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Outline

This talk is about:

the special geometry of d = 4 n = 2 vector multiplets for both
Lorentzian and Euclidean space-time signature

and its application to black holes and instantons.

Try to give a broad overview of the topic. My own contributions
were/are made in collaboration with Klaus Behrndt, Gabriel Lopes
Cardoso, Vicente Cortés, Bernard de Wit, Renata Kallosh, Jürg
Käppeli, Dieter Lüst, Christoph Mayer,Frank Saueressig, Ulrich Theis,
Kirk Waite.

For references see hep-th/0703035, hep-th/0703037 and to
appear.
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Special Geometry

Special holonomy and related special geometric structures in string
theory

1 Geometry of space-time.
2 Geometry of compact additional dimensions (‘compactification’).
3 Geometry of target spaces of sigma models. Often the ‘moduli

spaces’ arising in compactification.

We will discuss aspects of point 3 (special geometry of sigma model
target spaces), and its interplay with points 1,2 (black hole and
instanton solutions of effective field theories arising form ‘string
compactifications’).
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Part I

Special geometry, Lorentzian space time
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Sigma model (plus gravity)

Action:

S[φ] ≃
∫

d4x
√

|g|gµνGab(φ)∂µφa∂νφ
b

Scalars φa = components of a map

φ : (S, g) −→ (M, G)

from space-time (S, g) to target space (M, G), both
(pseudo-)Riemannian.
Critical points of S[φ] correspond to harmonic maps:

∆(g)φ
a + Γa

bc(G) gµν∂µφb∂νφ
c = 0 .
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N = 1 supersymmetric Sigma model

Complex scalars ⊂ Chiral multiplets (z, λ).
(M, G) is (pseudo-)Kähler.

S ≃
∫

d4x
√

|g|gµνGi j(z)∂µz i∂νz j + · · ·

We left out fermions and auxiliary fields. The space-time metric may
be a background or dynamical (add Einstein-Hilbert term).
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N = 2 supersymmetric Sigma models

N = 2 vector multiplets: (X I , λIi , AI
µ)

(plus auxiliary fields when considering off-shell version).
I = 1, . . . , n labels the vector multiplets, i = 1, 2.

Gauge field sector: field equations invariant under electric-magnetic
duality rotations.

(

F I|±
µν

G±
I|µν

)

←− Sp(2n,R)

(suppressed additional affine transformation present in rigid case.)

Field strength: F I
µν = ∂µAI

ν − ∂νAI
µ.

Dual field strength:

G±
I|µν =

δL
δF I|±|µν

‘±’ = (anti-)selfdual part. L = Lagrangian.
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N = 2 supersymmetric Sigma models

Scalars X I must also be part of a ‘symplectic vector’:
(

X I

FI

)

←− Sp(2n,R) .

FI are dependent quantities: FI = FI(X ).
In a generic symplectic frame

FI(X ) =
∂F (X )

∂X I ,

where F (X ) is a holomorphic function, the prepotential, which encodes
all couplings of the vector multiplet Lagrangian.
Scalar target space M is (affine) special Kähler.
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Geometry of the prepotential

Geometrical interpretation: there exists a Kählerian Lagrangian
immersion

Φ = dF : M −→ T ∗Cn .

Equivalent to the intrinsic definition of affine special Kähler manifolds:
Kähler ⊕ existence of a flat, torsion free, symplectic connection
satisfying ∇X I(Y ) = ∇Y I(X ).

(X I , FI) coordinates on T ∗Cn.
M → Φ(M) ⊂ T ∗

C
n is locally a complex Lagrangian submanifold

X I → FI(X ).
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Coupling to supergravity

Off-shell construction using the superconformal calculus.

Take matter multiplets with rigid superconformal symmetry.

‘Gauge’ superconformal symmetry.

Impose ‘gauge conditions’ which leave Poincaré supersymmetry
intact but fix the additional superconformal symmetries.

