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Abstract. We propose a notion of “Ricci flow unstable cell” which extends Ein-

stein metrics. We hope that once we have a “Ricci flow unstable cell” centered at
an Einstein metric, we can extract more geometric information by analyzing the cor-

responding Ricci flow ancient solution. As an example of this idea, we construct a

“Ricci flow unstable cell” centered at a Kähler-Einstein metric on the twistor space
of positive quaternion Kähler manifolds. By analyzing the corresponding ancient

solutions, we settle the LeBrun-Salamon conjecture, i.e., we prove that any locally
irreducible positive quaternion Kähler manifold is isometric to one of the Wolf spaces.

Details can be found in [K-O1,2] arXiv:0801.2605, 0805.1956 [math.DG].

0. Background.
Let M be an n-dimensional smooth closed manifold. Perelman’sW-functional

is defined by

Wm(gij, f, τ) =
∫

M

[τ(R + |∇f |2) + f − n]dm

where dm = (4πτ)−
n
2 e−f dVg. We put the constraint that the measure dm is a

fixed volume form on M . The L2-gradient flow of the functional Wm under this
constraint is

(1)




∂tgij = −2(Rij +∇i∇jf) ,

∂tf = −�f −R +
n

2τ
,

∂tτ = −1 .

The difficulty with this system of equations is that there is no guarantee that the
solution exists even for a short time (the second equation is “backward” and the
first and the second equations are coupled). However, this difficulty disappears if
we introduce the following modification of the above equations:

(2)




∂tgij = −2Rij ,

∂tu = −�u + Ru (u := (4πτ)−
n
2 e−f ) ,

∂tτ = −1 .

In this system, the first equation is the Ricci flow where the short time existence
is established after the works by by Hamilton and DeTurck. Therefore, the second
equation (conjugate heat equation) is solved in the backward direction with the
“initial” condition in the future time. The relationship between (1) and (2) is this:
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Apply the 1-parameter family of time-dependent diffeomorphisms generated by the
time-dependent vector field −∇f to (2). Then we get (1). Now the advantage of
(2) is that the functional

W(gij , f, τ) =
∫

M

[τ(R + |∇f |2) + f − n](4πτ)−
n
2 e−f dVg

is monotone nondecreasing along the solution of (2). Indeed, we have the “entropy
formula” ([P])

d

dt
W = 2

∫
M

τ

∣∣∣∣Rij +∇i∇jf − 1
2τ

gij

∣∣∣∣
2

udV ≥ 0 .

Here, in the case of (1) udV should be replaced by dm. Perelman’s W-functional is
a “coupling” of the logarithmic Sobolev functional1 and the Hilbert-Einstein
functional2. Suppose that there exists a critical point which corresponds to a Ricci
soliton

Rij +∇i∇jf − 1
2τ

gij = 0

which at time t = −1 (τ = 1) is interpreted as the initial condition for the Ricci
flow equation (the solution satisfies the above equation and called the Ricci soliton,
which evolves under a 1-parameter group of diffeomorphisms of M). Perelman [P]
showed that this Ricci soliton is characterized by the equality case of the logarithmic
Sobolev inequality in the following way. Let gij(−1) satisfy the above equation at
time t = −1 and gij(t) the corresponding solution of the Ricci flow, i.e., the Ricci
soliton with initial metric gij(−1). Then the logarithmic Sobolev inequality on
(M, gij(t)) introduced in [P] is

W (gij(t)f̃ ,−t) ≥W (gij(t), f(t),−t)

= infef :
R

M
(4π(−t))

n
2 e−efdVg(t)=1

W (gij(t), f̃ ,−t)

=: µ(gij(t),−t)

= µ(gij(−1), 1)

where f̃ is any smooth function on M satisfying the condition∫
M

(4π(−t))
n
2 e− efdVg(t) = 1 .

1 The logarithmic Sobolev inequality on the n-dimensional Euclidean space R
n is the following.

Let f = f(x) satisfies the constraint
R

Rn (4πτ)−
2
n e−f dVeuc = 1. Then we have

Z
Rn

[τ |∇f |2 + f − n](4πτ)−
2
n e−f dVeuc ≥ 0

where the equality holds iff f(x) =
|x|2
4τ

.

