k—Z)x""k*BPk(y ..... y,dy)T Z k(k—l)(T—k)(T—k—l)xT’k’2Pk(y,...,y,~,-)
k=3 k=3
and
D?0°h =
—2(7—2)(7—3)z" % I
Z_: k(k—1)(r—k)(r—k—1)z™— kfzpk(y ,05,0;) I;k(k_l)(k_Q)(T—k)ITfkflPk(y,...,y,ai,ai,-)
sy Y, 0U7,04 —3
Z k 1) k— 2)(7— k) T k*lpk(y,_..7y’8i78i,.)T ik(kfl)(k72)(k73)zT_kPk(y7»y:az»anv)

for all 1 <1i <n. Hence,

2 42 _ (T =1)(r—2)(r —3) ‘
@am%)_< —mT—mu_3m>

and

2 52 _ —2(1 =2)(r —3) | 6(r —3)13(9;,9;,")
@aMU)_<6(—3ﬁym@,F 24P,(3;, 0y, -, -) )
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for all 1 < i < n. Observe that for 7 = 3, the Pj-term in 81-282h|((1)) is omitted, and

furthermore 5262h|((1)) = 01-282h|((1)) = 0 for 7 = 3 as expected. Thus we find with 1}

O2det (0%h)| 1\ = (=1)"2"7(7 = D)(n+ 1)(r = 2)(n(r — 2) + (7 — 3))

(5)
and

(e — 1) <4(T - 2) T_(Tz(j s 2)(7 - 3)

+ (9ZP3 azaajaa )P3(al78k’ak>)

07 det (9°h )\

1
0

+

92P3 8178]7816) )

+ ( 1221'34 8278178.77a>>>

We can now use our calculations to determine the

h 2, -1 2 2
—Wtr (8 h= -0 (det (8 h)) ® <8 (det (8 h)) ,>) -part

of Sy (8.4):

"t (0Ph1 0 (det (0°h)) @ (0 (det (%h)) )

~ det (02h)

h 2\ 2,1 2
_ _ma (det (a h)) - O%h -8(det (a h))

(

0)

(6)
(1)1~ ZP?’ (0,0, 0;) Ps(0;, O, ).

T(T—l) 253

For the 5 a2h tr (0%h~1 - 92 (det (0h)))-part of Sy, we find

tr (0%h1 - 0 (det (9°h)))

h
det (62h) ((1))

_ nn—1)(r—-2)2+ 2n+ 1)(r — 2)(t — 3)
(T —1)

i7j7k“

9
+ 5 (Z <—P3<8i7 aj, aj>P3(ai, ak, ak) + Pg(ai, 8j, 8k)2))

+6>_ Py(9;,0:,0;,0)).
1,
Summarising, we obtain

4 P
Sar (p) = — (—n —on- =42 (ZP?, 0;,0;,0x) ) +635 Py az,a,,aj,m)

3 1,5,k %,

which is precisely the formula (8.5)).
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Note that, in comparison with Sy at (§) = (§) in Proposition [3.29] the scalar curvature
Su = Sigo at (T, Y1, Yo Y1, Un)T = (1,0,...,0,0,0,...,0)" (for connected GPSR
manifolds H with the corresponding assumptions) does depend on P for 7 > 4 and not just
on Ps.

We can now for fixed n € N, similar to Theorem [4.13] show that the scalar curvature of
manifolds in the image of the supergravity r-map M = r(H) is globally bounded by constants
depending only on n whenever H is a n-dimensional CCPSR manifold.

Proposition 8.9 ((Non-sharp) Sy bounds for n-dimensional CCGPSR manifolds ). Let
H C {h =1} be ann > 1-dimensional CCPSR manifold and M = r(H) be the corresponding
projective special Kdahler manifold after applying the supergravity r-map to H. Then the scalar
curvature of (M, gur) is globally bounded by

2% . 86, 28 4 25 , 14, 28 4
B B B e ST e P 8.8

independent of the considered n-dimensional CCPSR manifold H.

Proof. We can without loss of generality assume that h is of the form (3.12)) and that H C
{h = 1} coincided with the connected component that contains the point (y) = (¢). Then
T

(with 7 = 3) Sy at p¥ = (2,y1, -, Yns T, U1, - - Un) T = (1,0,...,0,0,0,...,0)T is of the
form
2 2 9 2
SM(p):4 —-n —2n—§+§ZP3(8i,8j,8k) .
1,5,k
Using (4.16)) and the estimate (4.12]), we obtain
25 2 25 2
4 /Y3 2_2 _>< <4<3_ 2_2 _)
( YL n- g < Su(p) < YL n- g
Now we use Lemma 8.7 and Remark [8.4] and conclude that
25 2 25 2
4 s B 2_2 _)< <4(3_ 2_2 _> )
( YR n- 3 < Sy (p) < gt T n- 3 (8.9)

for all p € M = r(H). In particular, is depends only on the dimension n = dim(H) of
H, not on the choice of the particular CCPSR manifold K. ]

One consequence of Proposition is the following.

Corollary 8.10 (Negativity of Sygq for dim(H) = 1). Let H be CCPSR curve. Then its
corresponding image in the supergravity r-map, M = r(H), has negative scalar curvature.

Proof. For n = dim(H) = 1, the upper bound in (8.8)) reads

25 2 63
12— =-2 <.
24 5= u <"

]

We can, however, improve Corollary and find a sharp estimate for Sy, M = r(H),
for dim (H) = 1 independent of the considered CCPSR curve H.
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Lemma 8.11 (Global sharp estimate for Sy, dim(JH) = 1). Let H be CCPSR curve. Then
the scalar curvature Sy of its image in the supergravity r-map M = r(H) is globally bounded

g 44
— 5 < Sw <12, (8.10)

This estimate is sharp in the sense that for all s € {—— —12} there exists a CCPSR curve
Hs and a point ps € Hs, such that for ps := () € My =1 (Hs), we have Sy, (ps) = s.

Proof. We can without loss of generality assume that h; = 23 — zy? + Ly? and that H is the

connected component of the level set C {h; = 1} C R? that contains the point () = ( ),

cf. Proposition {3.18| Theorer@ implies that { is a CCPSR curve if and only if |L| < ;
8.5

5) and find for p” = (1,0,0,0)T € M = r(H) that Sy (p )

S‘wo.—-

Hence, we can use equation (8.
4 (—13—1 + %L2> and, hence,

min Sy (p) = —— < Su(p) £ max SM( ) =—12.
ILI<52 3 ILI<325

With Remark we conclude that (8.10) holds true globally. To prove that the estimate
in this lemma is sharp in the stated sence, we choose for s = —= the CCPSR curve H_ a4
associated to hg, and for s = —12 the CCPSR curve H_15 assomated to h_2_ and find that

3V3

at pT = (1,0,0,0)7 (which is, by construction, contained in both CCPSR curves }C_% and
H 19)

and
Sr(g{_m) (p) = —12.

Since Sy3)(p) =, H C {hy =1}, depends continuously on L € {—%, B%l, we conclude
that the estimate (8.10)) is indeed sharp in the stated sense. This finishes the proof. ]

What one might ask for next is an analogue of Proposition for the scalar curvature of
manifolds M = r(H) in the image of the r-map for CCPSR surfaces 3, that is for dim(H) = 2.
We will formulate this as an open problem, since it turns out that this is the setting of
Proposition |5.12)) with P3 ((¥)) = r (i,)%yg + kyz® + €z3) and p' = (1,0,0,0,0,0)" € M =
r(g_c)7

104 8
Su(p) = ——=+7r (3 + 6k% + 18€2> ,
which, in comparison with Sy ((3)) = =2+ r (%l{:2 — ?k), contains a non-trivial (-term.