Remark: gravitational degrees of freedom encoded in superconformal
connections (Weyl multiplet).
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Coupling N = 2 vector multiplets to N = 2 supergravity

Rigid superconformal invariance⇔ prepotential is homogenous of
degree 2. Scalar target space M is complex cone.

Gauging superconformal symmetry = coupling to Weyl multiplet.
‘Gauge equivalence’ with Poincaré supergravity requires the
following field content:

Conf. Sugra = Weyl⊕ (n + 1)vector multiplets⊕ 1hypermultiplet

Upon gauge fixing obtain:

Poincaré Sugra = gravity multiplet⊕ n vector multiplets

1 vector multiplet and 1 hypermultiplet act as ‘compensators’.
Number of gauge fields F I

µν unchanged: one gauge field
(‘graviphoton’) sits in the gravity multiplet.
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Projective special Kähler geometry

Gauge fixing of complex dilational symmetry

X I → ew−icX I

reduces the number of complex scalar fields by one.
Physical scalars can be taken to be

z i =
X i

X 0 , i = 1, . . . , n .

and parametrize a projective special Kähler manifold M.
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Projective special Kähler geometry

Complex dilatation gauge symmetry = C∗-action on the complex cone
M.

M is obtained from M by taking a Kähler quotient:

M = M/C∗ .

‘Using the gauge equivalence between conformal and Poinaré
supergravity’↔ analyzing M in terms of M.
This allows to keep symplectic covariance manifest!
NB: string dualities (S-duality, T-duality, monodromy group of
prepotential) operate by symplectic transformations.
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Projective special Kähler geometry

Poincaré SuGra ←→ Conf. SuGra
n vector mult. (n + 1) vector mult.

M ←→ M Φ−→ T ∗Cn+1

z i X I

(

X I

FI

)
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Part II

Black Holes
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1
2-BPS Black Holes

Application: 1
2 -BPS solutions of N = 2 supergravity ⊕ vector multiplets.

Relevant part of the 4d low energy effective field theory of string
compactifications type-II/Calabi-Yau threefold, heterotic/K3 ×
two-torus.
1
2 -BPS: 4 (physical) Killing spinors (out of maximal 8).

Restrict here to static, spherically symmetric solutions =
non-rotating black holes. (Generalisations: Rotating black holes,
multi-black hole solutions.)

Automatically extremal: THawking = 0, M = |Z |.
M=Mass, Z=central charge of N = 2 algebra.

Thomas Mohaupt (University of Liverpool) Special Geometry, Black Holes and Instantons Hamburg, July 17, 2008 16 / 47



Symplectic covariance

Symplectic vectors:
(

X I

FI

)

,

(

F I
µν

GI|µν

)

H

−→
(

pI

qI

)

.

pI=magnetic charges, qI = electric charges.

Symplectic scalars:

Graviphoton: F−
µν ≃ X IG−

I|µν − FIF
I|−
µν .

Central charge: Z ≃
∮

F− ≃
(

pIFI − qIX I
)

|∞
.

‘Central charge’: Z = pIFI − qIX I .

The prepotential F is not a symplectic scalar (but F − 1
2X IFI is).
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Black Hole Solutions

Solution reduces to ‘attractor equations’for the scalars (algebraic
version, equivalent to gradient flow equations for the z i ).

(

X I −X I

FI − F I

)

= i
(

H I

HI

)

where

X I ∝ X I are the (uniformly rescaled) scalars on M.
Note: FI is homogenous of degree 1.

H I, HI are harmonic functions on R3.
Spherically symmetric ‘single centered’ case:

H I = hI +
pI

r
, HI = hI +

qI

r
.
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Black Hole Solutions

Metric and gauge field determined by scalars

Metric (conforma-static form)

ds2 = −e−2f (r)dt2 + e2f (r)(dr2 + r2dΩ2)

where
e2f (r) = i

(

X I
FI − F IX I

)

Gauge fields are determined by magneto-static and electro-static
potentials

(

φI

χI

)

∝
(

X I + X I

FI + F I

)

.

