Special geometry with solvable Lie groups

Holonomy Groups and Applications in String Theory – Universität Hamburg, July 2008

Special geometry with solvable Lie groups

Simon G. Chiossi

Special geometry

Lie groups' actions Six dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds Non-compact homogeneous Einstein

spaces

Half-flatness

Geometry with torsion

Spinors
Strings attached
'Simultaneous' structures

End

Simon G. Chiossi Polytechnic of Turin

Under the auspices of a famous scientist from Hamburg

Special geometry with solvable Lie groups

Simon G. Chiossi

Special geometry

Lie groups' actions Six dimensions Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds Non-compact homogeneous Einstein spaces

Half-flatness

Geometry with torsion Spinors

Strings attached 'Simultaneous' structures

Lie groups' actions Six dimensions Seven dimensions

2 Nilpotent/Solvable Lie groups

Nilmanifolds
Prototypical example
Solvmanifolds
Non-compact homogeneous Einstein spaces
Half-flatness

3 Geometry with torsion

Spinors
Strings attached
'Simultaneous' structures

4 End

Special geometry with solvable Lie groups

Simon G. Chiossi

Special geometry

Lie groups' actions Six dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds

Non-compact homogeneous Einstein spaces

Half-flatness

Geometry with torsion

Spinors
Strings attached
'Simultaneous' structures

Holonomy groups of Ricci-flat metrics

dim	6	7	8
group	<i>SU</i> (3)	G_2	Spin(7)

local examples: easy(-ish) to find complete/compact examples: harder, but fortunately the

In dims 6, 7, 8 interesting structures are determined by differential forms lying in open orbits under the action of $GL(n, \mathbb{R})$

explicit knowledge of the metric is often unnecessary

For instance, in the intermediate dimension a certain 3-form determines the *whole* geometry

Maximal subgroups of G_2 : SO(3), SO(4), SU(3) And $G_2 \subset SO(8) \rightsquigarrow Spin(7)$ -, PSU(3)-, Sp(2)Sp(1)-geometry.

Special geometry with solvable Lie groups

Simon G. Chiossi

Special geometry

Lie groups' actions Six dimensions

Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds Non-compact homogeneous Einstein

spaces Half-flatness

Geometry with torsion

Spinors
Strings attached
'Simultaneous' structures

groups Nilmanifolds

Prototypical example Solvmanifolds

Non-compact homogeneous Einstein spaces

Half-flatness

Geometry with torsion

Spinors Strings attached 'Simultaneous' structures

. .

End

Spin(6) = SU(4) acts transitively on S^7

 $\frac{SO(6)}{SU(3)} = \frac{SO(7)}{G_2} = \frac{SO(8)}{Spin(7)} = \mathbb{RP}^7$

Different sets of reductions are parametrised by the same space, which by the way admits G_2 structures

Related to this

- $S^6 = G_2/SU(3)$
- $(S^6, g_{\text{round}}) \subset \mathbb{R}^7$ has an almost complex structure J inherited from the *vector cross product* on \mathbb{R}^7
- J is nearly Kähler

Special geometry Lie groups' actions

Six dimensions Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds Non-compact homogeneous Einstein

spaces Half-flatness

Geometry with torsion

Spinors Strings attached 'Simultaneous' structures

End

• Hypersurface theory $X^n \hookrightarrow Y^{n+1}$, quotients X/S^1 , and the

- like
- conical singularities constructed from NK structures: the cone of $SU(2)^3/SU(2)$ deforms to a complete smooth holonomy metric on $Y \cong \mathbb{R}^4 \times S^3$ [Bryant-Salamon]

Similarly for Ber = SO(5)/SO(3), AW = SU(3)/U(1)

• (M^6, g) NK \Longrightarrow the sine cone $dt^2 + (\sin^2 t)g$ has weak holonomy G_2 (so Einstein). Its singularities at $t = 0, \pi$ approximate G_2 -holonomy cones [Acharya & al], see [Fernández & al] too

This example has the flavour of Killing spinors

ALC singularities of [Gibbons-Lü-Pope-Stelle]