2 The Hilbert-Einstein functional is

Z
M

RdVg for a closed Riemannian manifold (M, g) and

the critical points are Einstein metrics.
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This observation gives us an important information on the behavior of the W -
functional at a critical point (i.e., the Ricci soliton). We look at the Hessian of
the Wm-functional at the critical point. The Wm-functional is invariant under the
group of all dm-preserving diffeomorphisms and therefore this action corresponds
to the zeros of the Hessian. On the other hand, the action of the diffeomorphisms
which do not preserve dm may be given by the following way. Let φ be such
a diffeomorphism. Introduce fφ by setting dm = (4πτ)−

2
n e−fφ

dVφ∗g and define
φ∗(g, f, τ) = (φ∗g, fφ, τ). Then we have

Wm(φ∗(g, f, τ)) =
∫

M

[τ(Rφ∗g + |∇fφ|2φ∗g) + fφ − n] (4πτ)−
n
2 e−fφ

dVφ∗g︸ ︷︷ ︸
dm

and therefore the Wm-functional increases in the direction of the action of the
diffeomorphisms which do not preserve dm, which follows from the logarithmic
Sobolev characterization of the Ricci soliton. This implies that the tangent space
of the configuration space {(g, f, τ)} decomposes into three subspaces V0, V+ and
V−. Here, V0 corresponds to the action of the dm-preserving doffeomorphisms (Hess
= 0), V+ corresponds to the action of the diffeomorphisms which do not preserve
dm (Hess > 0) and finally V− corresponds to the rest3.

Applications of the W-functional.

1. No Local Collapsing Theorem (Perelman). If the Ricci flow ∂tgij = −2Rij de-
fined on [0, T ), then ∃ κ := κ(gij(0), T ) > 0 such that (M, gij(t)) is κ-non collapsing
in scale

√
T (i.e., ∀r <

√
T , |Rm|(x) ≤ r−2 ∀x ∈ B(r) ⇒ Vol(B(r)) ≥ κrn).

One of the important consequences of No Local Collapsing Theorem is that if a
singularity develops in the Ricci flow in finite time, then an appropriate rescaling
procedure produces an ancient solution which encodes all information of the
singularity. Here, a Ricci flow solution is called an ancient solution if it is defined
in the time-interval (−∞, T ), T being a real number.

2. Dynamical Stability of a Positive Kähler-Einstein Metric under the Kähler-Ricci
Flow (Perelman, Tian-Zhu [T-Z]). If a Fano manifold M admits a Kähler-Einstein
metric, then the normalized Kähler-Ricci flow with any initial metric in c1(M)
converges to a Kähler-Einstein metric in the sense of Gromov-Cheeger.

Therefore the Kähler-Ricci flow produces a Ricci flow stable cell centered at
a positive Kähler-Einstein metric. It is natural to search for an example of a
Ricci flow unstable cell centered at a Kähler-Einstein metric on a Fano manifold.
Such unstable cell, if exists, consists of ancient solutions of non-Kähler Ricci flow.
In this paper we propose a candidate for such possibility. The ancient solution
proposed in this paper corresponds to one of the natural collapses of the twistor
space of positive quaternion Kähler manifolds4, in which the base manifold (= a
given positive quaternion Kähler manifold) shrinks faster.

3 This is very similar to the behavior of the Hilbert-Einstein functional under the Yamabe

problem.
4 There are two kinds of natural collapses of the twistor fibration Z → M of a positive quater-

nion Kähler manifold. One may ask which shrinks faster, base manifold or a fiber.
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1. Main results.