This unfortunately prevents an “easy” analogue for global Sj;,-bounds when one tries to use
the proof of Proposition |5.12]

Open problem 8.12 (Sharp S,()-bounds for dim(H) = 2). For CCPSR surfaces H and
their corresponding special real Kdhler manifolds in the image of the supergravity r-map M =
r(H), find sharp global bounds for the scalar curvature Sy; analogous to Proposition .

Remark 8.13. In [CDL, Prop. 9], the image of the scalar curvature S5 for J as in Theorem
a)-d) has been precisely determined. For e) it was shown that Sy is not constant. In
order to solve Open problem , it would thus be sufficient to consider only the cases e)
and the one-parameter family f) in Theorem calculate the image of the corresponding
scalar curvature, and then compare the results with [CDL| Prop.9].
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Next we will derive an analogue of Proposition for the scalar curvature manifolds in
the image of the generalised supergravity r-map. Recall equation (3.24)) in Proposition m
and Definition [3.27

Proposition 8.14 (First derivative of Syag)). Let H C {h = 1} be a connected GPSR
manifold with h of the form and () = (§) € H. Then the first derivative of the scalar
curvature Sy of the Kahler manifold M = r(H) obtained via the generalised supergravity r-

map at the point p = (T, Y1, .-, Yn, T, Y15 -, Un)* = (1,0,...,0,0,0,...,0)T € M fulfils
4T

aSul, = = (— 6 (Z Pg(ai,ai,dy)>

81
+ 5 ( Z Ps3(0;, 0}, O ) P5(0;, Ok, 0¢) P3(0;, Oy, dy))

1;7j7k7é

i7j7k

i7j7k

2

For =3, the Py- and Ps-parts in are to be left out. For T = 4, one omits the Ps-part
in :
Proof. Equation (8.5)) and Definition imply that
4
dSM|p = ?T (9 (Z Pg(@i,aj,(‘?k)éPg(@i,(‘?j,ak)) + 6 (Z 6&(@,@,@,@))) . (8.12)
ig,k i

From equation (3.24)) in Proposition obtain that
2(r —2)

3
5P3<y> = <ya y> <y7 dy> + 3P3 <y7 Y, dBoZ/ + §P3(ya ) dy>T> + 4P4(y7 v,Y, dy)

and

2(1 —3)

T

OPy(y) =

3
P3(y) <y7 dy> + 4:-F)4 <y7 Y, Y, dBOy + §P3<y7 B dy)T) + 5P5(y7 v, 4,9, dy)a

where we recall that dBy € Lin(R™;s0(n)), cf. (3.25)), and omit the identification T%)ﬂ-f =

Todom (H) so that we can use dy instead of dz. Up to a slightly different notation and
different names for the indices, we have seen in (3.44)) that

<Z Ps(0;, 05, d?/))

2(r —2)

Z Ps(0;, 05, 01)0 P3(0;, 05, 0r,) = —

i7j7k

i7j7k:7£

+4 Z P3(ai7 aj? ak>P4(ai7 aju aku dy)

i7j7k

9
+ 5 ( Z P3(ai7 8]', ak)P?)(ala aka aﬁ)PB(aja 8@) dy))
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Using 0% (0Py),, (v, w) = 120 Py(y,y, v, w), we get

T—3
dP4(0;, 0;, 0;, aj) = — (P5(0;, 0;, aj)dyi + P5(0;, 0;, aj)dyj>

+ 2P4 <ala aja aja dBoaz + ;PZ}(aza "y dy)T)

+ 2P, (ai, i, 0;,dBy0; + ;Pg,(aj, . dy)T)
+ 5P5(0;, 0;, 0,05, dy)

and, hence,

2(r —3)

T

Z (5P4((91, &, aj, 8]) —

i!j

(; P5(0;, 0;, dy))

i7j7k

+6 (Z P3<a]7 aka dy)P4(ala aia 8]'5 ak))

+ 5ZP5(@i,6i,8j,0j,dy).

ij

Summarising we obtain with (8.12)) the formula (8.11)) as claimed. One now verifies that for
7 = 3, the prefactor of the 3 P3(0;, 0;, dy)-part in dSy|, (8.11) is —24 which is the correct

values and, hence, the formula for dS M‘p is indeed consistent for all 7 > 3 when leaving out
the P,- and Ps-part if appropriate. ]

As an application of Proposition[8.14] we will present an r-map analogue of Proposition [6.9]
In order to omit confusion with the letter “M” used in the definition of the multi-parameter
families in Theorem we will not use the notation M = r(H) in the following proposition
and instead simply use r(3H) for a manifold in the image of the supergravity r-map.

Proposition 8.15 (Inhomogeneity of elements of r (FU G)). Let h € FUSG and H(h) be the

corresponding CCPSR manifold as in respectively and let v(H) be their respective
projective special Kdhler manifold in the image of the supergravity r-map. Then r(H) is
inhomogeneous.

Proof. We will proceed very similar to the proof of Proposition and we will use the
same terminology. For connected PSR manifolds 3 (that is for 7 = 3), dS], 4 at the point

P=(T,¥1, Y T U1, - - Un) T = (1,0,...,0,0,0,...,0)T € r(H) is of the form

dsr(m\p =365 Ps5(8;,0;, 0 ) Ps(8;, 0;, 0%)

i1j7k

2'7j7k7£

cf. (8.11) and (8.12)). Recall that for h € FU G, the corresponding CCPSR manifold H(h)
as in |§|, respectively , is equivalent to the connected component H C {h = 1}, h =

n_l Pp— . . . xT n
3 —2(y,y) +yn (3\2/51/,21 + % Py ’\‘/%\?ny), that contains the point (3 ) = (§) € R""!. Here,

n—1 n—1
Uy 15715 - - s o1 > 0, and furthermore 3 p;dy? > 0 for h € G and Y n;dy? > 0 for
i=1 i=1
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V24t
(6.51)), we have h = 2* — x(y,y) + Ps(y) and we recall that

n—1
h € &F, cf. Proposition l With g, = E—Y=lk V20 (16 50)) and P(y) = yn <3\2/§y72l + % > aiy2-2>
i=1

3\[0,(?5,?, 1<i<n-—-1,1<j<n-1,1<k<n,
Pg(ai,aj,ak): 07 1§z§n—1,j:k:n, 5
s i=j=k=n.

see (6.52). We now calculate and find

dS, 50| (0) =0 Vi<i<n-—1

and . ) .

