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Motivation

+ CYa manifolds Provicle one of the most imPortant aPProaches

to Phenomenological contact between realistic Phgsics and
stri ng/ M—-theorg.

+ The standard embeclding of an SU®B) sPin connection into

the heterotic string’s CeXg gauge group breaks the YM

gauge group down to ExE, and E, is Phgsica”g al:)l:)ealing.

o At the same time, from an M—-theorg Perspective, the 4+7

Cosmologg cou

dimensions wou

split is unnatural. A more “democratic” formulation of the

5:>atial dimensions would seem more natural.

C natura”g involve a 1+10 sl:)lit. Al space

e initia”g be treated as compact, In

anticil:)ation of 3 of them expancling.




Overview

* Review of bosonic sector of D=1 suPergravit9 inclucling

normalizations Bilal

° ToPological considerations and flux quantization N M-~

tlﬁeorg
9 topological constraint on Compac’c 10-manifolds
+ CY modul; sigma model

® Z~component local supersgmmetrg =]

* Effect of of corrections on CY; geometrical structure

* SUPCVSHmmCtTy PT’CSCT’VatiOﬂ and generalizecl

holonomy
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« The above terms combine to form an invariant under the

classical sSu Persymmetrg tra nsFormations

OcgmN = 2el (a1 ¥ ),

0eCynp = =3l N Y pp,
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+ Variation of the Cremmer-Julia-Scherk action leads to the

classical supergravitg field equations:

1 Mo... M 1 .
Ryn = EGMMQ...M4GN R e mQMNGMl...M4GM1

1

My

1
TMNEDy (w)p + = (TMNVPRES Yo + 126MNTPCY™) Gnpgr + (fermi)® = 0

 Quantum corrections Change these equations ha way
that is important for CYs5 comPacthqcations. Among

the B = (2m)% quantum corrections is a Green-5chwarz

tﬂPC term ﬂCCClCCl ]COT~ M5~brane WOY’!CJVOIUH‘IC anoma H

cancellations. Vafa & Witten
Dug, Liu & Minasian

o This GStermis a superpartner of the Rf,\,pc efective

action corrections.




o The classical CJs equa‘tion for Ci3)

1
d*G——iG/\G:O

1S accorclinglg modifed 139 the Green-Schwarz

correction 4B
IGS— /C/\Xg
K11
Jr [aaen] 1 )
h Xg = trR*)* + —trR*
pocke: N e g

+ This gives rise to the quantum~correctecl equation

1
d*G+§G/\G+(27T)4ﬁX8:O'




o The Green-Schwarz correction term is necessary for

cancelation of anomalies on the d=6 worldvolumes of

: 1 ;
5-branes: B = Ts = 5-brane tension
(27'5)3T5
+ One also has the Dirac quantization condition
2T :
Ll T, = 2-brane tension
- K
and the condition i .
Je e 2 de Alwis
: e
which is needed, £ for invariance under arge 5~
form gauge tra nstormations. Lavrinenko, Lii, Pope & K.5.5
Kalkkinen & K.5.5

* Putting these togetherj have
S gl8 2\ 2/3
T, = (2i> B = (2K11> 262, = (2m)3(/)%/2

K7 (2012
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Topological considerations A Houpt A Lukas s k.55
o Corrected §~§orm field equation:

1
d*G+§G/\G+(2ﬂ:)4BX8:O
e R
%=z () -
: 48( 2 p2>
s 1 1 2t R2
PL= 5 \Guil Ist & 2nd

1 1 4 FPontriagin classes
e 252 4

* Now sl:)ecialize to M1 =R x CYs and

where

simplhcg above relations:
p(T(RxCYs)) =p(T(R))Ap(T(CYs))
p(T(R)) =1s0 p(T(Mi))is given by p(T(CYs))




+* Now, for complex manhcolcls, there are relations between
5

Pontriagin and Chern classes:

2
p1=ci —2¢; T. Hitbsch
%
p2:26‘4 = 261C3 S CH

so for the case of a Calabi-Yau manifold with

2
c1 =0 one has (%) — D> :1—2(:4

and consequently Xg — —ﬁcét
1
2B 70 and use the corrected field
equationg together with th_e fact that d G is exact to
1 37
deduce |=GAG+ (2m)*BXz| =0 gving the

2
topologiéal constraint

ca(CYs) —12[g| A [g] =0

* Define g =




4torm flux quantization

o 2-branes couple to the Ci3) background Via

Ssy=T | C—T | G oD, = W;
W3 Dy
+ This gives the flux quantization condition
gl % c H*(CYs,Z) Witten
or, 1COF Gl ;
“ e HACYs,Z e lby
[g] e E = ( 5 ) T

* Thus, clepencling on the value of the 274 Chern class
¢» , the normalized flux g is quantizecl in integer or

half;integer units.