Tensors and representations

Let (X^d, g) be Riemannian and ϕ a tensor, define

$$G = \{a \in SO(d) : a^*\phi = \phi\}$$

so $\Lambda^2 T^*X = \mathfrak{so}(d) = \mathfrak{g} \oplus \mathfrak{g}^\perp$ and $Hol(g) \subseteq G \iff \nabla \phi = 0$ By analogy with the complex case, these are often referred to as *integrable G-geometries*

ullet $\nabla \phi$ is identified with the intrinsic torsion, an element in

$$T^* \otimes \mathfrak{g}^{\perp} \cong \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \ldots \oplus \mathcal{W}_N$$

with *N* irreducible components. Notice $\frac{\mathfrak{so}(d)}{\mathfrak{g}} = \mathbb{R}^7$ when d = 6, 7, 8

d	ϕ	G	Ν
2 <i>m</i>	almost complex structure J	<i>U</i> (m)	4
2 <i>m</i>	non-degenerate 2-form σ	<i>U</i> (m)	4
7	positive generic 3-form	G_2	4
8	positive generic 4-form	Spin(7)	2
4 <i>k</i>	quaternionic 4-form	Sp(k)Sp(1)	6

Special geometry with solvable Lie groups

Simon G. Chiossi

Special geometry

Lie groups' actions Six dimensions

Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds Prototypical example

Solvmanifolds Non-compact homogeneous Einstein

spaces Half-flatness

Geometry with torsion Spinors

Strings attached
'Simultaneous' structures

End

7

Nilmanifolds

Prototypical example Solvmanifolds Non-compact homogeneous Einstein

spaces Half-flatness

Geometry with torsion

Spinors
Strings attached
'Simultaneous' structures

End

g Riemannian metric

J orthogonal almost complex structure

 $J \in End TM : J^2 = -1, \ g(JX, JY) = g(X, Y)$

ullet σ non-degenerate 2-form

$$\sigma(X,Y)=g(JX,Y)$$

• $\Psi \in \Lambda^{3,0} T^* M$ a complex volume form

$$\sigma \wedge \Psi = 0, \qquad \Psi \wedge \bar{\Psi} = \tfrac{4}{3} \emph{i} \sigma^3$$

- $\psi^+={\sf Re}\,\Psi$ with open orbit in $\Lambda^3\mathbb{R}^6$ (determines J, hence $\psi^-=J\psi^+={\sf Im}\,\Psi$)
- \implies Complex and symplectic aspects are linked: the structure is determined by choosing ψ^+,σ only, for

$$SL(3,\mathbb{C}) \cap Sp(6,\mathbb{R}) = SU(3)$$

Six dimensions

Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds

Non-compact homogeneous Einstein spaces

Half-flatness

Geometry with torsion Spinors

Strings attached 'Simultaneous' structures

End

The holonomy group Hol(g) is contained in SU(3) iff all forms are constant for the Levi–Civita connection

$$\nabla \sigma = \mathbf{0}, \qquad \nabla \psi^{\pm} = \mathbf{0}$$

Obstruction:

$$\nabla J \in \mathit{T}^* \otimes \mathfrak{su}(3)^{\perp} \ \cong \ \mathcal{W}_1^{\pm} \oplus \mathcal{W}_2^{\pm} \oplus \mathcal{W}_3 \oplus \mathcal{W}_4 \oplus \mathcal{W}_5$$

where \mathcal{W}_j are the so-called 'Gray-Hervella classes'

The intrinsic torsion is completely determined by the exterior derivatives of σ, ψ^+ and ψ^- (n > 3 only σ, ψ^+ !)

$$abla J=0 \iff ext{all forms are closed: } d\sigma=0, \ d\psi^{\pm}=0$$

→ M is a Calabi–Yau manifold

almost Hermitian taxonomy

comp	$dim_{\mathbb{R}}$	<i>U</i> (3)-module	<i>SU</i> (3)-	module
\mathcal{W}_1^{\pm}	1+1	$\llbracket \Lambda^{3,0} rbracket$	\mathbb{R}	\mathbb{R}
\mathcal{W}_{2}^{\pm}	8+8	[V]	su(3)	su(3)
W_3	12	$[\![\Lambda_0^{2,1}]\!]$	\mathcal{S}^{2}	2,0
\mathcal{W}_4	6	Λ1	٨	\1
\mathcal{W}_5	6	Λ^1	٨	.1

For instance

$$\bullet \ \nabla J \in \mathcal{W}_3 \oplus \mathcal{W}_4 \iff N_J = 0$$

e.g.
$$\mathbb{C}^3$$
, $G \times T^m$

•
$$\nabla J \in \mathcal{W}_1 \iff M$$
 is nearly Kähler

$$\mathcal{Z}(S^4)$$

•
$$\nabla J \in \mathcal{W}_2 \iff d\sigma = 0$$

$$KT = S^1 \times H_3/\Gamma$$

•
$$\nabla J \in \mathcal{W}_4 \iff$$
 loc. conformally Kähler

$$SU(2) \times U(1)$$

You name it ...