B 8 n— n— ) n— 5

5.0y 00 =75 (2 (% 0i> ; (2 7)o (Z )
Hence,
0

Note that 5

i (dsr(ﬁ)\p (an)) - V6 > 0 (8.13)
and 5

For (dSr(% \ (an)> - 4v6 > 0. (8.14)

For h € &, we have ny,..., 9,1 > 0, p1,...,n_1 > 0, and there exists at least one k €
{1,...,n — 1}, such that u; > 0. We have seen in (6.57)) that

ﬁC{5:903—%(yhtun<3\2/§yn 22\/_;,+1 ) 1}

is equivalent to

3. {zr = — )+ (M fzﬂf;.{l ) _ 1}

for all 7 > 0. The polynomial h, corresponds to the choices o) = (1) = :\’;g;k\fl 6.58)) for

all 1 <k <n—1with 2(G(r)| _=3u >0 (6.59) forall 1 <k <n— 1. Since

aS 50|

0035 (-3 (Za0) + (Sa0) +va (L))

i=1 i=1 i=1

is analytic near r = 0 (since 7y, is positive for all 1 < k < n—1), we can use (§8.13)) and obtain

0
or (dS &

(@)

n—1
=8V6 Y 3u; >0,
I r=0 i=1
by the existence of at least one positive g, 1 <k < n—1. Since all IJTCT, r >0, are equivalent
to H, this shows that dSr(ﬁ)’ (0n) does not identically vanish on r (fH) and, hence, that
p
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Sr(ii) is not constant. By construction, H is equivalent to H and, hence, this proves that

r(H(h)) (which is by definition of the supergravity r-map isometric to r (UTC), see Remark

is not a homogeneous space for all h € F.
For h € G, the proof of inhomogeneity of r(H(h)) has the same steps. In that case we

use o = T(r) = 72 (6.64) for 1 < k <n—1 with 2 (7%(r)) _Oz—ink665for1 <
k <mn —1. Furthermore, by assumptlon of h € G there ex1sts at least one k € {1,. — 1},
such that n, > 0. This, together with and the notation analogous to H,,

f}crc{hr:ﬁc3 Y, y) + yn (3\/_% ;51\;:\/7"_777] ’2> :1}

implies

(an)>| - —2%621 3 < 0,

0
or (dS (7€)

showing that dSr@T) is not constant which, as before, shows that r (ﬁ) is not a homogeneous
space. Hence, r (3(h)) is not a homogeneous space for all h € G. O

We will now use Proposition to determine the scalar curvature of the r-map-images

of the homogeneous CCPSR manifolds 7, ,, (6.44) and Hs,, (6.45)).

Lemma 8.16 (Scalar curvature of r (3 ,,) and r (Hy,,)). Let Hy, and Hy,, be the n > 3-
dimensional CCPSR manifolds as in Proposition equation and , respectively.
Then the scalar curvature of their respective image under the supergravity r-map is constant
and given by

Si(atr,) = —4n® — 6n — 2

and
Si(gt,,) = —4n® — 8.

Proof. The CCPSR manifolds H; ,, and Hs,, are homogeneous spaces [DVLIC]. Hence, Lemma
implies that r (¥;,) and r (H,,) are also homogeneous spaces and have thus constant
scalar curvature. With the convention ((6.50]) from Proposition [6.9] we have

1
for Hyp: op=—F72 VI<k<n-1

V2

and
for s, ¢ or=—V2 V1<k<n-—1.

We obtain with 1’ for the CCPSR manifolds H corresponding to general values of o}, as
in Proposition , (6.52)), at the point

p=(T. Y1, Y TG0, Gn)T = (1,0,...,0,0,0,...,0)" Er(i]{)
for the value of S

n—1
Sr(}()<p) =1 (—n2 —2n + Z O'?) .

i=1

We can now check that indeed Sy, ) = —4n*—6n—2 and Sy, ) = —4n®—8 as claimed. [
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We have seen in Proposition and Lemma that the results of Proposition [3.18
have applications to the geometry of the (generalised) supergravity r-map, in particular in
the sense that one does not need to calculate Sy, in full generality for some given h just
to prove inhomogeneity or check the value of the scalar curvature of manifolds that are in
the image of the supergravity r-map and homogeneous. However, before working with this
“machinery” of Proposition [8.15, we have calculated the scalar curvature of the r-map image
of CCPSR manifolds H(h) as in for all h € F (6.1 and for h corresponding to s,
using the conventions that were used in Theorem [6.1] Similar calculations should be possible
for h € G . These calculations could be of interest in theoretical physics as indicated in
[IMMT] since the manifolds H(h) can be interpreted as a deformation of H,,, which has a
reducible prepotential h, and hence we will present them here. Recall that CCPSR manifolds
of dimension n > 3 with reducible prepotential have been classified in [CDJL], see Theorem
2.40l

Lemma 8.17 (Sysn)), h € F, alternative form). Let
n—1
heF= {h:x(—wz—l—(Z,z))—l—waiZ? l=b>...>2b, 20}
i=1

as in Theorem [6.1] equation ( and let H(h) be the corresponding CCPSR manifold of
dimension n > 3, cf. Theore equatwn (-) Leﬂ g = %82h and let ¢;;, 1 < 1,57 <
n + 1, denote the entries of the cofactor matriz of g, where the index n corresponds to the
coordz’nate w and the index n + 1 corresponds to the coordinate x. Then the scalar curvature
of the supergravity r-map image of H(h), that is r(H(h)), is given by

Sr(}f(h)) == —4TL2 —6n —2
2h n—1n—1
+ W Zz::l jz:l 3¢ij (bibj(2CniCn; + CnnCij) + bi(4cny1iCnj + 2Cni1nCis)
+ (2cpt1iCny1j + Cn+1n+lcij)))
(Z 3cm z 4cnncn+1z - 2cn+1ncnz) + <_4cn+1ncn+1i - 26n+1n+1cni))>

+ SCnn (20n+1n2 + Cn-l—ln—i—lcnn) ) . (815)

The values of c;; are given by

n—1
j=1 ki ki
k#j
—1
Criln = Z bz} H (—x —byw) | —w H —z — byw),
1=1 k#i
n—1
Criinsr = | D_(=b727) [] (=2 — brw) ) +x H —r — byw),
i=1 ki

26Note that the prefactor —1 was chosen so that the calculations contain less symbols.
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n—1
i = | D_(bj —b)z7z [ (=2 — byw) | —wz [[ (=2 — bew),
=1 ki ki
k#j
n—1
can = Y _(=27) [ (=2 = byw),
i=1 ki

(the above formulas for ¢, 1; and c,; hold for all 1 < i < n —1, respectively) and

S det (—la%)

7—r—bjw

(X_: (s + by = = bibj)ofmey (a:—bw—bwz,zj)li[

(=2 = bw)(—2 — bw)(—z — bjw)  (—x — bw)(—z — bjw) —2 — byw)

for all 1 7<n-—1.

Proof. Recall formula (8.4]) for Sy¢(n)), which reads with 7 = deg(h) = 3

2+ 1)

Seeny) = 4 (—(n +1)%+ 3

h’ 21 —1 2 2
+mtr (a ht.9 (det (a h)))

g (-0 et (3h)) (0 (ae (5°0). .>)) .

With the terminology g = —%82h, we can rewrite Sy(s¢(n)) and obtain

1 , 3 1
— Oy = — NN — -n—-— -
10rn) 5" 5

— Sdet g tr (9_182 det g)

h

-1 T
+2(detg)2 tr(g Jddet g ® (Odet g) ),

where g = —$0%h and ddet g ® (9 det g) denotes the symmetric (n+ 1) X (n + 1)-matrix

Odet g 0 det
( asg ot g>st7 Sate{zlw"vzn—l’w’x}'

In order to simplify the above expression for h : R**! — R of the form

n—1
h=a(—w*+ (z,2)) +wd bz, b>0Vie{l,...,n—1}
i=1

with
—x — bhw —b12 -2
9= _582h = —T — bnflw _bnflznfl —Zn—1 |
—blzl e —bn_lzn_l xZ w

—2z1 —Zn—1 w 0
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we will use that % is a sparse matrix for all s € {z1,...,2,_1,w,z}. Observe that
ddet g = det g tr (g_lag)

and
0%det g = det g (tr (g’lﬁg))2 + det g tr (6(9’1)5@ + gilazg)

=detg <(tr (g_lag>)2 —tr (g_lagg_lag>) )

where we used that 9%¢ has only zero entries. Hence,

isr@f(h)) =—n’ - ;" - ;
— Ztr <g_1 (tr (g_lag))Q — g ttr (g_lagg_lag>>
+ Ztr (g1 (tr (g18g>)2>
_ 2 3.1
=-n-on—g
+ ;Ltr <g’1 tr (g’lﬁggflag)) .