* Hal:)l:)ilg, this is consistent with the tol:)ological
constraint ¢4(CYs5) —12[g]| Alg] =0
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o For complete intersection compact CYs, analysis
i P 5 Y

shows that ¢, (Y™ ) >0 requiring [g] # 0 sO
4—form flux must be turned on at order \/E

* However, one can make orbifold constructions

With Cq = 0.
* Non—-compac‘t CY5 can also have =0

o Incases with ¢, =0, the flux is turned on at order B
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CYs moduli D=1 Supersymmetric sigma model
* CYs Hodge diamond:

020
0 Akl 0
0 hl,z hl,Z 0
0 h1,3 h2,2 h1,3 0
1 h1,4 h2,3 h2,3 h1,4 1

+ Hirzebruch-Riemann-Roch theorem with ¢; = 0:
11A5 — 1082 — W22 + 23 + 1081 — 11R* =0
so there are 6-1=5 inclepenclent Hoclgc numbers. The

corresponding harmonic forms contribute D = 1

massless Kaluza-Klein modes.

12



* Metric:
ds® = —Nd7* +2g,(x, 0! (t))dx"dx’

o' (1) = ('(7),2°(1),2° (1))
hl’l h1’4 moduli
IN COMPpIEX CoOorainagtes
’ Pl dinat

N e e es
O08uy = OF' Wiy O8uy = 0Z°bayy  O8zy = 02 bapy
1 g

il 19| \2%""‘“ Xaopoty ®; € Harm(1, 1)
(5,0) volume (4,1 harmonic Yo E Harm(174)
form form
* §~1Corm field:
oC = EP(T)v,+ c.c. v, € Harm(1,2)

h1,2




Fermionic zero modes

* fixpancl Wy (T,x") using the Ki”ing spinorm(x") on CYs,
g Wo(T,x") = Po(T)n(x") +cc nm=1

o For W,(x"), We(x) the expansion uses the

a0, @D, 3D and &,1) harmonic forms:
(1,0 1 B)

VYo = W(T) RO T L ZAP(T) S e e e

1 1 % ok
+ 7177 (1) ® (Fzas...asp Y™ %) = 56%(7) ® (1117 Xaan...aupy™ ')
Gt 3,0 ' (4,1)
% = (%)
s The (5,1) species has no bosonic l:>ar‘tr1<:r5J however.

[ suPerSHmme‘cric

This Points out a strange feature o

life in D = 1: on-shell bosonic and fermionic degrees

of freedom do not have to balance. Coles&
Papadopoulos

14



o What happens to the other Possible tgl:)es of harmonic
forms, e.g. (3,2), (2,2) and (5,0)7?

¢ These are reabsorbed into the (1,1 and (2,1)

harmonic tgpes.

¢ Jo see this, one needs to use the yan =0 Propert9
of CvY Ki”ing spiﬂors togetlﬁer with the Dirac
algebra ) =2g" and Fierz identities to reduce

these species to other types. E.g. the (5,0 type is

converted into a (1,1) species, and is the

superpar’mer O]C t]’]é Y Volumc moclu us.
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B
ICJS

Bosonic sigma model

gauge
T ISR AR oy e Aeprsies
dt< —-G:."/(t)t't > (r)ePet —4 4
e, [ 360 0 6 e - av ()6 .0
BI) s s e KRSy s
J G )
K:/]/\]/\]/\J/\] ] == ti(x)i complexstructure
_dll T et e dil...i5:intersectionnumbers

K':/(Di/\]/\]/\]/\f = dijl...j4tj1mj4
( —3,0:K D K4 = In(i(G,2° — 2°G,))

% _—Z/Vp/\ \_7q- — idpqijtlf] Canonical innerprocluct
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& Notes

¢ The (1,1) metricis not a ca

nonical special Kzhler

metric but it is determined l:)ﬂ intersection numbers

(topological data) asist

he canonical (2,1) metric.

¢ The (41) metricis the canonical Weil-Peterson metric

(Very sPecial Kzhler) but

Prepotential (involving no

it is determined bﬂ 5
n~topo|ogica| data).