Let (M4n, g) be any locally irreducible positive quaternion Kähler manifold of
dimension 4n ≥ 8. The local holonomy group is contained in Sp(1)Sp(n) and we
can consider the holonomy reduction P → M of the oriented orthonormal frame
bundle of M . Write Z →M for the twistor fibration and let

α1, α3︸ ︷︷ ︸
fiber P

1 direction

, X i (i = 0, 1, 2, 3)︸ ︷︷ ︸
base M direction

denote the unitary (moving) coframe on Z. This set-up is not in the complex Kähler
setting but in the real Riemannian setting w.r.to the Kähler-Einstein metric on Z.
Here, the triple {αi}3i=1 constitutes the Sp(1)-part of the connection form defined
on the holonomy reduction P of the oriented orthnormal frames of the positive
quaternion Kähler manifold (M, g). We take α1, α3 from the triple {αi}3i=1. This
choice correspond to looking at the infinitesimal variation of orthogonal complex
structures around the orthogonal complex structure J of a tangent space of M
represented by (0 : 1 : 0) in the P

1-fiber of the twistor fibration Z → M . The
quadruple {X i}3i=0 consists of column n-vectors corresponds to the decomposition of
the orthogonal complex structure J and the quaternion structure, which constitute
an orthonormal coframe of M defined on P.

Using the above data, we introduce the following two parameter family of Rie-
mannian metrics on Z :

F = {ρgCY
λ }ρ,λ>0

where ρgCY
λ is a Riemannian metric on Z defined in terms of the Cartan formalism

of the moving frames by

ρ gCY
λ := ρ { λ2 ( α2

1 + α2
3︸ ︷︷ ︸

Fubini-Study metric on P
1-fiber

)

+ tX0 ·X0 + tX1 ·X1 + tX2 ·X2 + tX3 ·X3︸ ︷︷ ︸
quaternion Käler metric on the base manifold M

} .

Proposition 1.1 (Chow-Yang [C-Y]). The metric ρgCY
λ is Kähler if and only

if λ = 1 (indeed, g1 is Kähler-Einstein).

Theorem 1.2 (Theorem 7.1). (1) For the above family

F = {ρgCY
λ }ρ,λ>0

of Riemannian metrics on the twistor space Z of a quaternion Kähler manifold
M4n, we have the formula

Ricλ = 2 λ−2 {1 + (2n + 1) λ2} gr
2λ2(1+nλ2)
1+(2n+1)λ2

.

In particular ρgCY
λ is Kähler-Einstein if and only if λ = 1.
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(2) Any Ricci flow solution with initial metric in F stays in F and is an an-
cient solution whose asymptotic soliton is the special solution consisting of positive
multiples of the Kähler-Einstein metric g1. In particular the 2-parameter family
F ∼= {(λ, ρ)}ρ,λ>0 is foliated by the trajectories of the Ricci flow solutions which are
given by the equation

ρ = (const)
λ2

|1− λ2|2n+2

where the (const) is positive and depends on the initial metric.

Example 1.3. Pick a trajectory defined by the equation

ρ =
cλ2

(λ2 − 1)2(n+1)

where c > 0 and λ > 1 in the (λ, ρ)-plane identified with the family F . This
trajectory consists of metrics ρgCY

λ = ρ[λ2(α2
1 + α2

3) +
∑3

i=0
tX i · X i] with ρ =

cλ2

(λ2−1)2(n+1) . As Ricλ = 2λ−2{1+(2n+1)λ2}[ 2λ2(1+nλ2)
1+(2n+1)λ2 (α2

1 +α2
3)+

∑3
i=0

tX i ·X i],
we have

Scal(ρgCY
λ ) =

8(1 + n)(λ2 − 1)2(n+1)(1 + 2nλ2)
cλ4

for the scalar curvature of the metric ρgCY
λ in the trajectory. If we set u = constant

determined by
∫

M
udV = 1, i.e., u = 1/Vol(gij(t)), we get a solution u(t, x) (t-

dependent constant function on M) to the conjugate heat equation ∂tu = −�u +
Ru. Since Vol(ρgCY

λ ) = (Vol(M, g))ρ2n+1λ2, we have

u =
(λ2 − 1)2(n+1)(2n+1)

λ4(n+1)Vol(M, g)
.