Note that
tr (g’laggflﬁg) = <tr (glggglgg>>st ;o s, t€{z, ...,z 1, w,x ),

is a symmetric (n + 1) X (n + 1)-matrix. This follows from the fact that for any two square
matrices A and B one has tr(AB) = tr(BA). We further obtain

0 0
b .
dg —gn —01 dg . dg
- ) = —bp_1 ) a0 = ’ 1 )
0z, . ow o ox 1o
0 0 10 00
0..0—b, 0..0
0..0 -10..0

99
Oz

order to calculate g~! recall that for any invertible matrix F' = (Fj;) € Mat(m x m,R), its
inverse F'~! is given by

where the only non-zero entries in are contained in the nth row and nth column. In

T

-1

- det I

cof(F,1,1) ... cof(F,1,m)

cof(F,m,1) ... cof(F,m,m)
Here, cof(F, i, j) denotes the (i, j)-cofactor of F':
cof(F,i,7) = (—1)""7 det[F];;,

where [FJ;; denotes the (m — 1) x (m — 1)-matrix obtained by deleting the i-th row and
the j-th column of F'. In our case cof(g,1,j) = cof(g,j,4) since g is symmetric. We define
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(cof(g))ij = cij == (cof(g,4,7)), 1 < i,j < n+ 1, to minimise the necessary symbols in the

following calculations. With this notation we have g = Cgit(? and
1 3 1
1Sk = —n* = gn =3
h
+ et g7 tr (cof(g) tr (cof(g)0g cof(g)Dg)) .
We can now calculate iSr(g{(h)) in terms of the cofactors of g. We obtain
ag 0O ... 0 _bncnl — Cpi11 0O ... 0 —bnc,ﬂ —Cn1
cof (g)a— = : ;
2
K 0O ... 0 —bncnn+1 — Cp+1n+1 0O ... 0 —bncnn+1 —Cyn+1

where the first non-trivial column is the n-th column,

—bicn e —bp—1C1n—1 Cint1 Cin
dg . . . .
cof(g) 1> = : : : : )
ow
—biChr11 - —buo1Chiiin-1 Cngingl Cntin
and
f( )89 —C11 —Cin—1 Cin 0
cof(g) == =
g ox
—Cn+11 -+ “Cn+in-1 Cntin 0
The calculation of tr(cof(g)0g cof(g)dg) requires only the diagonal values of the matrix
cof(g)dg cof(g)0g,
which are given by
dg dg
cof cof(g)=— =
(cotto) P2 o) 32 )
bibj(Cm'an + cnncij)
for v=7:¢ + bi(Cns1iCnj + Cns1nCij) + 0i(CniCni1s + Cn1nCis)
+  (Cnt1iCnt1j + Cngint1Gij),
for v — n bibJ'(Canj + Cnncij)
4+ bj(Cnt1nCij + CniCnt1j),
for v —mn 41 bi(Cn41iCnj + Cnt1nCij)
+  (Cat1iCnt1j + Cnging1Gij),

forv ¢ {j,n,n+1}: 0.
Thus we obtain

(tr(cof(g)dg cof(g)dg));; = tr (cof(g)gj COf(g)gj)

ibj(2cnicnj + QCnnCij)

i (2€041iCnj + 2Cn41nCij)
b;(2¢niCnt1j + 2Cn41nCij)
(2¢n11iCnt1j + 2Cn+1n+1Cij)-

b
- b

+
+
_|_
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Similar calculations show

0
cof(g)—gcof( )8zg> =

n—1
( > (bibu(cnpcin) + bu(anrluciu)))

I,L:
( CronCn+1i — CnJrlnCni)

+ b
+ ( Cn+1n+1Cns — Cn+1ncn+1z>
n—1
(MZI bzbu CrpCip )
+ bz( Cn+1nCni — Cnncn—l—lz)

n—1
( bu(0n+1u0w)>

+ (_Cn—l-lncn—i-li - Cn+1n+lcni)7

forv=n+1:

forvé¢ {i,n,n+1}: 0,

and

(tr(cof(g)0g cof(g)0g))in = tr (COf@)a cof(g )gj>

pn=1
+ bz( Cn—l—lncnz 2Cnncn+1z)
+ ( 26n+1ncn+lz - 26n+1n+1cnz)

( 2:: (bibu(2¢nucin) + 0 (2cn+1ucm))>

We continue and obtain

Cof(g)—g cof(g )gi) =

1

<n2_: (bi(CnpCip) + (Cn+1u0w))>
forv=ri: !

forv=n+1:

[
i
|

for v ¢ {i,n,n+1}: 0,
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and

(tr(cof(g)0g cof(9)9g))int1 = tr (COf(g)a cot(g )gi>

n—
(Zl QCn;LCz,u +<2Cn+1,uciu>)>
— p=
bi(—2¢nnCni)
( 2cn+1ncm)

We further calculate

2
+ (Cn+1n+lcnn + Cpn+1n )7

(Z bu(— Cn+lﬂcnu)>

2
+ ( Cn+1n+1Cnn + Cn+1n )7

(
forv=n: { nil bu(_cn+1ucnu)>

and

B dg Jg
(tr(cof(g)0g cof(¢)0g))nn = tr <COf(g)8w Cof(g)aw>
nil nil bvbﬂ(cvu2)>
v=1 p=1

n—1
+ Zl b,u(_4cn+1ucnu)
/J’:

+ (2cn+1n+1cnn + 20n+1n2)~
Note that in the last equation we once relabelled v as p. This swapping of indices will be of
importance and used frequently from here on.

(cotta) 52 cor( >§§) -

n—1 9
f0r1<l/<n1:{ (ﬂz::lbu@uu)
+

(_2Cn+1ucnu)a
foryn:{ (Zb( Cn“)>
+ (2Cn+1ncnn)

forv=n+1: 0,
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and
(tr(cof(g)dg cof(9)0g))nn+1 = tr (cof (9) = cof (g)ag>
0 ox
n—1n—1 b 9
= }::1 w(Cup ))
— n—1
+ E (bu<_cnu2) + ( 20n+1ucnu))>

