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e Few years ago, | encountered a 3rd rank tensor T such that:
) Tije = Tiijys (symmetry)
M) Csas =0 (trace-free)

1) TiGeLoymi = 9(ixGsym-
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e Writing w(a) = T;jxa’a’a” one gets T with the properties (i)-(iii).

e Cartan proved that the differential equations for w = w(a) have solutions if

and only if the dimension n = 3k + 2, where k = 1, 2,4, 8. Note that k are
dimensions of R, C, H, O.

o if n=2>5 8 14 and 26 we take:
a5 — \/§a4 \/3043 \/3042
w(a) = det V303 as +V3as V3o
V3a; V3a  —2as

where for n = 14: .
a1 = aj+agl +ag) + aiok
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e Writing w(a) = T;jxa’a’a” one gets T with the properties (i)-(iii).
e Cartan proved that the differential equations for w = w(a) have solutions if

and only if the dimension n = 3k + 2, where k = 1, 2,4, 8. Note that k are
dimensions of R, C, H, O.

o if n=2>5 8 14 and 26 we take:
a5 — \/§a4 \/3043 \/5042
w(a) = det V303 as +V3as V3o
V3a; V3a  —2as
where for n = 26:

a1 = a1+ael +agj + a0k +ai5p + a16q + ar7r + aiss,
Qg = a2 a7l +ai1] + arek +a19p + ag0q + a21r + asss,
a3 = a3 +agl +a13) + ayak +ao3p + ag4q + assr + ages.
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‘String theory’

In type Il B string theory one considers:

e 1 = 6-dimensional compact Riemannian manifold (M, g) which, in addition
to the Levi-Civita connection V' is equipped with:

* a metric conection V1 with values in a subalgebra g of s0(n), which has
totally skew-symmetric torsion T
* a spinor field ¥ on M

e special Riemannian structure (M, g, V1, T, ) should satisfy a number of
field equations including:

VIw =0, §(T)=0, T -U=u¥, Ric¥ =0

Question: How to construct solutions to the above equations in n dimensions?
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SO(3) group in dimension five.

e This p(SO(3)) may be defined as a subgroup of a SO(5) stabilizing T

a€p(SOB)) iff TYT(aX,aY,aZ)=7Y(X,Y,2).

e |VI. Bobienski + P.N. used this tensor to define and study special Riemannian
geometries (M?, g, T) on five dimensional manifolds M°, which we called

irrdeucible SO(3) geometries in dimension 5. They are related to the type
lIB string theory.
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e In particular, we have a 7-parameter family of nonequivalent examples which
satisfy
VIw =0, 6(T)=0, T -V =p"

i.e. equations of type IIB string theory (but in the wrong dimension!).

e For this family of examples T" # 0 and, at every point of M?, we have two
2-dimensional vector spaces of VT—covariantly constant spinors W. Moreover,
since for this family the curvature of V1 is vanishing, we also have

RicV' =0,

e S Chiossi + A. Fino found plenty of examples of such structures possessing
5-dimensional symmetry groups.
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Remark (E. Cartan):

e Tensor T satisfying:
) Waam = T (total symmetry)
i) Ceas =01 (no trace)
i) YiniYimi + Y1ji L hmi + Yrti L jmi = GikGim + 9159km + gkiGim

exists only in dimensions 5, 8, 14, 26. Respectively, it defines irreducible

SO(3), SU(3), Sp(3), F4 geometries there.

e One can consider the nearly integrable geometries there, and construct
examples.

e However all the examples we know are homogeneous. Are the nearly
integrable geometries very rigid?
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What about other signatures of the metric?
e Coefficients a; of a 4th order polynomial
wya(z,y) = aox® + da123y + 6asxy? + daszy’® + asy?
form a carrier space for the 5-dimensional irreducible representation of the
GL(2,R) group; this is induced on R® by the defining action of GL(2,R)

on (z,y) € R

e A polynomial I, in variables a;, is called an algebraic invariant of w4(x,y) if
it changes according to

[ =1 =(detb)? I, be GL(2,R)

under the action of this 5-dimensional representation on a;s.
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e The lowest order invariants of wy(x,y) are:

= Sag — 4a1a3 + apay
2 — 3 9 2 2
3 = Qg a1a20a3 + apaz — GpA204 + G704.

o Defining T;;x and g;; via
Tijkaiajak — 3\/3]3
gijaia; = Io,

one can check that the so defined g;; and T, satisty the desidered
relations i)-iii).
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Now the metric g;; has signature (2, 3).

A simoultaneous stabilizer of T and g is

SL(2,R) C SO(3,2) C GL(5,R).