Special geometry with solvable Lie groups

Simon G. Chiossi

Special geometry

Lie groups' actions Six dimensions

Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds Non-compact homogeneous Einstein

spaces Half-flatness

an-namess

Geometry with torsion Spinors

Strings attached 'Simultaneous' structures

Nilmanifolds

Prototypical example Solvmanifolds

Non-compact homogeneous Einstein spaces

Half-flatness

On a 7-manifold Y with tangent spaces $T_yY = \mathbb{R}^6 \oplus \mathbb{R}$ and $SU(3) \times \{1\}$ structure, define

$$\varphi = \sigma \wedge \mathbf{e}^7 + \psi^+$$
$$*\varphi = \psi^- \wedge \mathbf{e}^7 + \frac{1}{2} \sigma^2$$

In terms of an ON basis

$$\varphi = e^{127} + e^{347} + e^{135} + e^{425} + e^{146} + e^{236} + e^{567}$$

[Engel, Reichel] Stab
$$(\varphi) = G_2$$
 \Longrightarrow open $GL(7, \mathbb{R})$ -orbit in $\Lambda^3 T^* Y$

[Bryant] Such a φ determines the metric g and $*\varphi$

[Fernández–Gray]
$$Hol(g) \subseteq G_2 \iff d\varphi = 0, d*\varphi = 0$$

The intrinsic torsion of a G_2 structure

$$\nabla\varphi\in\Lambda^1\otimes\mathfrak{g}_2^\perp=\mathcal{X}_1\oplus\mathcal{X}_2\oplus\mathcal{X}_3\oplus\mathcal{X}_4$$

is encoded into the exterior derivatives ${\it d}\varphi, {\it d}*\varphi$

class	type	conditions	
_	G ₂ holonomy	$d\varphi = 0 = d*\varphi$	
\mathcal{X}_1	weak holonomy	$\textit{d}\varphi = \lambda * \varphi$	
\mathcal{X}_4	conformally G_2	$ \left\{ \begin{array}{l} d*\varphi = 4\theta \wedge *\varphi \\ d\varphi = 3\theta \wedge \varphi \end{array} \right. $	
\mathcal{X}_2	calibrated	darphi=0	
$\mathcal{X}_1 \oplus \mathcal{X}_3$	cocalibrated	d*arphi=0	
$\mathcal{X}_1 \oplus \mathcal{X}_3 \oplus \mathcal{X}_4$	G_2T	$\textit{d}{*}\varphi = \vartheta \wedge {*}\varphi$	

Special geometry with solvable Lie groups

Simon G. Chiossi

Special geometry
Lie groups' actions

Six dimensions
Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds

Non-compact homogeneous Einstein spaces

Half-flatness

Geometry with torsion Spinors

Strings attached
'Simultaneous' structures

Lie groups' actions Six dimensions Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds Non-compact homogeneous Einstein spaces

Half-flatness

Geometry with torsion

Spinors Strings attached 'Simultaneous' structures

End

G is *k*-step nilpotent iff $\exists k : \{0\} \neq \mathfrak{g}^{k-1} \supset \mathfrak{g}^k = \{0\}$ where

$$\mathfrak{g}^0=\mathfrak{g},\quad \mathfrak{g}^i=[\mathfrak{g}^{i-1},\mathfrak{g}]\qquad \text{(lower central series)}$$

e.g. 1-step = Abelian, 2-step
$$\iff$$
 $[\mathfrak{g},\mathfrak{g}] \subseteq \mathfrak{z}$

- Classification: finitely many isomorphism types for dim $_{\mathbb{R}} \leqslant 6$, continuous families in dim $_{\mathbb{R}} = 7$. Afterwards ?
- *G* has rational structure constants $\Longrightarrow \exists \Gamma: M = G/\Gamma$ is compact [Malcev]

The *compact* quotient $M = G/\Gamma$ of a real 1-connected nilpotent Lie group G by a lattice Γ is called a nilmanifold

Lie groups' actions Six dimensions Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds

Non-compact homogeneous Einstein spaces

Half-flatness

Geometry with torsion

Spinors
Strings attached
'Simultaneous' structures

End

Let $M = G/\Gamma$ be a nilmanifold

[Nomizu] $H_{dB}^k(M) \cong H^k(\mathfrak{g})$

where the latter is the cohomology of the Chevalley-Eilenberg complex $(\bigwedge \mathfrak{g}^*, d)$ of G-invariant forms

By the way, what about $H^{*,*}_{\overline{\partial}}(M) \overset{?}{\cong} H^{*,*}_{\overline{\partial}}(\mathfrak{g}^{\mathbb{C}}) \rightsquigarrow$ [Console-Fino, et al.]