+ (26n+1ncnn)-

Lastly, we compute

dg dg
cof(g)== cof(g) == =
(cotto) 2 cott) 2 )
n—1 9
forl<v<n-—1: ,;lcw
“|“ (_CnVQ)a
n—1 9
forv=mn ,21(_%“ )
+ (can?),
forv=n+1: 0,
and
n—1n—1 9
> 2 Cup
(tx(cot(4)0g cof (4)) tr (cof(9) 22 cof(g) 22
r(co co ntlntl = W | COLLG) 57 COLG) o7 | = 5 '
g)0g 9)09) )n+1n+1 g O 9 o + (= (—QCn,f))
pn=1
+ (cun?)
Summarising, we have shown that
tr(cof(g)dg cof(g)dg) =
bibj(QCnian+20nncij)
+bi(2¢n+1iCnj+2cn+1nCis) * *
+bj(20nicn+1j+20n+1ncij)
+(2cnt1iCnt1j+2Cnt1nt16ij)
n—1ln—1
n—1 Z Z bubu(cv 2)>
(Z(bjbu(QCnquu)"‘bu(20n+1u0ju))) (”—1”—1 o
n=1 n—1 *k
bj(_25n+1ncnj_26’ﬂncn+1j) +<Z b“(_4Cn+1‘uCnH)>
+(_2Cn+lncn+1j_20n+1n+1cnj) n=1
+(2¢n+1nt1cnnt2cnt1n?)
<n1 n—1 ) <n—1n—1 2>
n—1 b (C,/ 2) Cy
(Z(bj(QCnquH(?CnHMu))) El “2::1 o Y=
e no1 n—1
+bj(—2¢cnncny) + ( Z (bu(_cnu2)+(_20n+1ucnu))) + ( > (26"“2)>
+(72Cn+1ncnj) n=1 =1
+(25n+1ncnn) +(C"”2)

In the matrix above, ¢ denotes the number of the row and j denotes the columns number
and * is meant to be replaced accordingly to the matrix’ symmetry. We use this result and
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obtain
1 3 1
— Sy = —n° — 5" 5
h
Mot gy 1+ (cotlg) tr(cot(9)g cof(g)Dg))
N S N
2 2
h n—1n—1
+2(detg)3 izljzlg’cﬂ( 7 (2niCnj + CnnCij) + bi(4Cnt1iCnj + 2Cn41nCij)

+ (2¢n41iCns1j + Cn+1n+lcij)>)
n—1
+ (Z 3Cn7l (bi(_4cnncn+1i - 26n+1ncni) + (_4cn+1ncn+1i - 2Cn+1n+1cni)>>
i=1
+ 3Crm (20n+1n2 + Cn—l—ln—i—lcnn)) .

It remains to calculate det g and the cofactor matrix cof(g). Using the Laplace expansion for
det g, we obtain

N:=
—r—biw —2z1
det g = —wdet ;
_x_bnfl —Zn-—1
—b1z1 ... —bp_1zn_1 w
NiZ:
—z—biw —bi1z1 —21
n—1 —z—b;_1w 0 —bi_1zii1 —Zi1
1Y)+ 0 0 —biz —z
+ Z( 1) ( ZZ) det 0 7x7b¢+1w 7bi+1zi+1 —Zi+1
=1
—2—bp 1w —bp_1Zn1 —Zn_1
—biz1 ... —bi_1zi—1 —bit1zit1 ... —bp_12n-1 x w

We will use the Laplace expansion again to calculate det N; for 1 < i < n — 1, and det N.

i—1
o 1\ (b
det N; = (32 (=1)" (=b;z;)
Jj=1
—z—biw —b1z1 —21
73!77{)],1’[1) 0 b]712371 77;;',1
0 0 —bjz; —2j
0 —z—bj1w —bjy1zj41 —Zj41
- det - : : )
—z—b;_1w 0 —bi—1zi-1 —zi—1
0 0 —biz; —Zz
0 —z—bj 1w —bit1zit1 —zit1

—Z—bp_1wW —bp_12n—1 —2Zn—1
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—z—biw —b1z1 —z1
—z—b;—1w 0 —bi—1zi-1 —zi—1
0 0 —b;iz; —2;
0 —z—bip1w —bit1zit1 —zit1
- det : : )
—z—bj_1w 0 —bj_1zj_1 —zj-1
0 0 —ijj —Zzj
0 —z—bj 1w —bjr1zj41 —2j+1

_z_bnflw —bn712n71 —Zn-—1

—z—bjw -2
—x—b;_1w 0 —z;_l

— x det 0 0 —z
0 —x—b; 1w —2Zi41

—T—bp_1w —2zp—1

—z—biw —bi1z1
' —z—b;_1w 0 *b¢7'121>1

+ wdet 0 0 —b;z;
0 —z=bjt1w —bit12i11

7271)”,1’11) 7bnflzn71

Observe that

—x—biw —b1z1 —2z1
—Cc—bjfl’w 0 _bj*'lzjfl _Z;*l
0 0 —bjz; 7
0 —z=bjy1w —bj+1zj+1 —zj41
det
—x—b;—1w 0 —bi—1zim1 —zi—1
0 0 —b;z; —z;
0 —z—b; 1w —=bir1zit1 —zit1
by 1w —bp_ 1201 —Zn_1
—r—biw
—z—bj_1w
—zj —bjz;
—z—bj 1w
— (= 1) det
—LB—bi_l’u)
—z —bizi
—r—bir1w
—x—bp_1w
— (1Y (B — B )y e
— (1 (b = by)z T (=2 — b,
ki
k#j
Using this, one finds
n—1
_ n+i 2
det N; = (—1) > (b = bi)bizz [ (—x — bpw) | + (—z + biw)z [[ (= — brw)
j=1 ki ki

kg
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For the matrix N we obtain

detN:< 1:[ x—bkw>

—x—biw —*1
n—1 i h q —x—b;_1w 0 *2;71
;( ) ( ZZ) 0 —z—bip1w *Zizil

—T—bp_1W —2n—1

Hence,

n—1
det g = (Z(—l)"”zi det NZ) —wdet M

=1

n—1n—1
= Z Z(bj b; )bjzfzf (—x — bpw)
i=1 j—1 ki
k#j
n—1
+ Z(—x + biw)zf H (—z — bkw))
i=1 ki
+ ZwszH—x—bkw — 1:[ —z — bw)

k#i =1

= | D (b —b;)?z22 [[ (=2 — brw)

1>7 ki
k#j
n—1 _
+ Z( T + 2b;w) 2H x—bkw — H —z — brw)
i=1 ki k=1
-1 (b; — b )2 ziz3 l (—x + 2bw) 22
= (—z— bkw)) — + LT |
(,};[1 ; (—x — bjw)(—x — bjw) ; —x — bw
For the cofactors of g we obtain
Cn+1i — (_1)(n+1)+i det Nz
n—1
= | Y (b —bj)b;2Ziz [[ (—2 — bpw) | + (@ — bw)z [[ (-2 — bew),
j=1 ki ki

ki
Cni1n = —det N

n—1
= (szzf H(—x—bkw ) —wH —x — byw),
i=1 ki
—r—brw 7b1z1

Cn+1n+1 = det .
—T—bp_1w —bp_12n_1

—b1z1 ... —bp_1zn-1 T
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S Qi)

