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Under the auspices of a famous scientist from Hamburg
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Holonomy groups of Ricci-flat metrics

dim 6 7 8
group SU(3) G2 Spin(7)

local examples: easy(-ish) to find
complete/compact examples: harder, but fortunately the
explicit knowledge of the metric is often unnecessary

In dims 6, 7, 8 interesting structures are determined by
differential forms lying in open orbits under the action of
GL(n, R)

For instance, in the intermediate dimension a certain 3-form
determines the whole geometry

Maximal subgroups of G2: SO(3), SO(4), SU(3)

And G2 ⊂ SO(8) ! Spin(7)-, PSU(3)-, Sp(2)Sp(1)-geometry.
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G-structures

Spin(6) = SU(4) acts transitively on S7

SO(6)

SU(3)
=

SO(7)

G2
=

SO(8)

Spin(7)
= RP7

Different sets of reductions are parametrised by the same
space, which by the way admits G2 structures
Related to this
• S6 = G2/SU(3)

• (S6, ground) ⊂ R7 has an almost complex structure J inherited
from the vector cross product on R7

• J is nearly Kähler
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Examples of interaction

• Hypersurface theory X n ↪→ Y n+1, quotients X/S1, and the
like

• conical singularities constructed from NK structures:
the cone of SU(2)3/SU(2) deforms to a complete smooth
holonomy metric on Y ∼= R4 × S3 [Bryant-Salamon]
Similarly for Ber = SO(5)/SO(3), AW = SU(3)/U(1)

• (M6, g) NK =⇒ the sine cone dt2 + (sin2 t)g has weak
holonomy G2 (so Einstein). Its singularities at t = 0, π
approximate G2-holonomy cones [Acharya & al], see
[Fernández & al] too
This example has the flavour of Killing spinors

• ALC singularities of [Gibbons–Lü–Pope–Stelle]



Special geometry
with solvable Lie

groups

Simon G. Chiossi

Special geometry
Lie groups’ actions

Six dimensions

Seven dimensions

Nilpotent/Solvable Lie
groups
Nilmanifolds

Prototypical example

Solvmanifolds

Non-compact
homogeneous Einstein
spaces

Half-flatness

Geometry with torsion
Spinors

Strings attached

‘Simultaneous’ structures

End

7

Tensors and representations

Let (X d , g) be Riemannian and φ a tensor, define
G = {a ∈ SO(d) : a∗φ = φ}

so Λ2T ∗X = so(d) = g⊕ g⊥ and Hol(g) ⊆ G ⇐⇒ ∇φ = 0
By analogy with the complex case, these are often referred to
as integrable G-geometries

• ∇φ is identified with the intrinsic torsion, an element in
T ∗ ⊗ g⊥ ∼= W1 ⊕W2 ⊕ . . .⊕WN

with N irreducible components. Notice so(d)
g = R7 when

d = 6, 7, 8

d φ G N
2m almost complex structure J U(m) 4
2m non-degenerate 2-form σ U(m) 4
7 positive generic 3-form G2 4
8 positive generic 4-form Spin(7) 2

4k quaternionic 4-form Sp(k)Sp(1) 6
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Six dimensions

• g Riemannian metric
• J orthogonal almost complex structure

J ∈ End TM : J2 = −1, g(JX , JY ) = g(X , Y )

• σ non-degenerate 2-form
σ(X , Y ) = g(JX , Y )

• Ψ ∈ Λ3,0T ∗M a complex volume form
σ ∧Ψ = 0, Ψ ∧ Ψ̄ = 4

3 iσ3

• ψ+ = Re Ψ with open orbit in Λ3R6

(determines J, hence ψ− = Jψ+ = Im Ψ)

=⇒ Complex and symplectic aspects are linked:
the structure is determined by choosing ψ+, σ only, for

SL(3, C) ∩ Sp(6, R) = SU(3)
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SU(3)-intrinsic torsion

The holonomy group Hol(g) is contained in SU(3) iff all forms
are constant for the Levi–Civita connection

∇σ = 0, ∇ψ± = 0
Obstruction:

∇J ∈ T ∗ ⊗ su(3)⊥ ∼= W±
1 ⊕W±

2 ⊕W3 ⊕W4 ⊕W5

where Wj are the so-called ‘Gray–Hervella classes’

The intrinsic torsion is completely determined by the exterior
derivatives of σ, ψ+ and ψ− (n > 3 only σ, ψ+!)