[Sullivan] $\bigwedge \mathfrak{g}^*$ is a minimal model of M

[Hasegawa] M is formal \iff G is Abelian and M is a torus

'formal' roughly means $\bigwedge \mathfrak{g}^*$ captures the homotopy type of M examples: compact Kähler mfds, homog. spaces of max. rank, compact simply conn. mfds of dim $\leqslant 6$

groups

Nilmanifolds

Non-compact homogeneous Einstein spaces

Spinors

End

A nilpotent Lie group N^n may or not admit left-invariant complex or symplectic structures (in contrast to compact simple)

[Benson-Gordon, ...] Besides tori, nilmanifolds N/Γ never admit Kähler metrics

N real 1-connected nilpotent Lie group $\iff \exists$ a basis $\{e^1, \dots, e^n\}$ of left-invariant 1-forms such that

$$de^i \in \Lambda^2 \langle e^1, \dots, e^{i-1} \rangle, \quad i = 1, \dots, n$$

For fixed metric on any N^6 , almost Hermitian structures define points of $\frac{SO(6)}{II(3)} = \mathbb{CP}^3$, described by [Abbena & al]

$$G = \left\{ \left(\begin{array}{ccc} 1 & z_1 & z_3 \\ 0 & 1 & z_2 \\ 0 & 0 & 1 \end{array} \right) : z_i \in \mathbb{C} \right\} = H_3$$

defines a nilmanifold $M = G/\Gamma$ where Γ is the subgroup with $z_{\alpha} \in \mathbb{Z}[i]$.

Mapping to (z_1, z_2) realises M as a T^2 -bundle over T^4 (similar to twistor fibration over X^4)

The real basis (e^i) of $T_e^*G\cong \mathfrak{g}^*$ with

 $dz_1 = e^1 + ie^2$, $dz_2 = e^3 + ie^4$, $-dz_3 + z_1 dz_2 = e^5 + ie^6 \in \Lambda^{1,0}$ satisfies

$$de^{i} = \begin{cases} 0, & 1 \leq i \leq 4 \\ e^{13} + e^{42}, & i = 5 \\ e^{14} + e^{23}, & i = 6 \end{cases}$$

written $\mathfrak{g} = (0, 0, 0, 0, e^{13} + e^{42}, e^{14} + e^{23})$

Special geometry with solvable Lie groups

Simon G. Chiossi

Special geometry

Lie groups' actions

Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solymanifolds

Non-compact homogeneous Einstein

spaces Half-flatness

Geometry with torsion Spinors

Strings attached 'Simultaneous' structures

The Kähler form $\sigma = -e^{12} - e^{34} + e^{56}$ defines an SU(3) structure on $Iwa = H_3/\Gamma$ with $d\sigma = \psi^+$

First explicit solutions of the Hitchin flow (via nilmanifolds!):

Proposition (myself)

A fibre product $\mathit{Iwa} \times_t \mathbb{R}_+$ admits a metric with holonomy G_2 induced from

$$\varphi = \sigma(t) \wedge dt + \psi^+(t)$$

by deforming the standard half-flat SU(3) structure (Iwa, σ_0, ψ_0) as follows:

$$\psi^{+}(t) = \psi_{0}^{+} + x(t)d(e^{56})$$
with
$$\begin{cases} \dot{x}(t) = \frac{1}{\sqrt{y+1}} \\ \dot{y}(t) = -4x \end{cases}$$

Special geometry with solvable Lie groups

Simon G. Chiossi

Special geometry

Lie groups' actions Six dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solymanifolds

Non-compact homogeneous Einstein spaces

Half-flatness

Geometry with torsion Spinors

Strings attached 'Simultaneous' structures

Lie groups' actions Six dimensions Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solymanifolds

Non-compact homogeneous Einstein spaces

Half-flatness

Geometry with torsion

Spinors Strings attached

'Simultaneous' structures

End

G is solvable $\iff \exists k : \{0\} \neq \mathfrak{g}_{k-1} \supset \mathfrak{g}_k = \{0\}$ where

$$g_0 = g$$
, $g_i = [g_{i-1}, g_{i-1}]$ (derived series)

The quotient $M=G/\Gamma$ of a real 1-connected solvable Lie group G by a discrete co-compact subgroup Γ , or

- G with a left-invariant metric is called a solvmanifold
- $(G, g_{\text{invariant}})$ 1-connected, flat \Longrightarrow solvable [Milnor]
- ullet symplectic, unimodular \Longrightarrow solvable [Chu]

