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• Few years ago, I encountered a 3rd rank tensor Υ such that:

i) Υijk = Υ(ijk), (symmetry)

ii) Υijj = 0, (trace-free)

iii) Υl(jkΥi)ml = g(jkgi)m.
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• Cartan proved that the di�erential equations for w = w(a) have solutions if
and only if the dimension n = 3k + 2, where k = 1, 2, 4, 8. Note that k are
dimensions of R,C,H,O.

• if n = 5 the tensor Υ is given by:

Υijkaiajak = w(a) = det

a5 −
√

3a4

√
3a3

√
3a2√

3a3 a5 +
√

3a4

√
3a1√

3a2

√
3a1 −2a5





• Writing w(a) = Υijka
iajak one gets Υijk with the properties (i)-(iii).

• Cartan proved that the di�erential equations for w = w(a) have solutions if
and only if the dimension n = 3k + 2, where k = 1, 2, 4, 8. Note that k are
dimensions of R,C,H,O.

• if n = 5, 8, 14 and 26 we take:

w(a) = det

a5 −
√

3a4

√
3α3

√
3α2√

3α3 a5 +
√

3a4

√
3α1√

3α2

√
3α1 −2a5


where



• Writing w(a) = Υijka
iajak one gets Υijk with the properties (i)-(iii).

• Cartan proved that the di�erential equations for w = w(a) have solutions if
and only if the dimension n = 3k + 2, where k = 1, 2, 4, 8. Note that k are
dimensions of R,C,H,O.

• if n = 5, 8, 14 and 26 we take:

w(a) = det

a5 −
√

3a4

√
3α3

√
3α2√

3α3 a5 +
√

3a4

√
3α1√

3α2

√
3α1 −2a5


where for n = 5:

α1 = a1

α2 = a2

α3 = a3



• Writing w(a) = Υijka
iajak one gets Υijk with the properties (i)-(iii).

• Cartan proved that the di�erential equations for w = w(a) have solutions if
and only if the dimension n = 3k + 2, where k = 1, 2, 4, 8. Note that k are
dimensions of R,C,H,O.

• if n = 5, 8, 14 and 26 we take:

w(a) = det

a5 −
√

3a4

√
3α3

√
3α2√

3α3 a5 +
√

3a4

√
3α1√

3α2

√
3α1 −2a5


where for n = 8:

α1 = a1

α2 = a2

α3 = a3

+a6i
+a7i
+a8i



• Writing w(a) = Υijka
iajak one gets Υijk with the properties (i)-(iii).

• Cartan proved that the di�erential equations for w = w(a) have solutions if
and only if the dimension n = 3k + 2, where k = 1, 2, 4, 8. Note that k are
dimensions of R,C,H,O.

• if n = 5, 8, 14 and 26 we take:

w(a) = det

a5 −
√

3a4

√
3α3

√
3α2√

3α3 a5 +
√

3a4

√
3α1√

3α2

√
3α1 −2a5


where for n = 14:

α1 = a1

α2 = a2

α3 = a3

+a6i
+a7i
+a8i

+a9j + a10k
+a11j + a12k
+a13j + a14k



• Writing w(a) = Υijka
iajak one gets Υijk with the properties (i)-(iii).

• Cartan proved that the di�erential equations for w = w(a) have solutions if
and only if the dimension n = 3k + 2, where k = 1, 2, 4, 8. Note that k are
dimensions of R,C,H,O.
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+a11j + a12k
+a13j + a14k

+a15p + a16q + a17r + a18s,
+a19p + a20q + a21r + a22s,
+a23p + a24q + a25r + a26s.
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`String theory'

In type II B string theory one considers:

• n = 6-dimensional compact Riemannian manifold (M, g) which, in addition
to the Levi-Civita connection ∇LC, is equipped with:

? a metric conection ∇T , with values in a subalgebra g of so(n), which has
totally skew-symmetric torsion T ,

? a spinor �eld Ψ on M

• special Riemannian structure (M, g,∇T , T,Ψ) should satisfy a number of
�eld equations including:

∇TΨ = 0, δ(T ) = 0, T ·Ψ = µΨ, Ric∇
T

= 0

Question: How to construct solutions to the above equations in n dimensions?
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SO(3) group in dimension �ve.

• This ρ(SO(3)) may be de�ned as a subgroup of a SO(5) stabilizing Υ:

a ∈ ρ(SO(3)) iff Υ(aX, aY, aZ) = Υ(X,Y, Z).