∇J = 0 ⇐⇒ all forms are closed: dσ = 0, dψ± = 0

! M is a Calabi–Yau manifold
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almost Hermitian taxonomy

comp dimR U(3)-module SU(3)-module
W±

1 1+1 [[Λ3,0]] R R
W±

2 8 + 8 [[V ]] su(3) su(3)

W3 12 [[Λ2,1
0 ]] S2,0

W4 6 Λ1 Λ1

W5 6 Λ1 Λ1

For instance

• ∇J ∈ W3 ⊕W4 ⇐⇒ NJ = 0 e.g. C3, G × T m

• ∇J ∈ W1 ⇐⇒ M is nearly Kähler Z(S4)

• ∇J ∈ W2 ⇐⇒ dσ = 0 KT = S1 × H3/Γ

• ∇J ∈ W4 ⇐⇒ loc. conformally Kähler SU(2)× U(1)

You name it . . .
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G2 structures

On a 7-manifold Y with tangent spaces Ty Y = R6 ⊕ R and
SU(3)× {1} structure, define

ϕ = σ ∧ e7 + ψ+

∗ϕ = ψ− ∧ e7 + 1
2 σ2

In terms of an ON basis

ϕ = e127 + e347 + e135 + e425 + e146 + e236 + e567

[Engel, Reichel] Stab(ϕ) = G2

=⇒ open GL(7, R)-orbit in Λ3T ∗Y

[Bryant] Such a ϕ determines the metric g and ∗ϕ

[Fernández–Gray] Hol(g) ⊆ G2 ⇐⇒ dϕ = 0, d∗ϕ = 0
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The intrinsic torsion of a G2 structure

∇ϕ ∈ Λ1 ⊗ g⊥2 = X1 ⊕X2 ⊕X3 ⊕X4

is encoded into the exterior derivatives dϕ, d∗ϕ

class type conditions

— G2 holonomy dϕ = 0 = d∗ϕ
X1 weak holonomy dϕ = λ ∗ϕ

X4 conformally G2

{
d∗ϕ = 4θ ∧ ∗ϕ
dϕ = 3θ ∧ ϕ

X2 calibrated dϕ = 0
X1 ⊕X3 cocalibrated d∗ϕ = 0

X1 ⊕X3 ⊕X4 G2T d∗ϕ = ϑ ∧ ∗ϕ
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Nilpotency

G is k -step nilpotent iff ∃k : {0} 1= gk−1 ⊃ gk = {0} where

g0 = g, gi = [gi−1, g] (lower central series)

e.g. 1-step = Abelian, 2-step ⇐⇒ [g, g] ⊆ z

• Classification: finitely many isomorphism types for dimR " 6,
continuous families in dimR = 7. Afterwards ?

• G has rational structure constants =⇒ ∃Γ : M = G/Γ is
compact [Malcev]

The compact quotient M = G/Γ of a real 1-connected nilpotent
Lie group G by a lattice Γ is called a nilmanifold
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Features

Let M = G/Γ be a nilmanifold

[Nomizu] Hk
dR(M) ∼= Hk (g)

where the latter is the cohomology of the Chevalley-Eilenberg
complex (

∧
g∗, d) of G-invariant forms

By the way, what about H∗,∗
∂

(M)
?∼=H∗,∗

∂
(gC) ! [Console-Fino, et al.]

[Sullivan]
∧

g∗ is a minimal model of M

[Hasegawa] M is formal ⇐⇒ G is Abelian and M is a torus

‘formal’ roughly means
V

g∗ captures the homotopy type of M
examples: compact Kähler mfds, homog. spaces of max. rank,

compact simply conn. mfds of dim ! 6
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Left-invariant structures

A nilpotent Lie group Nn may or not admit left-invariant complex
or symplectic structures (in contrast to compact simple)

[Benson-Gordon, ...] Besides tori, nilmanifolds N/Γ never
admit Kähler metrics

N real 1-connected nilpotent Lie group
⇐⇒ ∃ a basis {e1, . . . , en} of left-invariant 1-forms such that

dei ∈ Λ2〈e1, . . . , ei−1〉, i = 1, . . . , n

For fixed metric on any N6, almost Hermitian structures define

points of
SO(6)