k=1
—x—bjw —b1z1
n—1 " rbiw 0 —bi_1zi1
+ > (=1)"(=biz;) det 0 0 —biz
i1 0 —z—bi 1w —biy1zit1
—T—bp 1w _bn—.lzn—l
n—1
2.2
= | > (=072 [[(—z — bpw) | + 2 H —z — byw).
i=1 ki
The (n,i)-cofactors require similar calculations as above. For 1 < i < n — 1 we recall
calculation of det IV; and obtain
—z—biw —bi1z1 —21
' —x—b;_1w 0 *bi—‘lzifl *Z;fl
— n+i 0 0 —b;z; —z
Cni = (_1) det 0 —x—bjp1w —bi+1122+1 _ZiJZrl
71'7bn71w 7bn7‘lznfl 7Z7’L71
—2z1 —Zi1 —Zit+1 —Zn—1 w 0
n—1
2
= | Y (b =b)ziz [ (=2 — bpw) | —wz [ (=2 — brw).
j=1 k#i k#i
k#j
For ¢ = n,
—x—bjw —z1
Cpn = det :
—T—bp 1w —2p—1
—2z1 —Zn—1 0
—z—bjw 21
n—1 i —x—b;_1w 0 —2i1
=> (=1)""*(—z;)det 0 0 —zi
=1 0 —$—bi+1’u) —Zi41
—2—bp 1w —zn_1
n—1
=3 () T (o o).
=1 k#i
It remains to calculate ¢;; for 1 <4,5 <n — 1. Do do so, observe that
1 —z—biw —b121 —21
. . . 1 €11 ... Clp+1l
=  —Z—bp_1w —bn_1Zn_1 —zm_1 ( RS > )
1 —b12z1 ... —bp_1zn-1 T w detg Cn+11 vo Cn4ln+1
—Z1 —Zn-—1 w 0
and, hence,
1 ; 1., 1., _ 1., ,
cij = ————— (0;det { =50%h | + bjzjcof ( —50%h,n,i | + zjcof ( —-0%h,n + 1,1
—z — bjw 2 2 2
det (—30°h)
— (]
]

—x — bjw

the
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=l (bub; +bubj — 62 b;b; )z 2iZ; (z — biw — bjw)z,2;
((Z -z —bw)(—x — biw)( xr — b]w)) * (—x — bw)(—x — bjw))

u:
~1
(—x — bw)
k=1
forall 1 <i,5 <n-—1. O
Remark 8.18 (Limit case by = ... = b,_1 = 0). In the case by = ... = b,_1 = 0, that is

h = x(—w?+(z, z)), one can check that the steps used to acquire the formula - ) for Syec(n))
are still valid. Hence we can use - ) to calculate the scalar curvature of Hs,, (Proposition

equation ([6.45))), which is equivalent to 3{(h) corresponding to by = ... =b,_; = 0. In
that case we obtain for the determinant of g = —%82h and the cofactors ¢;; of g
detg = (=1)""'z"h,
Cniti = (—1) 2" 1z,
Coyin = (—1)"2" 1w,
Cntintl = (—1)n+19€n,
cni = (—1)" 12" 2wz,
Com = (—=1)" 12" 2 (2, 2),
)

(=D Bh 4 (—1)" " 2z

forall 1 <4,5 <n—1. One can now verify that Syn)) calculated via (8.15) is constant with
value Syany) = —4n? — 8, which coincides with the result for Si(3,,) Obtained in Lemma
8.16| as expected.

Another important construction originating in the physics literature [FS] is the super-
gravity c-map. Since we did not work directly with this construction, we refer the reader for
an introduction to Section 3 of [CHM)]. From [CHM| Thm.5] we obtain the following.

Lemma 8.19 (Properties of manifolds in the supergravity q-map). The composition of the
supergravity r-map and c-map maps CCPSR manifolds H of dimension dim (H) = n to
complete quaternionic Kdhler manifolds of real dimension 4n + 8 that have negative scalar
curvature.

Lastly, we will briefly discuss applications and open questions in physics related to our
research.

The composition of the supergravity r- and c-maps is called the supegravity q-map. Note
also that until now, there is no known generalisation of the supergravity c-map to CCGPSR
manifolds with corresponding homogeneity-degree 7 > 4.

The reasons for mentioning this field of research are the following. Mathematically, we
can use Theorem and obtain a method of deforming the Kéahler manifolds in the image
of the supgravity r- and g-map. Furthermore, we now know that these manifolds can be
parametrised over a compact convex set as described in Theorem [5.6] In [D], the curvature
properties of manifolds in the image of the supergravity c-map (and, in particular, g-map)
have been studies. Thus, for future research, it is an interesting question how to use the
information we obtained for CCPSR manifolds in Theorem [5.6lin combination with the results
of [DI, for example to find curvature bounds of manifolds in the image of the supergravity
g-map or to study the following question using our results and the results specifically from

[DL Ch.7]. One task is the following.
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Open problem 8.20 (||R||?> and d||R||* in standard form for QK manifolds in image of
g-map). Find a closed formula for the squared pointwise norm of the curvature tensor R of
manifolds in the image of the supergravity g-map using the notation from . Further-
more, in low dimensions try to solve d||R||* = 0 using computer algebra software to obtain
all candidates for homogeneous spaces in the image of the supergravity g-map.

From a physics standpoint, Theorem allows one to deform supergravity theories with
scalar-fields defined for all time corresponding to CCPSR manifolds and their images in the
supergravity r- and c-map. There has been no research in this direction from our part so
far, but trying to interpret the physical implications might be an interesting task for future
studies.
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9 Outlook

In the last part of this thesis we will discuss some open questions, possible ways to solve
them, and general ideas that came up during the its preparation.

One of the driving forces for our studies in this thesis has been the open question of
completeness for quartic CCGPSR manifolds, c¢f. Open problem [7.1] Different ideas and
tries to solve this question ultimately let to a better understanding of GPSR manifolds and
in particular CCPSR manifolds. If one tries to obtain similar results for quartic CCGPSR
manifolds as for CCPSR manifolds as in sections 4| and [5] it will quickly be obvious that
quartic CCGPSR manifolds are a lot more complicated to work with. As an example, the
proof of Theorem where we were able to classify one-dimensional quartic CCGPSR curves
needs far more technicalities than an analogous proof for the classification of CCPSR curves,
cf. Remark [7.4] However, we expect that the following open questions might be solvable:

o Determine if a statement as in Theorem also holds for quartic CCGPSR manifolds,
i.e. check if Def. always implies Def. for quartic CCGPSR manifolds.

o Classify quartic CCGPSR surfaces up to equivalence.

In the proof of Theorem [5.3[ we have used the known classification of CCPSR surfaces [CDL],
but one might want to try to solve an analogous result for quartic CCGPSR manifolds without
classifying quartic CCGPSR surfaces. The latter is probably even more complicated than
the classification of quartic CCGPSR curves in Theorem [7.2] but might not be impossible
to manage. If one manages to solve one of the above open questions, one might use them to
solve another interesting question.

« Can the set of quartic CCGPSR manifolds with non-regular boundary behaviour (Def-
inition be parametrised over a compact subset of Sym® (R")* @ Sym* (R")* similar
to the statement of Proposition [5.8] (cf. Open problem [7.6)?

If the answer to the above question is positive, then one could prove completeness for all
quartic CCGPSR manifolds using a method as for the proof of Proposition [5.17 Note this
is in particular motivated by the following consequence of Theorem [7.2] A quartic CCGPSR
curve Hp x C {hpx =a* —2*y* + Loy’ + Ky* =1} C R? () = (}) € Hpk, is singular
at infinity in the sense of Definition [3.16| if and only if L = +u(K), K € [—%, ﬂ, cf.
equation , which shows that the set of singular-at-infinity quartic CCGPSR curves can
be parametrised over a compact subset of R?, namely

{(é) | L= +u(K), K c {—112}1]}

However, the one-parameter family d) of quartic CCGPSR curves in Theorem also shows
that the set of all quartic CCGPSR curves can not be parametrised over a compact set in
that way.