• M. Bobienski + P.N. used this tensor to de�ne and study special Riemannian
geometries (M5, g,Υ) on �ve dimensional manifolds M5, which we called
irrdeucible SO(3) geometries in dimension 5. They are related to the type
IIB string theory.
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• In particular, we have a 7-parameter family of nonequivalent examples which
satisfy

∇TΨ = 0, δ(T ) = 0, T ·Ψ = µΨ

i.e. equations of type IIB string theory (but in the wrong dimension!).

• For this family of examples T 6= 0 and, at every point of M5, we have two
2-dimensional vector spaces of ∇T -covariantly constant spinors Ψ. Moreover,
since for this family the curvature of ∇T is vanishing, we also have

Ric∇
T

= 0.

• S. Chiossi + A. Fino found plenty of examples of such structures possessing
5-dimensional symmetry groups.
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Remark (E. Cartan):

• Tensor Υ satisfying:

i) Υijk = Υ(ijk), (total symmetry)
ii) Υijj = 0, (no trace)
iii) ΥjkiΥlmi + ΥljiΥkmi + ΥkliΥjmi = gjkglm + gljgkm + gklgjm

exists only in dimensions 5, 8, 14, 26. Respectively, it de�nes irreducible
SO(3), SU(3), Sp(3), F4 geometries there.

• One can consider the nearly integrable geometries there, and construct
examples.

• However all the examples we know are homogeneous. Are the nearly
integrable geometries very rigid?
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• Coe�cients ai of a 4th order polynomial

w4(x, y) = a0x
4 + 4a1x

3y + 6a2x
2y2 + 4a3xy

3 + a4y
4

form a carrier space for the 5-dimensional irreducible representation of the
GL(2,R) group; this is induced on R5 by the de�ning action of GL(2,R)
on (x, y) ∈ R2.

• A polynomial I , in variables ai, is called an algebraic invariant of w4(x, y) if
it changes according to

I → I ′ = (det b)p I, b ∈ GL(2,R)

under the action of this 5-dimensional representation on ais.
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• The lowest order invariants of w4(x, y) are:

I2 = 3a2
2 − 4a1a3 + a0a4

I3 = a3
2 − 2a1a2a3 + a0a

2
3 − a0a2a4 + a2

1a4.

• De�ning Υijk and gij via

Υijkaiajak = 3
√

3I3

gijaiaj = I2,

one can check that the so de�ned gij and Υijk satisfy the desidered
relations i)-iii).
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• Now the metric gij has signature (2, 3).

• A simoultaneous stabilizer of Υ and g is
SL(2,R) ⊂ SO(3, 2) ⊂ GL(5,R).

• Since the notion of an ivariant is conformal, it is reasonable to consider a
conformal geometry in R5 associated with a class of pairs [(g,Υ)] such that:

? g is a (3, 2) signature metric; Υ is a rank three totally symmetric tensor
? gijΥijk = 0,
? gab(ΥjkaΥlmb + ΥljaΥkmb + ΥklaΥjmb) = gjkglm + gljgkm + gklgjm,
? (g,Υ) ∼ (g′,Υ′) ⇔ g′ = e2φg, Υ′ = e3φΥ.

• The stabilizer of the conformal class [(g,Υ)] is the irreducible GL(2,R) in
dimension �ve.
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Irreducible GL(2,R) geometry in dimension 5

A 5-dimensional manifold M5 equipped with a class of triples [(g,Υ, A)] such
that:

• g is a (3, 2) signature metric; Υ is a rank three totally symmetric traceless
tensor �eld; A is a 1-form on M5

• gab(ΥjkaΥlmb + ΥljaΥkmb + ΥklaΥjmb) = gjkglm + gljgkm + gklgjm,

• (g,Υ, A) ∼ (g′,Υ′, A′) ⇔
(
g′ = e2φg, Υ′ = e3φΥ, A′ = A− 2dφ

)
,

is called an irreducible GL(2,R) structure in dimension �ve.
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Nearly integrable GL(2,R) structures in dimension 5

• Given (M5, [(g,Υ, A)]) and forgetting about Υ we have a Weyl geometry

[(g,A)] on M5. This de�nes a unique Weyl connection
W

∇ which is
torsionless and satis�es

W

∇X g +A(X)g = 0.