Since the notion of an ivariant is conformal, it is reasonable to consider a
conformal geometry in R® associated with a class of pairs [(g, Y)] such that:

*x g is a (3,2) signature metric; T is a rank three totally symmetric tensor

* ngijk — 07

* 9T jka Yimb + Lija Lhmp + Tria X jmp) = GikGim + 915 Gkm + GriGim.
x (9,T) ~ (¢,Y) & ¢ =ePg, T =eT.

The stabilizer of the conformal class [(g, T)] is the irreducible GL(2,R) in

dimension five.
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Irreducible GL(2,R) geometry in dimension 5

A 5-dimensional manifold M?® equipped with a class of triples [(g, T, A)] such
that:

e gisa (3,2) signature metric; T is a rank three totally symmetric traceless
tensor field: A is a 1-form on M?°

o ¢°°(ViraYimb + YiiaYhmb + LriaXimb) = GikGim + GiiGkm + Griim,

e (9,7,A)~ (¢, Y, A) & (g’ =e?0g, T =e3?Y, A= A— 2d¢>,

is called an jrreducible GL(2,R) structure in dimension five.
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Nearly integrable GL(2,R) structures in dimension 5

e Given (M?°,[(g, Y, A)]) and forgetting about Y we have a Wey/ geometry

%%
[(g, A)] on M®. This defines a unique Weyl connection ¥/ which is
torsionless and satisfies

117
Vx g+ A(X)g =0.

e An irreducible GL(2, R) structure (M?®,[(g, T, A)]) is called nearly

%%
integrable iff tensor T is a conformal Killing tensor for V:

%%
Vx T(X, X, X)+ 1AX)Y(X,X,X)=0, VXeTM.
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Characteristic connection

Every nearly integrable GL(2,R) structure in dimension five uniquely defines
a gl(2,R)-valued connection, called characteristic connection, which has

totally skew symmetric torsion.

e This connection is partially characterized by:

3
Vxg+ A(X)g =0, VXT+§A(X)T:O.

e To achieve the uniqueness one requires the that torsion 1" of V, considered as
an element of ®3 T*M?, seats in a 10-dimensional subspace /\BT*M5.
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Classification of torsion

e Group GL(2,R) acts reducibly on the 10-dimensional space of 3-forms
A°RS.

e The GL(2,R) irreducible components are:
3
A R® = N3 ® N7
and have respective dimensions three (/\5) and seven (/\-).

e Can we produce examples of the nearly integrable GL(2,R) geometries in
dimension five? Can we produce examples with ‘pure’ torsion in A5 or /-7
Can we produce nonhomogeneous examples?
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A well known fact
Ordinary differential equation 3®) = 0 has GL(2, R) X , R? as its group of
contact symmetries. Here p : GL(2,R) — GL(5,R) is the 5-dimensional
irreducible representation of GL(2,R).

This, in particular, means that the solution space M?® of this ODE, which is
R > (ag, a1, asz,as,aq) of y = ag + 4a1x + 6asr? + dasx> + asx?
‘conformal symmetric space’

(GL(Q,R) pr5) /GL(2,R) = M°,

1S a

with a natural irreducible GL(2,R) action. It is equipped with a nearly
integrable GL(2,R) structure whose characteristic connection is flat and has
no torsion.
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The main theorem

e Consider a 5th order ODE y®) = F(z,y,v,v", vy, y™®) modulo contact
transformation of the variables.

o Let D =0, +y'0y+y"0y +yPdy +y o ) + FO, ).
e Suppose that the equation satisfies three, contact invariant conditions:
50D*F, — 75D F3 + 50F, — 60F,DF, + 30F3F, + 8F; =0
375D F3 — 1000DF; 4 350D F7 + 1250F; — 650F3DFy + 200F; —

150y DF; + 2005, Fy — 140F2DF, + 130F3F2 + 14F} = 0
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e Then the 5-dimensional solution space of the equation is naturally equipped
with a nearly integrable GL(2,R) structure.

e Every nearly integrable GL(2, R) structure obtained in this way has torsion
of its characteristic connection of the ‘pure’ type T € ;.

e \We call the three conditions on F' the \Wiinschmann-like conditions.
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Examples of F' satisfying the Wiinschmann-like
conditions

e The three differential equations

y®) = 0(59(3)3(5 — 27cy’"?) N 1Oy//y(3)y(4))
9(1 —+ Cy//2)2 1 + Cy//2 )

with ¢ = +1,0, —1, represent the only three contact nonequivalent classes
of Wiinschmann-like ODEs having the corresponding nearly integrable
GL(2,R) structures (M?, [g, T, A]) with the characteristic connection with

vanishing torsion.

o If ¢ =0 we have y® = 0 and the corresponding GL(2, R) structure on the
solution space M? is flat.
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In all the three cases the holonomy of the Weyl connection V¥ of structures

W
(M?®,]g, T, A]) is reduced to the GL(2,R). Thus V= V. For all the three
cases the Maxwell 2-form dA = 0.