Thomas Mohaupt (University of Liverpool) Special Geometry, Black Holes and Instantons Hamburg, July 17, 2008 19 / 47



Horizon limit

Attractor mechanism: at the horizon (r → 0) the solutions is completely
determined by the charges and becomes independent of asymptotic
moduli z i

∞ ↔ hI , hI .
Attractor values of scalars:

(

Y I − Y
I

FI − F I

)

|∗

= i
(

pI

qI

)

,

where Y I ∝ X I are the (uniformly rescaled) scalars on M.
Metric is asymptotic to AdS2 × S2

ds2 = − r2

|Z∗|2
dt2 +

|Z∗|2
r2 dr2 + |Z∗|2dΩ2 .

Solutions becomes maximally supersymmetric (8 Killing spinors).
Bekenstein-Hawking entropy (symplectic scalar):

SBH =
A
4

= π|Z∗|2 = π
(

pIFI − qIY
I
)

∗
,

A = horizon area.
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Variational Principle

Define:

Entropy function:

Σ(Y , Y , p, q) = F(Y , Y )− qI(Y I + Y
I
) + pI(FI + F I).

Free energy: F(Y , Y ) = −i(Y
I
FI − Y IF I) .

Then

Crtical points of Σ with respect to Y I = attractor points.

Critical value of Σ = Entropy

πΣ∗ = π|Z∗|2 = SBH(p, q) .
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Entropy = Legendre transf. of Hesse potential

Use special affine coordinates on M:
(

x I

yI

)

= Re
(

Y I

FI

)

∝
(

φI

χI

)

(affine coordinates of the special connection on M).

Free energy ∝ Hesse potential H(x , y) = H(φ, χ).

Entropy = Legendre transform of Hesse potential

SBH(p, q) = 2π

(

H − x I ∂H
∂x I − yI

∂H
∂yI

)

|∗

∂H
∂x I = qI ,

∂H
∂y I = −pI .
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Mixed ensemble

Reduced variational principle: Solve magnetic attractor equation

Y I − Y
I
= ipI by

Y I =
1
2

(

φI + ipI
)

to obtain the ‘mixed’ entropy function

Σmix(φ, p, q) = Fmix(p, φ)− qIφ
I

and the ‘mixed’ free energy

Fmix(p, φ) = 4ImF (Y (p, φ)) .

Entropy = partial Legendre transform of Fmix wrt φI .
This was used to formulate the ‘OSV-conjecture.’
NB: Fmix is not a symplectic function and pI, φI do not form a
symplectic vector.
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R2-corrections

String theory predicts higher derivative corrections to the effective
action, such as

F (h)(z i )(Riemann)2(Gauge Fd.)2h−2 , h ≥ 1 ,

which modify black hole solutions and black hole entropy. These
corrections can be calculated, and have successfully been matched
with the statistical entropy obtained by counting microstates.
Here we restrict ourselves to the ‘macroscopic’ aspects.
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R2-corrections

One particular class of higher derivative terms (‘R2-terms’), is
captured by giving the prepotential an explicit dependence on the
Weyl multiplet:

F (Y I)→ F (Y I ,Υ) =
∞
∑

h=0

F (h)(Y I)Υh

(graded homogenous of degree 2, Υ has weight 2).

Precisely this class of terms is encoded in the topological string:
F (h)(Y I)↔ F (h)(z i ) = topological free energy (genus h).
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R2-corrected black hole solutions

Using the superconformal off-shell formulation, ‘everything’ (attractor
mechanism, variational principle, global solutions,. . . ) can be
generalised to include R2-corrections.

Attractor equations:
(

Y I − Y
I

FI(Y ,Υ)− F I(Y ,Υ)

)

|∗

= i
(

pI

qI

)

, Υ∗ = −64 .