M = G/K symm. space of non-compact type $\Longrightarrow G = KAN$ lwasawa decomposition, M isometric to S = AN

Lie groups' actions Six dimensions Seven dimensions

Nilpotent/Solvable Lie

groups Nilmanifolds

Prototypical example Solvmanifolds

Non-compact homogeneous Einstein spaces

Half-flatness

Geometry with torsion Spinors

Strings attached
'Simultaneous' structures

End

 $M = G/\Gamma$ compact solvmanifold, G simply connected and completely solvable (= ad has real eigenvalues)

[Hattori] $\bigwedge \mathfrak{g}^*$ is quasi-isomorphic to $\Omega_{dR}(G/\Gamma)$, hence a model of M

[Benson-Gordon] G completely solvable, G/Γ compact Kählerian solvmanifold $\iff M$ diffeo to a torus

[Hasegawa] (cf. [Cortés-Baues]) compact solvmfd is Kählerian ←→ finite quotient of complex torus, and a complex torus bundle over a complex torus

 $\mathbb{C}^{l}/\mathbb{Z}^{2l} \longrightarrow \textit{M} = \mathbb{T}^{l+k}/\Delta \longrightarrow \mathbb{C}^{k}/\mathbb{Z}^{2k} \text{ holomorphic fibration}$

Solvable examples

[Gibbons & al] Incomplete Ricci-flat metrics with $Hol \subseteq G_2$ and 2-step nilpotent isometry groups N^6 acting on orbits of codim 1

POINT IS

Theorem (Fino-myself)

these are (loc.) conformally isometric to homogeneous metrics on solvable Lie groups

$$S = \widetilde{\Gamma \backslash N} \times \mathbb{R}$$

built from N

Proposition (ditto)

Classification of nilpotent (N^6, σ, ψ^+) whose rank-one solvable extension has $\varphi = \sigma \wedge e^7 + \psi^+$ conformally G_2

Actually (S, φ) is conformally $G_2 \iff N$ either T^6 or 2-step nilpotent (but $\neq H_3 + H_3$)

Can think of $\Gamma \setminus N$ as a torus bundle over a torus [Palais-Stewart]

Special geometry with solvable Lie groups

Simon G. Chiossi

Special geometry
Lie groups' actions

Six dimensions

Nilpotent/Solvable Lie groups
Nilmanifolds

Prototypical example

Solvmanifolds
Non-compact
homogeneous Einstein

spaces Half-flatness

Geometry with torsion Spinors Strings attached 'Simultaneous' structures

End

20

Non-compact homogeneous Einstein spaces

Special geometry with solvable Lie groups

Special geometry

Lie groups' actions Six dimensions Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solymanifolds

Non-compact homogeneous Einstein spaces

Half-flatness

Geometry with torsion

Spinors
Strings attached
'Simultaneous' structures

End

• A solvmanifold $(S, g_{\text{invariant}})$ is a homogeneous Einstein space with non-positive scalar curvature

• All known examples of non-compact, non-flat, homogeneous Einstein spaces G/K have K maximal compact, i.e. are isometric to a $(S, g_{\text{invariant}})$ (conjecture of Alekseevskii)

Lie groups' actions Six dimensions Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds
Prototypical example
Solvmanifolds

Non-compact homogeneous Einstein spaces

Half-flatness

Geometry with torsion

Spinors Strings attached 'Simultaneous' structures

End

ullet S unimodular, solvable \Longrightarrow every left-inv. Einstein metric is flat [Dotti]

- G unimodular with inv. Kähler structure \Longrightarrow flat, $G = A \ltimes [G, G]$, both factors Abelian [Hano]
- Homog. Einstein, Ricci-flat ⇒ flat [Alekseevskii-Kimelfeld]
- K-E solvmanifolds are biholomorphic to bounded symmetric domains with Bergmann metric [D'Atri-Dotti]
- Classification of QK solvmanifolds [Alekseevskii-Cortés], via [Lauret]

Seven dimensions

Nilpotent/Solvable Lie

groups Nilmanifolds

Prototypical example Solvmanifolds

Non-compact homogeneous Einstein spaces

Half-flatness

Geometry with torsion Spinors Strings attached 'Simultaneous' structures

End

 (standard) Einstein solvmanifolds are – up to isometry – metric solvable extensions of lwasawa type

 $\mathfrak{s} = [\mathfrak{s},\mathfrak{s}] \oplus \mathfrak{a} = \mathfrak{n} \oplus \mathfrak{a}$ $ad_{\mathfrak{a}} : \mathfrak{n} \to \mathfrak{n} \text{ self-adjoint and pairwise commuting}$ $\exists A \in \mathfrak{a} : ad_A \text{ positive-definite}$