¢ The Kzhler and coml:)lex structure sectors don’t

clecouple owing to the V(t) factor.
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=] supersym “1@‘0’9 multiplets

° lnserting the D=l sul:)ersymmetrg transtormations into the

reduction ansatz, one finds the surviving Z~coml:>onent D=1

supersymmetry (CY; breaks supersymmetry to 1/16).
+ One finds two kinds of D=1 supermultiplets
S real 0 =0 R
o 2B ie 20) chiral DZ=0 Z =240k — %992

o L ocal D= sul:)crsgmmetg s described bg the

suPervielaeins B N =Ry N N = T Ve

2 . s No D=l curvature!
subjec’t €0 the torsion constraints

T@Q —a gl T@Q =40 (%) “conventional”
T@Q =0 (0), T@Q —.() (%) ‘representation preserving’
T%Q = O (%) cctgPC 5”
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o D=l suPergravitg Plays an entirelg destructive réle: it’s
ethectis merelg to imPose constraints on the D=l

supermatter that COUPI@S ¥ 1k Subject to the torsion

constraints, the remaining supergravitg fields are the

embem and =] gra\/ltmo contamecl m

S SdetEA— N — —H@DO s §9¢0

¢ Consider for example a supergrawtg couplecl (Zb)
action For a smge mult:P et S= /deZHEVZVZ — /drﬁ.

In component fie cls this _._.agrangian s

B Nh T 5(/4:/{ — kR) — _1(¢0m2 + YoRZ) — N~ hothorR
and varymg with respect to N and Yo one finds
Z = (const.) K=0

o Inthe full sul:)ergravit9~cou|:>lecl action, the constraints
ink the (2a) and (2b) sectors.
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o The full D=1 suPergravit9~couP|ecJ action is

= -2 | drd?0e { GGV (T)VTIVT? + GGV (T)VEPvEr

Fre=gl
: = RxX 2

S

+GED (TR RY + 4V(T)GEM (2, 2)VZV 2

LS Agreement between this superspace action and the

Kaluza-Klein dimensiona”y reduced action has been

checked througlﬁ (fermd? terms. The leacling bosonic

terms rel:)rocluce the comPonen’t action given above.

* After varying the action to obtain the supergravity

constraints, one can make the gauge choices
N =1, Yo = 0
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2By Pope)

/3 4
Quantum BH 0! CorrCCtlons Townsend, K5t

o The B / C3 AXg termis a D= superpar‘mer to other

bosonic corrections including R pop terms.

S SPecialize to the topologicaug simplest case where
er= either noncompact CYs or an orbifold

construction.

o Correction terms of relevance:

B - Gross & Witten;
S 1152 (Y o 2Y2 ge. ) ¥ (ZTC)4BC /\XS Reelers, Vanhove &
Plus terms that vanish for Ryn =0 Westerberg
R / d'*yexp [(\TI—FUW—) (\TIJrFkl\VJr)Rijkl} mciicej |

¢ D=l extension of type IA string correction  tolivalues

g Berezin integral — R* terms onlg
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* Varying Y, get for initia”g Ricci-flat spaces

8/ \/ —ngll.x = /\/ T (er_|_ VFVSZ_gFSDZ) 8g"5
er S Vf Vuertu X, cubic in curvatures
Z e Rijklelmannij s 2Riklekmlaninj

o The Y> correction term i1s of Lovelock form:
315

mim mom
Y2: R[ : 2mlmz"'R ; 8]m7mg

2
s Varying Y,, get

6/\/—gY2 — /\/—gEmnngn Lovelock

Deruelle
9 !

WSSt T STTH = KR mimo, . pmymg
Em e 296mm1m8R niny R njyng

Lift to D=1l of
D=8 Euler integrancl
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N Consequentlg, the corrected field equations are

A\ 1 VaN B B A
T Zg0+ ——F Rom: D=l Ricci
00 2800 é152 £00 376 00 B ICC
N\ 1 N\
Rije =R e R E;;
= seiR=rre (Xt 8ij2) + 57¢Eij

+ To solve these, we need to introduce a warp factor in

the metric: 2 “omar e
dst, = —**¥)dr’ + e~ A ds]
¢ then For t]’lé Riccl tensor one has
Roo = A Rij :Rij_|_§gij A Rij: D=10 Rica
[]=V?

sO R=R+-LIA ancJ hence

1
(XIJ—I—VV Vi e S O gu>

T 1152 4
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* foran initia”g Kshler manifold, one finds
Xij — VZAV]AZ — JiijleVlZ J/ complex structure
an& Ekk — —Yz

(@) A = B Y2
1728
== D \% V :
terms exped:ed terms arising
from CY; case from Y2

o These corrections have the effect of making the
Ricci tensor non~vani5|’1ing) and even remove the

Kshler Prol:)ertg of the metric. Nontheless) the

manifold remains sPecial, as we shall see.
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Gravitational sourcir g of 4-torm flux