Entropy (symplectic scalar):

SWald(p, q) = πΣ∗ = π

[

pIFI(Y ,Υ)− qIY
I + 4Im

(

Υ
∂F
∂Υ

)]

|∗

NB: Entropy 6= 1
4 Area. Essential for matching statistical entropy!
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OSV conjecture

Observation: mixed free energy is (essentially) the all-genus
topological free energy

exp (πFmix(p, φ)) = exp
(

2ReFtop(p, φ)
)

= |Ztop|2

Conjecture: the left hand side is the (‘mixed’) partition function
counting black hole microstates:

Zmix(p, φ) :=
∑

q

d(p, q)eqIφ
I

i.e.
Zmix(p, φ)

OSV
= |Ztop(p, φ)|2 .
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OSV conjecture

Zmix(p, φ)
OSV
= |Ztop(p, φ)|2 ?

True to leading order for large charges courtesy the variational
principle.

Cannot be exact, because in contradiction to symplectic
covariance and, hence, duality invariance. Main problem:
incorporation of subleading non-holomorphic corrections.

Open: what is the correct modification? Is the resulting statement
exact or asymptotic, and if the latter, where do deviations start?

The presence of a ‘measure factor’ which corrects the OSV
formula has been demonstrated in several examples. We have
made a ‘minimal’ proposal based on imposing symplectic
covariance, which is correct (so far) within the semiclassical
(saddle point) approximation.
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Non-holomorphic corrections

‘Wilsonian’ couplings encoded in holomorphic F (Y I,Υ) 6= ‘physical’
(duality invariant) couplings.

Example: coefficient of (Weyl tensor)2 in N = 4 compactifications

ΩR2 ∝ log η24(iS) + log η24(iS) + log(S + S)12 6= Im(F (1)
hol (S))

Dilaton S transforms as

S → aS + ib
−icS + d

under S-duality SL(2,Z)S.
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Non-holomorphic corrections

Non-holomorphic corrections can be incorporated systematically in the
variational principle, attractor equations, and entropy. I.p. attractor
equations take symplectically covariant form
(

Y I − Y
I

FI(Y ,Υ) + 2iΩI − F I(Y ,Υ) + 2iΩI

)

|∗

= i
(

pI

qI

)

, Υ∗ = −64 .

where Ω(Y , Y ,Υ,Υ) is a real-valued, homogenous function (i.g. not
harmonic).

Integrate to ‘non-holomorphic prepotential’?
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Modified OSV conjecture

Use ‘canonical’ ensemble, rather than ‘mixed ensemble’. Free
energy F(φ, χ,Υ) = (generalised) Hessepotential.

Free energy includes ‘non-holomorphic’ corrections through
non-harmonic Ω.

Conjecture: canonical free energy related to canonical black hole
partition function by

eπF(φ,χ) ≈ Zcan(φ, χ) :=
∑

p,q

d(p, q)eπ(qIφ
I−pIχI) .

Equivalent to modifying the OSV formula by a specific measure
factor:

Zmix(p, φ) =
√

∆−|Ztop|2 .

Proposal works in saddle point approximation including
subleading corrections.
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Non-holomorphic corrections (again)

Major technical complication
Superconformal formalism uses full
(Y I, FI(Y ,Υ) + 2iΩ(Y , Y ,Υ,Υ)).
Non-holomorphic corrections encoded in non-harmonic Ω.
Topological string uses expanded version

Ftop(z i , gtop) =

∞
∑

h=0

g2h−2
top F (h)

top(z i )

Monodromy properties of F (h)
top(z i ).

Non-holomorphic corrections: holomorphic anomaly equations.

Note Υ = const. at horizon, and

F (h)(Y ) = (Y 0)2−2hF (h)

(

Y i

Y 0

)

∝ g2h−2
top F (h)

top(z i )

Both formalism encode non-holomorphic corrections in very different
ways!
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Part III

Euclidean space, split target
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Why Euclidean?

Why consider Euclidean ‘space-time’ S?
1 Quantum mechanics and Quantum field theory: path integral/

functional integral (better) defined.
2 Quantum tunneling, Instantons↔ classical solutions in ‘imaginary

time’ (non-trival saddle points of the Euclidean path/functional
integral).