- Can reduce to $\mathfrak{a}=\mathbb{R}H$ (extension of rank 1), with $\langle H,\mathfrak{n}\rangle=0$, $\|H\|=1$ and $[X,Y]=[X,Y]_\mathfrak{n}$, [H,X]=DX for some $D\in \mathsf{Der}(\mathfrak{n})$ [Heber], [Heintze]
- Einstein solvmanifolds are standard [Lauret] If dim $\mathfrak{n} \leqslant 6$ there is always a rank-one Einstein solvable extension [Lauret, Will]

Concretely, please

Take $\mathfrak{s}=(0,0,\frac{2}{5}m\,e^{15},\frac{2}{5}m\,e^{25},0,\frac{2}{5}m\,e^{12})\oplus\mathbb{R}e^{7}$ with

$$\begin{cases} de^{1} = -\frac{3}{5}me^{17} & de^{2} = -\frac{3}{5}me^{27}, \\ de^{3} = \frac{2}{5}me^{15} - \frac{6}{5}me^{37}, & de^{4} = \frac{2}{5}me^{25} - \frac{6}{5}me^{47}, \\ de^{5} = -\frac{3}{5}me^{57}, & de^{6} = \frac{2}{5}me^{12} - \frac{6}{5}me^{67}, & de^{7} = 0 \end{cases}$$

Besides an Einstein metric $\sum (e^i)^2$ (with Ric < 0),

Proposition (Fino-myself)

There is a G_2 -holonomy structure on $S \cong \mathbb{R} \times \mathcal{T}$, where



the base is span $\{e_1, e_2, e_5\}$, the fibre span $\{e_3, e_4, e_6\}$

Special geometry with solvable Lie groups

Simon G. Chiossi

Special geometry

Lie groups' actions Six dimensions Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds

Non-compact homogeneous Einstein spaces

Half-flatness

Geometry with torsion Spinors

Strings attached 'Simultaneous' structures

 $T = N/\Gamma$ equipped with SU(3) forms

$$\sigma_0 = e^{56} - e^{23} + e^{14}, \quad \psi_0^+ = -e^{345} + e^{136} + e^{246} + e^{125}$$

flows to the Ricci-flat metric on $\mathcal{T}\times\mathbb{R}$

$$g = (1 - mt)^{4/5} g_{\text{fibre}} + (1 - mt)^{-2/5} g_{\text{base}} + dt^2,$$

in terms of the flat metrics on fibre- and base tori

Oh, and: this and the previous metric are essentially the same, albeit arising rather differently (ie via *Einstein solvable extensions*, and using the *evolution equations* described below)

Special geometry
Lie groups' actions
Six dimensions
Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds
Prototypical example
Solymanifolds

Non-compact homogeneous Einstein spaces

Half-flatness

Geometry with torsion Spinors Strings attached 'Simultaneous' structures

Solvmanifolds
Non-compact
homogeneous Einstein

spaces Half-flatness

Geometry with torsion Spinors

Strings attached

'Simultaneous' structures

End

An SU(3) structure (ψ^+, σ) is called half-flat if

$$d\psi^+ = 0$$
 and $d(\sigma \wedge \sigma) = 0$

- 21/42 of the torsion vanish
- $\bullet~\mathcal{W}_1^+,\mathcal{W}_2^+,\mathcal{W}_4,\mathcal{W}_5$ are zero
- akin to 'ASD + Ric = 0' in dim 4 (but much weaker)

Theorem (Swann-myself)

Classification of invariant half-flat SU(3) structures on nilpotent Lie groups N^6 such that $N \times S^1$ is G_2T

Why on earth the need for another SU(3)-class?

Special geometry with solvable Lie groups

Simon G. Chiossi

Special geometry

Lie groups' actions Six dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds
Prototypical example

Solvmanifolds
Non-compact
homogeneous Einstein
spaces

Half-flatness

Geometry with torsion Spinors

Strings attached 'Simultaneous' structures

End

Assume M^6 is compact with SU(3) structure $\sigma(t), \psi^+(t)$ depending on t

Let
$$Y^7 = M \times_t (a, b)$$
 bear $\varphi = \sigma(t) \wedge dt + \psi^+(t)$

$$\begin{split} 0 &= d\varphi = \left(\frac{d\sigma - \frac{\partial \psi^+}{\partial t}}{\partial t} \right) \wedge dt + \frac{d\psi^+}{dt} \\ 0 &= d*\varphi = \left(\frac{d\psi^-}{\partial t} + \sigma \wedge \frac{\partial \sigma}{\partial t} \right) \wedge dt + \frac{1}{2} \frac{d(\sigma \wedge \sigma)}{dt} \end{split}$$