+ The corrected §~1Corm field ccluation IS
1
d¥G+5GAG+ (2m)*BXs =0

¢ forinitial Purely gravitational backgrouncﬂs with

i — this forces 4~form flux to turn on at order 3

L A 6[4] = G\ dt+ Gy
¢ for ¢4 =0, assume Gy =0
Q t]"léﬂ d x GB] = (27‘5)4BX8 D=10 Hocige dual here

| , 3 ~ ke
© inturn, write Gz = Z] NdA + G J*G; k=70

o Then the Einstein equation becomes

3 B et
Rij:§(ViVjA—I-V;VfA) | 1152(ViVjZ—I—V;VfZ)—§V G
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o The gravitational sourcing of 4-form flux is

accompanied 139 changes to the Ki”ing SPinor and to

the complex structure.

> Ki”ing spinor equation: D,m =0 becomes deformed,
requiringa brane-like warp factor | = e%An and
. I ot
Dl'T] — VZT] o I(V;h)n =i gGijk'Y]kﬂ =4
3 B
h=—AA 4
16 2304

il 1 Gijy n =0

o The deformed Ki”ing sPinor leads to a deformed

complex structure Ji— =iy
i Uiy e

so the deformed space IS NO |onger Kahler
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2 Dcspite the loss of Kahler structure, the Nﬂenlﬂuis
tensor Nijk — a[,-Ji]k — J,-lemB[mJl]k still vanishesj so the

deformed space s still a complex manifold.

* ltno |onger has SU(5) holonomg, but one may still
define a genera ized lﬂolonomy for the Ki”ing spinor

oPerator D; . The generalizecl transverse structure
group is SL(16,C). The clecompos:tlon of the
deformed Killi ing stor under the generallzecl

ho onomy still contains smglets, showmg that

sSu Persgmmetrg remains Uﬂbf‘O‘(Cﬂ 3
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Deformed special holonomg

o The effect of the o*corrections is to clestrog the

original special holonomg, gving a general comPI
D=10 manifold.

Nonetheless, the speciﬁc structure of the o/

corrections is such as to permit the corrected

Einstein equation to arise as the integrabilitg

CX

condition for an o*corrected Ki”ing spinor equation.

o This fits into a general Pattem that obtains also

or 7~

manitolds of initia”g G, and 8-manitolds of initial

5|:>iﬂ7 holonomies.

Y
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+ Inall cases (inclucling the D<8 Kzhler cases where the

etect of the corrections is 5iml:>19 to include an extra

U(1) factor in the holonomg}, supersymmetry can be
Preser\/ecl Provicling the Ki“ing SPinor equation

acqunres its own o> correction, e. g. For the D<8 cases

Din = (V; +{(a )3Q2>
Wl’]ere Canclelas, Freeman, Pope, Sohnius & K.S.5

Qi = 7 (V] Rikm1m2> Rj€m3m4 R ms5mg B0

o In the various cases of initia”g special ho onomy, this

can be rewritten in ways that more direct Yy Qielcl the

corrected Einstein equation as integrabi ity conditon,

e.. inthe Gy case Q; = —Qlc AVAL Y
while in the SPin7 case Q; = Zcijkgvj AL
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Generalized Structure groups and holonomg

XS AIE"IOU%]") the orclinary Riemannian holonom9 becomes
generic for the corrected internal spaces, the

sul:)ersg mmetr9 Preser\/ation can sti” be unclerstoocl on

group theoretical grouncls, using the notion of generalizecl

holonomg.

o Consider the transverse groups generatecl bg the generic
Gamma matrix combinations present in the corrected
Ki”ing operator (T, Oig and their closure) restricting
attention to the D “transverse” dimensions onlg:

e D=7 S0(8)
g D=0 SO(R) LXSO(8)=
¢ D=10 SL(16,C)
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o Within these generalized transverse structure groups, the
generalize& holonomg is the group actua”g generatecl ]39
the operators present in the corrected Ki”ing 5|:>inor
operator for a given space. Under clecoml:)osition into
rePresentations of these groups, the 5Pinor
rePresentation contains a singlet) indicating continued

sul:)ersgmmetrg Preservation:

e D=7 SO(8) — SO(7) (corrected G2)
8+ — 761

¢ D=8 S0(8); ® SO(8)_ — SO(8)+ ® (Spin-)— (corrected
& L0 (Lo s JO L) e
¢ D=10 SL(16,C) — [U(1) x SL(5,C) x SL(5,C)] x [C{'*V & C{*?)

16 rep once again clecoml:)oses includinga singlet
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