From the Ricci flow equation (Theorem 7.1 (1)) we have

d(cλ4/(λ2 − 1)2n+2))
−8(1 + nλ2)

= dt .

Therefore if we set

τ =
∫ λ

∞

d/dl(cl4/(l2 − 1)2(n+1))
8(1 + nl2)

dl ,

then the function −W (gij , f, τ) (W being Perelman’s W -functional) is monotone
decreasing along the Ricci flow trajectory passing through a metric ρgCY

λ with
λ > 1, which is determined by the triple (ρgCY

λ , f, τ) where ρ, λ, τ are given as
above, λ ∈ (1,∞) increases to from 1 to ∞ when τ decreases from ∞ to 0), and f
is determined by setting u = (4πτ)−(2n+1)e−f with u and τ given as above.

Theorem 1.4 (Theorem 7.2). For any locally irreducible positive quaternion
Kähler manifold, the limit formula

lim
λ→∞

|∇gCY
λ RmgCY

λ |gCY
λ

= 0

holds.

By applying of this limit formula, we settle the LeBrun-Salamon conjecture :
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Theorem 1.5 (Theorem 7.3). Any locally irreducible positive quaternion Kähler
manifold is isometric to one of the Wolf spaces, i.e., the formula

|∇Rm| = 0

holds.

The proofs with full details of all theorems in this section can be found in [K-O1],
arXiv:0801.2605 [math.DG].

2. Quaternion Kähler manifolds.
Let H denote the quaternions and identify R4n = Hn. Then H acts on Hn from

the right which makes R
4n = H

n into a right H-module. Define

Sp(n) = {A ∈ SO(4n) |A is H-linear} .

Let Sp(1) be the subgroup of SO(4n) consisting of the image in SO(4n) of the right
action of the group of unit quaternions on Hn. Then we can define the subgroup
Sp(n)Sp(1) of SO(4n) to be the product of the subgroups Sp(n) and Sp(1) in
SO(4n). This is a proper subgroup if n ≥ 2.

Definition 2.1. A 4n (n ≥ 2)-dimensional Riemannian manifold is quaternion
Kähler, if its holonomy group lien is Sp(n)Sp(1).

Throughout this paper we restrict our attention to locally irreducible (in the
sense of the de Rham decomposition) positive quaternion Kähler manifolds.

• The locally irreducible quaternion Kähler condition implies the Einstein con-
dition. Therefore quaternion Kähler manifolds are classified into three classes ac-
cording to the sign of the scalar curvature :

• A (geodesically) complete quaternion Kähler manifold is called positive (resp.
loc. hyperKähler, negative), if its scalar curvature is positive (resp. zero, negative).

• loc. hyperKähler ⇔ No Sp(1) component.

• A positive quaternion Kähler manifold is a simply connected positive Einstein
manifold.

Normalization. We fix the scale of the invariant metric of HPn so that the sec-
tional curvatures range in the interval [1, 4]. This is equivalent to saying Ric(gHPn) =
4(n + 2)gHPn and therefore to the statement Scal(gHPn) = 16n(n + 2). Set S̃ :=
16n(n+ 2) (in this paper we normalize a positive quaternion Kähler metric so that
its scalar curvature is equal to S̃). We fix the scale of the Fubini-Study metric of
the P1-fiber of the twistor fibration and other cases so that the Gaussian curvature
is identically 4.

Definirion 2.2. A quaternion Kähler manifold in dimension 4 is defined as a
self-dual Einstein Riemannian 4-manifold.

In this paper we consider only positive quaternion Kähler manifolds of dimension
≥ 8. The round 4-sphere S4 and the complex projective space P2(C) with the
Fubini-Study metric exhaust examples of positive quaternion Kähler 4-manifolds
(Hitchin [Hi] and Friedrich-Kurke [F-K]). The application of the methods of this
paper gives us a new proof to this result ([K-O2]).
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3. Examples of quaternion Kähler manifolds of dimension ≥ 8.