U(3)
= CP3, described by [Abbena & al]
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Example (the Iwasawa manifold)

The complex Heisenberg group

G =









1 z1 z3
0 1 z2
0 0 1



 : zi ∈ C




 = H3

defines a nilmanifold M = G/Γ where Γ is the subgroup with
zα ∈ Z[i].
Mapping to (z1, z2) realises M as a T 2-bundle over T 4 (similar
to twistor fibration over X 4)
The real basis (ei) of T ∗e G ∼= g∗ with
dz1 = e1 + ie2, dz2 = e3 + ie4, −dz3 + z1dz2 = e5 + ie6 ∈ Λ1,0

satisfies

dei =






0, 1 " i " 4
e13 + e42, i = 5
e14 + e23, i = 6

written g = (0, 0, 0, 0, e13 + e42, e14 + e23)
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The Kähler form σ = −e12 − e34 + e56 defines an SU(3)
structure on Iwa = H3/Γ with dσ = ψ+

First explicit solutions of the Hitchin flow (via nilmanifolds!):

Proposition (myself)

A fibre product Iwa×t R+ admits a metric with holonomy G2
induced from

ϕ = σ(t) ∧ dt + ψ+(t)

by deforming the standard half-flat SU(3) structure (Iwa, σ0, ψ0)
as follows:

ψ+(t) = ψ+
0 + x(t)d(e56)

1
2σ(t)2 = 1

2σ2
0 + y(t)e1234

with






ẋ(t) = 1√
y+1

ẏ(t) = −4x
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Solvability

G is solvable ⇐⇒ ∃k : {0} 1= gk−1 ⊃ gk = {0} where

g0 = g, gi = [gi−1, gi−1] (derived series)

The quotient M = G/Γ of a real 1-connected solvable Lie group
G by a discrete co-compact subgroup Γ, or
G with a left-invariant metric is called a solvmanifold
• (G, ginvariant) 1-connected, flat =⇒ solvable [Milnor]

• symplectic, unimodular =⇒ solvable [Chu]

M = G/K symm. space of non-compact type =⇒ G = KAN
Iwasawa decomposition, M isometric to S = AN
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Features

M = G/Γ compact solvmanifold, G simply connected and
completely solvable (= ad has real eigenvalues)

[Hattori]
V

g∗ is quasi-isomorphic to ΩdR(G/Γ), hence a model of M

[Benson-Gordon] G completely solvable, G/Γ compact
Kählerian solvmanifold ⇐⇒ M diffeo to a torus

[Hasegawa] (cf. [Cortés-Baues])
compact solvmfd is Kählerian ⇐⇒ finite quotient of complex
torus, and a complex torus bundle over a complex torus

Cl/Z2l −→ M = Tl+k/∆ −→ Ck/Z2k holomorphic fibration
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Solvable examples
[Gibbons & al] Incomplete Ricci-flat metrics with Hol ⊆ G2 and
2-step nilpotent isometry groups N6 acting on orbits of codim 1

POINT IS

Theorem (Fino-myself)

these are (loc.) conformally isometric to homogeneous metrics
on solvable Lie groups

S = Γ̃\N × R

built from N

Proposition (ditto)

Classification of nilpotent (N6, σ, ψ+) whose rank-one solvable
extension has ϕ = σ ∧ e7 + ψ+ conformally G2

Actually (S, ϕ) is conformally G2 ⇐⇒ N either T 6 or 2-step
nilpotent (but 1= H3 + H3)

Can think of Γ\N as a torus bundle over a torus
[Palais-Stewart]
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Non-compact homogeneous Einstein spaces

• A solvmanifold (S, ginvariant) is a homogeneous Einstein space
with non-positive scalar curvature

• All known examples of non-compact, non-flat, homogeneous
Einstein spaces G/K have K maximal compact, i.e. are
isometric to a (S, ginvariant) (conjecture of Alekseevskii)
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Examples I

• S unimodular, solvable =⇒ every left-inv. Einstein metric is
flat [Dotti]

• G unimodular with inv. Kähler structure =⇒ flat,
G = A ! [G, G], both factors Abelian [Hano]

• Homog. Einstein, Ricci-flat =⇒ flat [Alekseevskii-Kimelfeld]