• An irreducible GL(2,R) structure (M5, [(g,Υ, A)]) is called nearly

integrable i� tensor Υ is a conformal Killing tensor for
W

∇:

W

∇X Υ(X,X,X) + 1
2A(X)Υ(X,X,X) = 0, ∀X ∈ TM5.
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Characteristic connection

• Every nearly integrable GL(2,R) structure in dimension �ve uniquely de�nes
a gl(2,R)-valued connection, called characteristic connection, which has
totally skew symmetric torsion.

• This connection is partially characterized by:

∇Xg +A(X)g = 0, ∇XΥ +
3
2
A(X)Υ = 0.

• To achieve the uniqueness one requires the that torsion T of ∇, considered as
an element of

⊗3 T∗M5, seats in a 10-dimensional subspace
∧3T∗M5.
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integrable GL(2,R) structure whose characteristic connection is �at and has
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• We call the three conditions on F the Wünschmann-like conditions.
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• The three di�erential equations

y(5) = c
(5y(3)3(5− 27cy′′2)

9(1 + cy′′2)2
+ 10

y′′y(3)y(4)

1 + cy′′2

)
,

with c = +1, 0,−1, represent the only three contact nonequivalent classes
of Wünschmann-like ODEs having the corresponding nearly integrable
GL(2,R) structures (M5, [g,Υ, A]) with the characteristic connection with
vanishing torsion.

• If c = 0 we have y(5) = 0 and the corresponding GL(2,R) structure on the
solution space M5 is �at.
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cases the Maxwell 2-form dA ≡ 0.

• If c = ±1, then in the conformal class [g] there is an Einstein metric of
positive (c = +1) or negative (c = −1) Ricci scalar. In case c = 1 the
manifold M5 can locally be identi�ed with the conformal symmetric space
SU(1, 2)/SL(2,R) with an Einstein g descending from the Killing form on
SU(1, 2).

• Similarly in c = −1 case the manifold M5 can locally be identi�ed with the
conformal symmetric space SL(3,R)/SL(2,R) with an Einstein g
descending from the Killing form on SL(3,R).

• In both cases with c 6= 0 the metric g is not conformally �at.
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F =
5(8y3

3 − 12y2y3y4 + 3y1y2
4)

6(2y1y3 − 3y2
2)

,

F =
5y2

4

3y3
± y5/3

3 ,

represent four nonequivalent nearly integrable GL(2,R) structures
corresponding to the di�erent signs in the second expression and to the di�erent
signs of the denominator in the �rst expression. These structures have
6-dimensional symmety group and dA = 0.



F =
1

9(y2
1 + y2)2

×(
5w
(
y6
1 + 3y4

1y2 + 9y2
1y

2
2 − 9y3

2 − 4y3
1y3 + 12y1y2y3 + 4y2

3 − 3y4(y2
1 + y2)

)
+

45y4(y2
1 + y2)(2y1y2 + y3)− 4y9

1 − 18y7
1y2 − 54y5

1y
2
2 − 90y3

1y
3
2 + 270y1y4

2+

15y6
1y3 + 45y4

1y2y3 − 405y2
1y

2
2y3 + 45y3

2y3 + 60y3
1y

2
3 − 180y1y2y2

3 − 40y3
3

)
,

where

w2 = y6
1 + 3y4

1y2 + 9y2
1y

2
2 − 9y3

2 − 4y3
1y3 + 12y1y2y3 + 4y2

3 − 3y2
1y4− 3y2y4.

This again has 6-dimensional symmetry group, but now F = dA 6= 0.
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An ansatz

F = (y3)5/3 q
(y3

4

y4
3

)
,

reduces Wünschmann-like conditions to a single ODE

90z4/3(3q − 4z2/3)
d2q

dz2
− 54z4/3(

dq
dz

)2 + 30z1/3(6q − 5z2/3)
dq
dz
− 25q = 0,

in which z = y3
4

y4
3
.

This equation may be solved explicitely giving example of ODEs having its nearly
integrable structure being nonhomogeneous.
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• If a 3rd order ODE y′′′ = F (x, y, y′, y′′) satis�es the Wünschmann condition

9D2F2 − 18F2DF2 − 27DF1 + 4F 3
2 + 18F1F2 + 54Fy = 0,

D = ∂x + y1∂y + y2∂y1 + F∂y2,

then it de�nes a Lorentzian conformal structure on the 3-dimensional space of
its solutions.

• This conformal structure in dimension three is related to the quadratic
GL(2,R) invariant ∆ = a0a2 − a2

1 of w2(x, y) = a0x
2 + 2a1xy + a2y

2.
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This is a report on a joint work with my student Michaª Godli«ski.