Example 3.1. (1) [Positive quaternion Kähler manifolds] Wolf spaces (positive
quaternion Kähler symmetric spaces)

P
n(H) =

Sp(n + 1)
Sp(n)× Sp(1)

,

Gr2(Cn) =
SU(n)

S(U(n− 2)× U(2))
,

G̃r4(Rn) =
SO(n)

SO(n− 4)× SO(4)

plus some exceptional cases.
These spaces are compact symmetric spaces whose isotropy group contains an

Sp(1)-component.

(2) [Negative quaternion Kähler manifolds] The non-compact dual of Wolf spaces
are examples of negative quaternion Kähler manifolds. There exist many other
examples of noncompact negative quaternion Kähler manifolds which are not sym-
metric (e.g. Alexeevskii, Galicki, · · · ).
Remark 3.2. Galicki-Lawson’s quaternion Kähler reduction method produces many
examples of positive quaternion Kähler orbifolds which are not symmetric.

In Theorem 7.3 of this paper, we give an affirmative answer to the following
conjecture :

Conjecture 3.3 (LeBrun-Salamon). Any positive quaternion Kähler manifold
is a Wolf space.

4. Moving frames.

Basic Setting :

• (M4n, g) : a quaternion Kähler manifold
⇒ ∃ reduction of the SO(4n) frame bundle F to the holonomy Sp(n)Sp(1) bundle
P (i.e., we fix an orthonormal frame in F at one point and think of all parallel
displacements to any point along various curves⇒ we get P). Each point of P over
m ∈M represents an orthonormal frame at m ∈M tautologically. ⇒ The space P
is the domain where the orthonormal frames obtained by all parallel displacements
are defined simultaneously.
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• Definition of subgroups Sp(n) and Sp(1) of SO(4n) ⇒ Sp(n) is the centralizer
of Sp(1) in SO(4n) ⇒ (eA)4n

A=1 ∈ P : an orthonormal frame at m ∈ M gives an
identification TmM → Hn defined by

xAeA �→ (xa + ixn+a + jx2n+a + kx3n+a)n
a=1

and a local section (eA)4n
A=1 of P → M on an open set U ⊂ M defines a right H-

module structure on TU ⇒ locally defined three almost complex structures I, J, K
(behaving like i, j, k in H) which is not parallel if the Sp(1) part of the holonomy
is non-trivial (we are interested in this case).

Linear Algebra :

• The right action of i and j on R
4n = H

n :




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 and




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 .

• The Lie algebra sp(n) is computed as




A0 −A1 −A2 −A3

A1 A0 −A3 A2

A2 A3 A0 −A1

A3 −A2 A1 A0




where A0 = −tA0 and Aλ = tAλ (1 ≤ λ ≤ 4) are n×n matrices. Similarly, the Lie
algebra of the subgroup Sp(1) of SO(4n) is computed as




0 −a1 −a2 −a3

a1 0 a3 −a2

a2 −a3 0 a1

a3 a2 −a1 0




⇒ The Lie algebra of Sp(n)Sp(1) is

(3)




A0 −A1 − a1 −A2 − a2 −A3 − a3

A1 + a1 A0 −A3 + a3 A2 − a2

A2 + a2 A3 − a3 A0 −A1 + a1

A3 + a3 −A2 + a2 A1 − a1 A0


 .

In the following computation we use αi instead of ai (i = 1, 2, 3) for sp(1)-valued
1-forms.
Cartan Formalism :

• (M4n, g) : a quaternion Kähler manifold (n ≥ 2). P : the holonomy reduction
of the full frame bundle. (θA)4n

A=1 : the orthonormal coframe dual to the orthonor-
mal frame (eA)4n

A=1 in P. (θA)4n
A=1 is a system of 1-forms on P. The geometry of

M being encoded in (dθA)4n
A=1 is the main idea of the Cartan formalism.
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• The 1-st and 2-nd structure equations

dθA + ΓA
B ∧ θB = 0

dΓA
B + ΓA

C ∧ ΓC
B = ΩA

B

where (ΓA
B) represents the Levi-Civita connection matrix (i.e., sp(n)+sp(1)-valued

1-form on P) and (ΩA
B) is the curvature matrix (i.e., sp(n) + sp(1)-valued 2-form

on P) both of which is of the form (3).