• K-E solvmanifolds are biholomorphic to bounded symmetric
domains with Bergmann metric [D’Atri-Dotti]

• Classification of QK solvmanifolds [Alekseevskii-Cortés], via
[Lauret]
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Examples II: Einstein solvable extensions of NLAs

• (standard) Einstein solvmanifolds are – up to isometry – metric
solvable extensions of Iwasawa type

s = [s, s]⊕ a = n⊕ a

ada : n → n self-adjoint and pairwise commuting
∃A ∈ a : adA positive-definite

• Can reduce to a = RH (extension of rank 1), with
〈H, n〉 = 0, ||H|| = 1 and [X , Y ] = [X , Y ]n, [H, X ] = DX
for some D ∈ Der(n) [Heber], [Heintze]

• Einstein solvmanifolds are standard [Lauret]
If dim n ! 6 there is always a rank-one Einstein solvable extension
[Lauret, Will]
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Concretely, please

Take s = (0, 0, 2
5 m e15, 2

5 m e25, 0, 2
5 m e12)⊕ Re7 with

8
>>>>><

>>>>>:

de1 = − 3
5 me17 de2 = − 3

5 me27,

de3 = 2
5 me15− 6

5 me37, de4 = 2
5 me25− 6

5 me47,

de5 = − 3
5 me57, de6 = 2

5 me12− 6
5 me67, de7 = 0

Besides an Einstein metric
∑

(ei)2 (with Ric < 0),

Proposition (Fino-myself)

There is a G2-holonomy structure on S ∼= R× T , where

T 3 T

T 3

the base is span{e1, e2, e5}, the fibre span{e3, e4, e6}
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Proposition (ditto)

T = N/Γ equipped with SU(3) forms

σ0 = e56 − e23 + e14, ψ+
0 = −e345 + e136 + e246 + e125

flows to the Ricci-flat metric on T × R

g = (1−mt)4/5gfibre + (1−mt)−2/5gbase + dt2,

in terms of the flat metrics on fibre- and base tori

Oh, and: this and the previous metric are essentially the same,
albeit arising rather differently (ie via Einstein solvable extensions,
and using the evolution equations described below)
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Half-flatness

An SU(3) structure (ψ+, σ) is called half-flat if

dψ+ = 0 and d(σ ∧ σ) = 0

• 21/42 of the torsion vanish
• W+

1 ,W+
2 ,W4,W5 are zero

• akin to ‘ASD + Ric = 0’ in dim 4 (but much weaker)

Theorem (Swann-myself)

Classification of invariant half-flat SU(3) structures on nilpotent
Lie groups N6 such that N × S1 is G2T

Why on earth the need for another SU(3)-class?
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The quest for G2-holonomy metrics

Assume M6 is compact with SU(3) structure σ(t), ψ+(t)
depending on t
Let Y 7 = M ×t (a, b) bear ϕ = σ(t) ∧ dt + ψ+(t)

0 = dϕ =

(
dσ − ∂ψ+

∂t

)
∧ dt + dψ+

0 = d∗ϕ =

(
dψ− + σ ∧ ∂σ

∂t

)
∧ dt + 1

2 d(σ ∧ σ)

A half-flat M6 evolves to a structure on Y 7 with Hol ⊆ G2
Hamiltonian theory guarantees solution [Hitchin]
Special case: dσ = aψ+ and dψ− = bσ2 (like S6)

Solving these PDEs is hard, but. . . see p.17
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G2-holonomy v spinors

G2 is the isotropy in Spin(7) of a spinor η ∈ ∆7 ∼= R8

The G2-fundamental form ϕ ∈ Λ3R7 is defined as

ϕ(X , Y , Z ) = 〈X · Y · Z · η, η〉

Remember
• (M7, ϕ) has holonomy G2 ⇐⇒ ∃ η0 ∈ ∆7 : ∇η0 = 0

• (M7, ϕ) is conformally G2 ⇐⇒ Hol(e2f g) ⊆ G2, for some f

Fact:
the number of parallel spinors determines the amount of
symmetry of the manifold [Wang]
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More symmetry: skew torsion

Q: Given (M7, ϕ) with Hol(g) = G2, are there other parallel
spinors

∇̃η = 0

besides η0 ?
A: Yes (sometimes many), if M7 is a solvmanifold

To find more we are forced to look for different ∇̃ as well, say
metric connections with skew-symmetric torsion ([Cartan],
revamped by [Ivanov-Friedrich])

∇T = ∇+ Torsion = ∇+ 1
2 T , T ∈ Λ3R7

Precisely:
T (X , Y , Z ) = g(∇T

X Y −∇T
Y X − [X , Y ], Z ) is skew in X , Z , Y
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Strings, anyone?