We want to stress that there might exist incomplete quartic CCGPSR manifolds of di-
mension n > 2, so one could also try to solve the following problems.

e Find an incomplete quartic CCGPSR manifold. Or, more generally:

e Find an incomplete CCGPSR manifold.
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Another open question is the classification of homogeneous quartic CCGPSR manifolds H C
{h = 1} of dimension dim(H) > 2 with transitive action of the identity component G} of
the corresponding automorphism group G". One ansatz would be to generalise the proof
in [DV] where homogeneous CCPSR manifolds with with transitive action of the identity
component of the corresponding automorphism group have been classified. At least for low
dimensions, one could use Proposition |3.34|and use a computer algebra system to answer that
question. The involved equations and are quartic equations in the prefactors of
the monomials in P; and Py, so they should be solvable with any computer algebra system
for low dimensions. One would however still have to check (most likely by hand) which of
the obtained solutions are equivalent as quartic CCGPSR manifolds.

Apart from the open questions in the setting of known results, there is another idea for
a way to compare CCGPSR manifolds of different homogeneity-degree which came up while
working on a way of an alternative proof of the classification of CCPSR curves similar to
the proof of Theorem [7.2] cf. Remark [7.4] Recall Example[7.12] There we described how to
obtain an n-dimensional quartic CCGPSR manifold H* from a given n-dimensional CCPSR
manifold H?* C {h = 1} with our usual assumptions h of the form and (§) € 33,
where H* was defined to be the connected component of {xh = 1} that contains the point
(§) € {xh = 1}. Furthermore we have shown that quartic CCGPSR manifolds obtained
in this way are complete. This construction has however the flaw that it does not respect
equivalence classes, that is equivalent CCPSR manifolds might yield inequivalent quartic
CCGPSR manifolds. To see this, consider CCPSR and quartic CCGPSR curves. We can
without loss of generality assume that a CCPSR curve H? = H? is the connected component
of the level set {h; = z® — zy* + Ly* = 1} that contains the point (}) € {h; = 1} C R?

. 2 2
with L c [—ﬁ, %} Then

zhy, = ' — 2% + Lay® = hy, (9.1)

where we chose the notation /o in accordance with the proof of Theorem [7.2|and we denote

the corresponding quartic CCGPSR curve by 9{4,47 k- We know that two CCPSR curves
H3 and H3, are equivalent if either L, L' € (—%, %) or L, L' € {—%, 3%/3} But the
corresponding quartic CCGPSR curves 7 ; and }}, o are equivalent if and only if [L| = |L/|.
To see that this is true and in particular that Hj o and H}, o are inequivalent if |L| # |L/],

recall that for |L| = |L/| = =2, 3% , and H}, , are both equivalent to the quartic CCGPSR
33 L0 L0

curve c) in Theorem . Suppose that there exist L, L' € (—%, %) with |L| # |L/|,

such that 37 , and 37, o are equivalent. We have seen in the proof of Theorem (7.2 that the
considered vector field V € T (TR?) (7.4)) is transversal to the set

(6) <= 2= (50m503))

at all points. This and the smoothness of V already show that not every quartic CCGPSR

curves J—C‘i,o and 9‘(4”70 with L, L' € (—%, %) can be equivalent. We have also shown that

every maximal integral curve of V|g2\(y—oy starting at a point in the set

()<=

with u(K) as in ([7.18), meets the set

(i) <=

1 1
—— < K<-, |L K
<K< ln <),

12 4

1 1
- <K<y
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in precisely one point. But we know that (cf. the one-parameter family of curves d) in
Theorem two quartic CCGPSR surfaces Hjx C {hox = 2* — 2%y* + Ky* = 1} and
Hox C {how =2* =2y + K'y* =1}, (§) € Hyx and (§) € H g, are equivalent if
and only if K = K’ . Together with the fact that V vanishes at no point in the set
{(ByeR? | -F <K <1 |l <u)} > {(§) R | |L| < u(0) = 5}, we deduce with
the symmetry dL (V_p k) = dL (Vy k) and dK (V_p k) = —dK (Vp k) that H} o and H7,

with L, L' € (—ﬁ, %) are equivalent if and only if |L| = |L/| as claimed.
In comparison, consider the following assignment. To a CCPSR curve H3, |L| < 3 \/ga as

before we assign the quartic CCGPSR curve

1
}C\/L L C{h\/L 1= 2% +V2Lay? —Ey _1}

with (§) € 9{ 1 . The vector field V is tangent to the set

()=

s
and vanishes at the points ( 3V3 ) € R? which correspond to L = i3 NeL respectively. Hence,

12

L] <

)

two such quartic CCGPSR curves j{fL L and j{fL’ L L L' e [3\/§, 3[} are equivalent

if either |L| = |L/| = 7 (cf. Thm. b)) or if L,L' (3\@,3\[) (cf. Thm. c)).
These are precisely the conditions for the corresponding CCPSR curves H? and H3, to be
equivalent. Thus, the correspondence

3 4
Hy — iHﬂL,—ﬁ? (9.2)
or, when considering the corresponding polynomials,

hL_>h\fL Lz’

has the advantage over the previous construction 1} that is H3 — J-CAEO, that it respects
equivalence classes in the sense that for all L, L' € [ 3 f’ 3 f} the CCPSR curves H?
and H?, are equivalent if and only if the quartic CCGPSR curves H* ViL—L and H* VAL, -1
are equivalent. Furthermore, note that H3 is singular at infinity if and only if :Hil/iL IR
12

singular at infinity in the sense of Definition |3.16]
Recall the definition of €, in Propositionand note that the assignment H3 — J{ff 5L

2

ﬁ?“aﬁPs() f} [ ]

= L (?}) | (9.3)

12

when considered on the level of €, = {x3 — xy® + Py(y)

is given by the affine linear map

There are, however, other possible ways to assign to each CCPSR curve a quartic CCGPSR
curve, such that equivalence classes and the property of being either singular at infinity or
not singular at infinity are conserved. For example, consider with u and w as in ([7.18) and

(7.28)), respectively, for a chosen point

(}L(?)) . {_112<K< L) <u(k)fu{K <- = 1zl < wi(K)}



9 Outlook 199

the maximal integral curve vr,x, : I — R? 0 € I, of V|gz2\(v_gy that fulfils the initial
condition v, ,(0) = ( [L(%) At this point, we will assume that the following statement is
true in general. Independent of the initial values Ly and K as above with I = (I_, 1) (note:

I_ e RegU{—o0} and I, € RogU{o0}), VLo.x, fulfils

_2v2
lim PYLO,Ko(t) = ( 3\1/3)

t*}[+,t<[+ _E

and
2v2
i — | 3v3
t_ul,l],%z, VLo, Ko (1) (_112> :

We expect that this holds from checking it specific values with MAPLE. The proof of the
latter statement is most likely obtainable with some modifications to the techniques used in
the proof of Theorem We can now choose any smooth diffeomorphism

e R (i)

and obtain in comparison with (9.3]) another way to construct a quartic CCGPSR curve from
a CCPSR curve via
HE — Hi iy mor): (9.4)

The above construction ({9.4)) respects equivalence classes and the (non-)singular-at-infinity

property for all L € [—%, %} For future research of this topic, there are two main goals:

o Find a construction associating to each n-dimensional CCPSR manifold H?® an n-
dimensional quartic CCGPSR manifold H*,

H3 — H*,
such that equivalence classes and the (non-)singular-at-infinity property are preserved.

e More generally, find for all 7 > 3 a way to map n-dimensional CCGPSR manifolds
of homogeneity-degree 7, H", to n-dimensional CCGPSR manifolds of homogeneity-
degree T + 1, such that equivalence classes and the (non-)singular-at-infinity property
are preserved. This would yield a sequence of constructions

P — H - H - HE — ...