A half-flat M^6 evolves to a structure on Y^7 with $Hol \subseteq G_2$ Hamiltonian theory guarantees solution [Hitchin]

Special case: $d\sigma = a\psi^+$ and $d\psi^- = b\sigma^2$ (like S^6)

Solving these PDEs is hard, but... see p.17

Lie groups' actions Six dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds

homogeneous Einstein spaces Half-flatness

Geometry with torsion Spinors

Strings attached 'Simultaneous' structures

End

 G_2 is the isotropy in Spin(7) of a spinor $\eta \in \Delta_7 \cong \mathbb{R}^8$ The G_2 -fundamental form $\varphi \in \Lambda^3 \mathbb{R}^7$ is defined as

$$\varphi(X, Y, Z) = \langle X \cdot Y \cdot Z \cdot \eta, \eta \rangle$$

Remember

- (M^7, φ) has holonomy $G_2 \iff \exists \, \eta_0 \in \Delta_7 : \nabla \eta_0 = 0$
- (M^7, φ) is conformally $G_2 \iff Hol(e^{2f}g) \subseteq G_2$, for some f

Fact:

the number of parallel spinors determines the amount of symmetry of the manifold [Wang]

Lie groups' actions Six dimensions Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds

homogeneous Einstein spaces

Half-flatness

Geometry with torsion Spinors

Strings attached 'Simultaneous' structures

End

Q: Given (M^7, φ) with $Hol(g) = G_2$, are there other parallel spinors

 $\widetilde{\nabla}\eta = \mathbf{0}$

besides η_0 ?

A: Yes (sometimes many), if M^7 is a solvmanifold

To find more we are forced to look for different $\widetilde{\nabla}$ as well, say metric connections with skew-symmetric torsion ([Cartan], revamped by [Ivanov-Friedrich])

$$abla^T = \nabla + \textit{Torsion} = \nabla + \frac{1}{2}T, \qquad T \in \Lambda^3 \mathbb{R}^7$$

Precisely:

$$T(X, Y, Z) = g(\nabla_X^T Y - \nabla_Y^T X - [X, Y], Z)$$
 is skew in X, Z, Y

Special geometry with solvable Lie aroups

Simon G. Chiossi

Special geometry

Lie groups' actions Six dimensions Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds

Non-compact homogeneous Einstein spaces

Half-flatness

Geometry with torsion Spinors

Strings attached

'Simultaneous' structures

End

This is meant to hint at the type-II string equations with *constant* dilaton and no fluxes.

$$\operatorname{Ric}^{\nabla^T} = 0$$
 $d*T = 0$

$$d*T=0$$

$$\nabla^T \eta = 0$$

$$\nabla^T \eta = 0$$
 $T \cdot \eta = 0$

[Strominger] A Riemannian manifold (X^d, g, T, η, f) with

T 3-form, η spinor field, f function, $\nabla^T = \nabla + \frac{1}{2}T$ metric connection with *skew* torsion T,

yield (partial) solutions to the equations

[Agricola & al] A full solution forces $T = 0, \nabla^T = \nabla$ and scal= 0 But (there's a but)...

Theorem (Agricola-Fino-myself)

The equation $\nabla^T \eta = 0$ has the following solutions on the previous solvmanifold

$$\mathcal{S}\cong \mathbb{R} imes \mathcal{T}, \quad \mathcal{T}=\mathcal{T}^3 ext{-bundle over }\mathcal{T}^3$$
 :

a family of parallel spinors

$$\eta_{r,s} = (0,0,0,0,r,s,-r,s), \qquad r/s \in \mathbb{R} \cup \{\infty\}$$

and a family of torsion connections $\nabla + \frac{1}{2}T_{r.s.}$

$$T_{r,s} = const \left[\frac{\lambda_{r,s}}{\lambda_{r,s}} (\psi^+ - 6e^{125}) + \frac{\mu_{r,s}}{\mu_{r,s}} (\psi^- + 3e^{346}) \right],$$

deforming the Levi-Civita.

$$(\lambda = \frac{r^2 - s^2}{2(r^2 + s^2)}, \quad \mu = \frac{(r - s)^2}{r^2 + s^2}$$
 homogeneous)

• six 'isolated' solutions $(\nabla^{T_{\alpha}}, \eta_{\alpha}) : \nabla^{T_{\alpha}} \eta_{\alpha} = 0$

On the other solvmanifolds of [Fino-myself] admit either no additional parallel spinors (rigidity) or complex solutions.