This is meant to hint at the type-II string equations with constant
dilaton and no fluxes,

Ric∇
T

= 0 d∗T = 0

∇T η = 0 T · η = 0

[Strominger] A Riemannian manifold (X d , g, T , η, f ) with

T 3-form, η spinor field, f function,

∇T = ∇+ 1
2 T metric connection with skew torsion T ,

yield (partial) solutions to the equations
[Agricola & al] A full solution forces T = 0,∇T = ∇ and scal= 0

But (there’s a but). . .
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The good news

Theorem (Agricola-Fino-myself)

The equation ∇T η = 0 has the following solutions on the
previous solvmanifold

S ∼= R× T , T = T 3-bundle over T 3 :

• a family of parallel spinors
ηr ,s = (0, 0, 0, 0, r , s,−r , s), r/s ∈ R ∪ {∞}

and a family of torsion connections ∇+ 1
2 Tr ,s,

Tr ,s = const
[
λr ,s(ψ+ − 6e125) + µr ,s(ψ− + 3e346)

]
,

deforming the Levi-Civita.

(λ = r2−s2

2(r2+s2) , µ = (r−s)2

r2+s2 homogeneous)

• six ‘isolated’ solutions (∇Tα , ηα) : ∇Tαηα = 0
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On the other solvmanifolds of [Fino-myself] admit either no
additional parallel spinors (rigidity) or complex solutions.

Quick proof:
• Let V be the subspace of Λ3R7 spanned by the simple forms
appearing in ψ±, σ ∧ e7, hence dim V = 11 < 35

• Take H ∈ V, lift ∇H = ∇+ 1
2 H to the spin bundle, so that parallel

spinors are solutions to

∇H
X η = ∇X η + (X" H) · η = 0, ∀X

• The endomorphism (ei" H)· has block structure
`

0 ∗
∗ 0

´

• For i = 7: Ker (∇e7 + e7" H) = Ker (e7" H)

(to be completely honest,∇H is a‘conformal’ Levi-Civita)



Special geometry
with solvable Lie

groups

Simon G. Chiossi

Special geometry
Lie groups’ actions

Six dimensions

Seven dimensions

Nilpotent/Solvable Lie
groups
Nilmanifolds

Prototypical example

Solvmanifolds

Non-compact
homogeneous Einstein
spaces

Half-flatness

Geometry with torsion
Spinors

Strings attached

‘Simultaneous’ structures

End

33

A moduli space of sorts

λ = λr,s, µ = µr,s, r/s ∈ RP1

Each point on the conic (µ− 1)2 + 4λ2 = 1 corresponds 1-1 to

• a torsion connection∇Tr,s plus
a parallel spinor ηr ,s

• a choice of
ψ+ + iψ− ∈ Λ3,0T ∗N6

• a G2 structure ϕr ,s =

rs ψ+ + r2−s2

2 ψ− + r2+s2

2 σ ∧ e7

of expected type X1+3+4, gene-
rically

!"#

!"#

!"!!!"#

!"!

$"!

%"#

%"!

&'()*+

NB: the metric is the same, i.e.
all ϕr ,s induce only one Riemannian structure!
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A moduli space of sorts

G2-analysis: the 3-form ϕr ,s

• has Hol = G2 when r = s
ηr ,r ∼ η0 (! origin)

• has type X3+4 for r = −s
(! top point)

• has X3 1= 0 always
(bar ϕr,r , clearly)
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What(ever) next?

• Relax the extension hypotheses (= how to build S from N)
e.g. forget Einstein

• Pick nilpotent Lie groups N6 with step-length # 3
i.e. more bundled structures

• Let T roam the full space Λ3R7 # expect more examples

• Consider different G2-types on S

Upshot: nil- and solvmanifolds are quite interesting
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that’s really it, thanks