To obtain such results, extensive study of the corresponding §P,’s as in Definition [3.27] will
probably be necessary. For example for the construction ((9.2), one can check that with the
b3)

affine linear map = (cf. Figure and the vector fields V (7.4) and V (7.59) (recall
the correspondence of V and V with §Ps(y) as in (7.59), respectively 6 Ps(y) and 6Py(y) as in

(7.2) and ([7.3))) we obtain
Y 1 /9 4 1
ER) () =va (37 = 3) =57 1y

Apart from purely mathematical open questions, one open task is how to interpret and
use our results in the theory of supergravity. In particular, we have shown in Proposition
that we can “parametrise” theories obtained from complete PSR manifolds over a certain
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0.4+

-0.21

-0.4

-0.6

Figure 25: The graph of = marked with a line consisting of small circles.

convex compact set. This might allow to find a physically meaningful way to construct a
measure in the space of theories obtained this way. Furthermore, the results for the curvature
of CCPSR manifolds, that is Theorem [4.13| and Proposition [5.12] might be interesting for
physicists to consider in their studies.

Our more general results for CCGPSR manifolds, in particular the classification of quartic
CCGPSR curves in Theorem[7.2], might be useful in scattering theory, cf. the discussion below
Theorem 1.18 in [CNS] and also [Mel, Ch. 8.
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Changes in comparison with the submitted version:

page | change
116 | in eqn. (6.49) R ~~» Ry, in next eqn. added a missing “ ) ”
92 Prop. - “Characterisation moduli ..” ~» “Characterisation of the moduli...”
7 “. real curves found in [CDL, Thm.1] ..” ~» “.. real surfaces found in [CDL, Thm. 1] ..”
8 In the description of Thm. , moved “pairwise inequivalent” to correct position
73 - ~ @ in first line
162 | “.. independent of the dlmensmn of H, ~ “.. irrespective of the dimension of H, ..”
200 | in the caption of Figure . “image” ~~ graph”
61 after equation at the bottom, added missing end of sentence: “is singular at infinity.”
2 2
98 aﬁi:f* + g 5:3 > 8365;3 + 951223, pre-factor % was missing
98 “(were we 1dent1fy .7~ “(where we identify ...
27 | (ho A(p))(z,y) ~ (ho A(p)) (i)
32 1 ~ <1> € R" in eqn. (3.13
Y Y
35 added missing 3% in formula of h
63 |“.Z%e dom( ), y| | =¥ .7~ <« 2 e dom(H) with |3 =2 .7
81 “..iscan ..’ ~ can ”
80 | {(1)] =€ dom(30)}  {(1) € R | 2 € dom(H)}
98 “.. idea of ..” ~~ “... ideas behind ...”
161 | footnote: CCGPSR ~~ CCPSR
2 (M) ~ T(TM)
58 (6)€%w(z):(é)Eﬂ-(inthestatementofLem.
178 | hy = 22 —y? + Ly ~ hy = 23 — zy* + Ly® in the first line of the proof of Lem. m
130 | 1/4 ~ i in eqn. (7.21))
40 removed unnecessary brackets in eqn. (|3.34))
160 | “Comparison with CCPSR curves classification, method of similar proof for them”
~~ “Comparison with CCPSR curves classification” (in Rem. [7.4)
92 “the set of homogeneous cubic polynomials”
“the set of hyperbolic homogeneous cubic polynomials” (in Prop. }
92 “affine %—dimensional hyperplane” ~~
“affine M—dimensmnal affine subspace” (in Prop.
92 “continuous hypersurface Sym?® (R"+1)™” ~s
“continuous submanifold of Sym?® (R"*1)*” (in Prop.
92 i Rn3+6n26+11n+6 (in footnote)
52| (Py(y,y, JBT)T) ~ (Poly.y, dBT-) " (lime 5)
52 added comma after “equivalently” in hne 4
53 added comma after “(see equat1ons and 1 )"
23 “of degree 7 > 30”7 ~» “of degree T> 3 (in Lem
39 “in Proposition (3 ” ~ “in Proposmon 3.1 8”
54 “One for the first Varlatlon of the P;’s”
“One application of the first variation of the P.’s”
46 “consider for any smooth F': dom(H) — GL(n)” ~»
“consider for any smooth map F : dom(H) — GL(n)”
2 dVIJ(X,)Y)=(VxJ)Y = (Vy) X =0~ dVJ(X,Y)=(VxJ)Y — (VyJ) X =0
41 Opmu ~ 0, & “,7 is now correctly “” in front of “In order to..”
32 supposed to be closed” ~~ “assumed to be closed”



page change
35 “curves” ~~ “surfaces”, “c)” ~» “d)”, & “b — 07 ~» “b — —1”
26 “Note that dom (%) COlIlCldeS ~o
“Note that under the assumption that H is closed and connected, dom(H) coincides”
0 | e
61 “inclusion” ~~ “inclusions” & added missing “)”
85 “H(m?’)‘( P;((%)) > 32%” ~ “H(m)aﬁ( 1P 3 ((Y)) = 3\2[” & “7 after equation
90 “Pao” ~ “Paeg (1)) & “by” ~ “from”
7 “section” ~~ “intersection” & “p € Ryg - Hp” ~ “p € O(Rsg - Hp)”
17 “i.e. the” ~~ “i.e. under the”
18 “exists a p € {h > 0}" ~ “exists p € {h > 0}”
28 added missing “” after Td]qu
27 “ambient R"™1” ~~ “ambient space R"*1”
29 some space over “E” to prevent overlap with the horizontal line
30 same as above & “containing” ~~ “that contains”
30 “recall that” in front of “we have shown that”
(sentence kind of icky but meaning should be clearer now)
37 Yag, 1<k<nn—1)/2}" ~ YHap |1 <k <n(n-1)/2}”
93 “y” ~~ “2” in proof of Cor.
21 “encounterd” ~» “encountered”
33 “section” ~~ “intersection”
40 CQGT s “D gy & “gac” o “ DTy
63 | “Rso-H)N{(}) eR™ [ z € R"}”
o “prgn (Rog- H) N {(1) € R7 | 2 € R7})”
54 “as in equation” ~» “be as in equation”
76 “in complicated” ~» “in a complicated” (in footnote)
62 “Assumption that” ~» “Suppose that”
62 ‘ (]R>0 CH)N{(L) eR™ | 2 e R"} “]R>0 - H” (redundant info)
84 “k— —=, k> \1[” “k N\ 1”&“k—> el k< — \Qf” ~ kS — 2”
44,45 | Lem. . fixed vector parts in R, overall 1 / 7 factor in Ric
55 “Wo (ID” ~ “M o d7
75 added footnote no. 6 to clear up what is going on
58 “where 5 : R" = R” ~» “with §: R* = R”
58 in the proof of Lemma the case P3(Z) = 0 is now properly considered before
dividing anything by P3(2)
[Thank you to the reviewer of one of my preprints based on this thesis for pointing this
and a few other typos & notation related redundancies out!]
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