If ¢ = =1, then in the conformal class [g] there is an Einstein metric of
positive (¢ = +1) or negative (¢ = —1) Ricci scalar. In case ¢ = 1 the
manifold M ® can locally be identified with the conformal symmetric space
SU(1,2)/SL(2,R) with an Einstein g descending from the Killing form on
SU(1,2).

Similarly in ¢ = —1 case the manifold M?® can locally be identified with the
conformal symmetric space SL(3,R)/SL(2,R) with an Einstein g
descending from the Killing form on SL(3,R).

In both cases with ¢ # 0 the metric g is not conformally flat.
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The corresponding structures have 7-dimensional symmetry group.

5(8y3 — 12y2y3y4 + 3y1y3)
6(2y1ys — 3y3) 7

oy
3Y3
represent four nonequivalent nearly integrable GL(2,R) structures
corresponding to the different signs in the second expression and to the different
signs of the denominator in the first expression. These structures have
6-dimensional symmety group and dA = 0.

F =




1
F = X
I(y% + y2)?

(5w (8 + 3yiy2 + 9yivs — 9y — 4ylys + 12y102ys + 4y3 — ya (Yl + v2)) +

45y4(y5 + y2) (2y192 + y3) — 47 — 18y{y2 — 54yrys — 90y5ys + 270y1y5+

15y9y3 + 45y1yays — 40593 y5ys + 45y5y3 + 60y3iy3 — 180y1y2y3 — 4Oy§),

where

w?® = yo + 3yTye + 9yiys — 9ys — 4y5ys + 12y192y3 + 45 — 3yiys — 3y2ya.

This again has 6-dimensional symmetry group, but now F' = dA # 0.
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An ansatz

vi
F= (5)"° q( %),
Y3
reduces Wiinschmann-like conditions to a single ODE

d*q
dz2

dg

dq
2 _95¢ =0
p q =0,
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in which z = =%
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Nonhomogeneous example

An ansatz

Vi
F= (5)"° q( %),
Y3
reduces Wiinschmann-like conditions to a single ODE

4/3 2/3 d*q 4/3
902%°(3q — 42 )p — 5427°(
2

dg

dq
2 _95¢ =0
p q =0,

2 1/3(a,  =.2/3
30 §) 5
)? +3024/%(6g — 522/°%) =

in which z = y—i.

3
This equation may be solved explicitely giving example of ODEs having its nearly
integrable structure being nonhomogeneous.
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What about other orders of ODEs?

e If a 3rd order ODE """ = F(x,y,,y") satisfies the Wiinschmann condition

9D?F, — 18F,DF; — 27TDF + AFS + 18F Fy + 54F, = 0,

e a:c + ylay + yQayl + F8y2,

then it defines a Lorentzian conformal structure on the 3-dimensional space of
its solutions.

e This conformal structure in dimension three is related to the quadratic
GL(2,R) invariant A = agas — a? of wa(x,y) = agx? + 2a1xy + asy®.
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o If a 4th order ODE y = F(z,y,v',y",y"") satisfies the Wiinschmann-like
conditions

4D*F3 — 8DF, + 8F; — 6DF3F3 + 4F,F5 + F3 =0,

160D Fy — 640DF, + 144(DF3)* — 352D F3Fy + 144F5 —
80D FyF3 + 160F F3 — T2DF3Fy + 88Fy F5 + 9F5 + 16000F, = 0,
D = 0, + y10y + Y20y, + Y30y, + FOy,,

then it defines an irreducible GL(2,R) structure on the 4-dimensional space
M*? of its solutions.
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e Ordinary differential equation y™ = 0, n > 4, has GL(2,R) x, R™ as its
group of contact symmetries. Here p : GL(2,R) — GL(n,R) is the
n-dimensional irreducible representation of GL(2, R).

o If y™ = F(z,y,y,..y"" 1)) we have (n — 2)-Wiinschmann-like conditions
on F', which guarantee that the solutions space has an irreducible GL(2, R)
structure in dimension n.

e These GL(2,R) structures can be understood in terms of a certain Weyl-like
conformal geometries [(T1, Yo, ..., Tk, A)] of GL(2,R)-invariant symmetric

conformal tensors T, and a certain 1-form A given up to a gradient.

o |t seems that rich GL(2,R) geometries, with lots of examples, are possible in
orders 3 < n < 5 only!

This is a report on a joint work with my student Michat Godlinski.