3 Soliton/Instanton correspondence: Stationary solution in d + 1
(Lorentzian) dimensions↔ Solution in d (Euclidean) dimensions.

Moreover, treating time (or part of space) as ‘internal’ reveals
hidden symmetries (aka U-dualities).
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How to relate Lorentzian and Euclidean theories?

1 QM and QFT: ‘Wick rotation’ t → −it . Scalar field space M not
modified.

2 Lift and reduce: 3 + 1→ 4 + 1→ 4 + 0.
Not always applicable, but natural in the soliton/instanton
connection. Geometry of scalar field space different from original
M.

Both methods give different Euclidean actions, which might be viewed
as different ‘real forms’ of a complex action.
Thus ‘type 2’ can be defined without reference to dimensional
lifting/reduction, using analytic continuation in field space.
Alternatively: use that Wick rotation and Hodge dualisation do not
commute.

We focus on geometrical aspects in the following.
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Toy example

One real scalar, one gauge field in 4 + 1 dimensions, reduce to 3 + 1
(ǫ = −1) and 4 + 0 (ǫ = 1):

Five dimensions:

L = −∂µσ∂µσ − 1
4

FµνFµν

Four dimensions:

Lǫ = −(∂mσ∂mσ − (−ǫ)∂mb∂mb)− 1
4

FmnF mn

where b ≃ A4 for spatial reduction (ǫ = −1) and b ≃ A0 for
temporal reduction (ǫ = 1).

Minkowski space S3,1 (ǫ = −1): positive definit target space metric.
Euclidean space S4 (ǫ = 1): split signature target space metric.
Lagrangians are related by Wick rotation t → −it combined with
analytical continuation b → ib.
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ǫ-complex geometry

Focus on scalar part of 4d Lagrangian:

L(−1) = −(∂mσ∂mσ + ∂mb∂mb) + · · · = −∂mz∂mz + · · ·
where z = σ + ib. Target space geometry is complex.

L(1) = −(∂mσ∂mσ − ∂mb∂mb) + · · · = −∂mz+∂mz− + · · ·
where z+ = σ + b, z− = σ − b. Light cone coordinates. But we
can do better!
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ǫ-complex geometry

Focus on scalar part of 4d Lagrangian:

L(−1) = −(∂mσ∂mσ + ∂mb∂mb) + · · · = −∂mz∂mz + · · ·
where z = σ + ib. Target space geometry is complex.

L(1) = −(∂mσ∂mσ − ∂mb∂mb) + · · · = −∂mz∂mz + · · ·
where z = σ + eb, with para-complex unit e:
e2 = 1, e = −e. Target space geometry is para-complex.
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ǫ-complex geometry

Focus on scalar part of 4d Lagrangian:

Uniform description, in terms of ǫ-complex geometry.

L(ǫ) = −(∂mσ∂mσ − (−ǫ)∂mb∂mb) + · · · = −∂mz∂mz + · · ·

where z = σ + iǫb and

iǫ =

{

i for ǫ = −1
e for ǫ = 1
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ǫ-complex geometry

Focus on scalar part of 4d Lagrangian:
Uniform description, in terms of ǫ-complex geometry.

L(ǫ) = −(∂mσ∂mσ − (−ǫ)∂mb∂mb) + · · · = −∂mz∂mz + · · ·

where z = σ + iǫb and

iǫ =

{

i for ǫ = −1
e for ǫ = 1

Complexification: both real actions have the same
complexification, which is obtained by taking σ and b (or z and z)
to be independent complex fields.C⊗R Cǫ = C2 , for ǫ = ±1

Analytic continuation between the two real forms:

b → −ieb : σ + ib → σ + eb
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Special ǫ-complex geometry

For general target spaces M: ǫ-complex structure

J ∈ Γ(EndTM) , J2 = ǫId

s.t. eigendistibutions have equal rank.

Concepts such as ‘Hermitean’ and ‘Kähler’ have para-complex
analogous.

I.p. one can define affine and projective special para-Kähler
manifolds = Target space geometries of Euclidean N = 2 vector
multiplets.