Quick proof:

- Let $\mathbb V$ be the subspace of $\Lambda^3\mathbb R^7$ spanned by the simple forms appearing in $\psi^\pm,\sigma\wedge e^7$, hence $\dim\mathbb V=11<35$
- Take $H \in \mathbb{V}$, lift $\nabla^H = \nabla + \frac{1}{2}H$ to the spin bundle, so that parallel spinors are solutions to

$$\nabla_X^H \eta = \nabla_X \eta + (X \rfloor H) \cdot \eta = 0, \qquad \forall X$$

- The endomorphism $(e_i \lrcorner H)$ · has block structure $\begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix}$
- For i = 7: $Ker(\nabla_{e_7} + e_7 \, | \, H) = Ker(e_7 \, | \, H)$

(to be completely honest, ∇^H is a 'conformal' Levi-Civita)

Special geometry with solvable Lie groups

Simon G. Chiossi

Special geometry

Lie groups' actions Six dimensions Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds

homogeneous Einstein spaces

Half-flatness

Geometry with torsion Spinors

Strings attached

'Simultaneous' structures

Lie groups' actions Six dimensions Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds Non-compact homogeneous Einstein

spaces Half-flatness

Geometry with torsion Spinors

Strings attached

'Simultaneous' structures

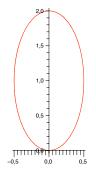
Fnd

 $\lambda = \lambda_{r,s}, \ \mu = \mu_{r,s}, \quad r/s \in \mathbb{RP}^1$

Each point on the conic $(\mu - 1)^2 + 4\lambda^2 = 1$ corresponds 1-1 to

- a torsion connection $\nabla^{\mathcal{T}_{r,s}}$ plus a parallel spinor $\eta_{r,s}$
- a choice of $\psi^+ + i\psi^- \in \Lambda^{3,0} T^* N^6$
- a G_2 structure $\varphi_{r,s} = rs \psi^+ + \frac{r^2 s^2}{2} \psi^- + \frac{r^2 + s^2}{2} \sigma \wedge e^7$ of expected type \mathcal{X}_{1+2+4} , gene

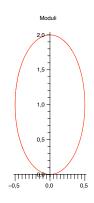
of expected type $\mathcal{X}_{1+3+4},$ generically



NB: the metric is the same, i.e. all $\varphi_{r,s}$ induce only one Riemannian structure!

G_2 -analysis: the 3-form $\varphi_{r,s}$

- has $Hol = G_2$ when r = s $\eta_{r,r} \sim \eta_0$ (\leadsto origin)
- has type \mathcal{X}_{3+4} for r = -s(\rightsquigarrow top point)
- has $\mathcal{X}_3 \neq 0$ always (bar $\varphi_{r,r}$, clearly)



Special geometry

Lie groups' actions Six dimensions Seven dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds
Prototypical example
Solvmanifolds
Non-compact
homogeneous Einstein
spaces

Half-flatness

Geometry with torsion

Spinors Strings attached 'Simultaneous' structures

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds Non-compact

homogeneous Einstein spaces

Half-flatness

Geometry with torsion

Spinors Strings attached 'Simultaneous' structures

Relax the extension hypotheses (= how to build S from N)
 e.g. forget Einstein

- Pick nilpotent Lie groups N⁶ with step-length ≥ 3
 i.e. more bundled structures
- Let T roam the full space $\Lambda^3 \mathbb{R}^7 \rightsquigarrow$ expect more examples
- Consider different G₂-types on S

Upshot: nil- and solvmanifolds are quite interesting

Basic refs

[Fino-Chiossi] Math. Z. 252, no.4 (2006)

[Agricola-Fino-Chiossi] Diff. Geom. and Appl. 25/2 (2007)

[Heber] Invent. Math. 133, no. 2 (1998)

[Lauret] arXive:math.DG/0703472

[S.Salamon] Milan J. Math. 71 (2003)

[Atiyah-Witten] Adv. Theor. Math. Phys. 6, no. 1 (2002)

that's really it, thanks

Special geometry with solvable Lie groups

Simon G. Chiossi

Special geometry

Lie groups' actions Six dimensions

Nilpotent/Solvable Lie groups

Nilmanifolds

Prototypical example Solvmanifolds

homogeneous Einstein spaces

Half-flatness

Geometry with torsion

Spinors
Strings attached
'Simultaneous' structures