Lagrangian (including gauge fields and fermions) can be written
uniformly using ǫ-complex notation.
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Example: STU model

Prepotential F = −X1X2X3

X0 .
Special (para-)Kähler manifolds

(

SL(2,R)

SO(2)

)3

⊂
(

SL(2,C)

GL(1,C)

)3

⊃
(

SL(2,R)

SO(1, 1)

)3

with (para-)Kähler potential

K = − log(S + S)(T + T )(U + U)

where

S = ǫiǫ
X 1

X 0 , T = ǫiǫ
X 2

X 0 , U = ǫiǫ
X 3

X 0 .
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Part IV

Instantons
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Example

Look for supersymmetric purely scalar solutions of the Euclidean STU
model. Take T , U = const.

S ≃
∫

d4x
√

g

(

−1
2

R − ∂mS∂mS

(S + S)2
+ · · ·

)

Imposing 4 Killing spinors:

∂mReS = ±∂mImS

This implies Tmn = 0, hence Rmn = 0, solved by gmn = δmn. Setting

S = e−2φ + ea

the equations of motion reduce to

∆e2φ = 0 .
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Comments

Euclidean supersymmetry→ S flows along null directions.
Equations of motion→ S defines a harmonic map from S to M.
S maps into a completely isotropic, totally geodesic submanifold
of M.

With (positive definit) Kähler target geometry, we do not have null
directions, hence S = const. Directly from supersymmetry:

∂mReS = ±i∂mImS

for Kähler target space.

Irrespective of supersymmetry, Derrick’s theorem implies that we
can only have non-trivial purely scalar solutions for indefinite
target space signature.

Our solution can be viewed as a complex saddle point of the
Wick-rotated action.
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Lift to a 5d black hole

Take spherically symmetric, ‘single centered’ solution,

e2φ = e2φ∞ +
C
r2 , C > 0 .

Lift solution to 4 + 1 dimensions:

ds2 = −H(r)−2/3dt2 + H(r)1/3(dr2 + r2dΩ2) , H(r) = e2(φ−φ∞) .

Supersymmetric (‘small’) black hole.

Can be lifted further to a ten-dimensional five-brane.
4d solution = five-brane with all six world-volume direction wrapped.
Suggests interpretation as a stringy instanton.
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Interpretation as an instanton

Problems:
1 Expect Sinst = |Qinst|

e2φ∞
, but find Sinst = 0.

2 The solution is a saddle point of an action which is not bounded
from below. How to carry out a saddle point approximation of the
functional integral?

Answers are probably well know (though not always well explained in
the literature).
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Boundary contribution to action

Indefiniteness of the Euclidean action is an essential feature for having
(i) non-trivial scalar solutions and (ii) supersymmetric scalar field
configurations, (iii) field configurations which lift to 5d black holes.

The instanton action is a boundary term (various ways of derivation).
Natural in instanton/soliton correspondence:

M5d
ADM = S4d

inst =
|Qinst|
e2φ∞

where Qinst = ±2π2C.
NB: ADM mass is a boundary term.
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Instanton amplitudes

My current understanding (still progressing . . . ):

Meaningful saddle point approximation: choose ‘integration contour’ in
complexified field space such that the Gaussian integral is damped.

If we view the solution as a complex saddle point of the positive definit
Wick rotated action, the ‘integration contour’ is shifted be an imaginary
constant. Note that we still need to add a boundary term to account for
the instanton action.
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Concluding remarks

Special geometry of N = 2 vector multiplets = affine/projective
special (para)-Kähler geometry.

Maintaining symplectic covariance crucial.

Black holes/OSV conjecture: treatment of non-holomorphic
corrections: supergravity vs topological string? Derivation of OSV
‘measure factor’?

Euclidean supersymmetry/instantons. Complexification of M and
its real forms. Physics: instanton amplitudes, generation of
stationary solutions through dimensional lifting.

Analogous question for hypermultiplets/hypercomplex geometries.
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