• meaning of the connection and curvature matrices : (eA)4n
A=1 ∈ P : an or-

thonormal frame at TmM ⇒

∇ (e1, . . . , e4n) = (e1, . . . , e4n) (ΓA
B) ,

R(X, Y ) (e1, . . . , e4n) = (e1, . . . , e4n) (ΩA
B(X, Y )) .

5. Twistor spaces. The Chow-Yang metrics.

Definition of the Twistor Space :

• There is a canonical identification

{unit pure imaginary quaternions}
right action of unit pure imaginary quaternions←→

{orthogonal complex structures on TMm} .

• The above identification depends on the basis (eA) ∈ P. However, if q is a
unit pure imaginary quaternion, then so is xqx−1 for any unit quaternion x and
therefore the set (identified with P1) of all orthogonal complex structures on TMm

is independent of the choice of the basis (eA) ∈ P. The twistor space Z of M is
defined by

Z = P ×Sp(n)Sp(1) P
1

where Sp(n)Sp(1) operates on the set P1 of unit pure imaginary quaternions (or-
thogonal complex structures of H

n) by the trivial action of Sp(n) and the right
action of the group Sp(1) of unit quaternions given by q �→ xqx−1. From this we
have

Z = P / Sp(n)Sp(1) ∩ U(2n) .

Almost Complex Structure and Chow-Yang Metrics on Z :

• The Levi-Civita connection of (M4n, g) corresponds to the horizontal distribu-
tion on the holonomy reduction P →M of the oriented orthonormal frame bundle.
The twistor space Z is by definition Z = P/Sp(n)Sp(1) ∩ U(2n) and therefore we
can introduce canonically the horizontal distribution and submersion metric on Z
from those of P. The almost complex structure of Z is defined by the corresponding
orthogonal complex structure in the horizontal subspace and the standard complex
structure of P1 along the fiber.
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Theorem 5.1 (Salamon 1982). The orthogonal almost complex structure on the
twistor space is integrable.

• We introduce a certain class of Riemannian metrics on Z and compute the
Ricci tensor by moving frame technique (we will call this the class of Chow-Yang
metrics)5. The construction of this class of metrics is conceptually not so simple and
therefore we give a detailed description before starting moving frame computations.
We start by recalling the idea of the Cartan formalism of moving frames. Let (N, g)
be any n-dimensional oriented Riemannian manifold and F → N the bundle of all
oriented orthonormal frames. We have the system {θ1, . . . , θn} of coframes on F
which is, at p ∈ F lying over m ∈ N , the system of 1-forms dual to the orthonormal
frame of Nm represented by the point p ∈ F . Given a local frame field on an open
set U ⊂ N , we tautologically associate the section U → F . Thus the local frames
which are not unique on N becomes a globally defined single valued object on F and
moreover the dual object {θ1, . . . , θn} consists of differential 1-forms and therefore
we have an advantage being able to work functorially on differential forms (such
as connection forms) on F . For instance, the Riemannian metric on N is written
as (θ1)2 + · · · + (θn)2 and connection form is computed by taking the exterior
differential of {θ1, . . . , θn} on F and so on.

Now let us return to our original (quaternion Kähler) situation. A fiber on m ∈
M of the twistor fibration Z →M is the set of all orthogonal complex structures on
the tangent space Mm which is canonically identified with Sp(n)Sp(1)/Sp(n)Sp(1)∩
U(2n) ∼= P1. Therefore the twistor space is also defined as the orbit space with
respect to the Sp(n)Sp(1) ∩U(2n) action on P, i.e.,

Z = P/Sp(n)Sp(1) ∩U(2n) .

We construct local sections Z → P of the principal Sp(n)Sp(1) ∩ U(2n)-bundle
P → Z in the following way (we use these local sections to construct a certain class
of metrics on Z). Fix a point m ∈ M . Let P1

m ⊂ Z be the fiber of the twistor
fibration over m. To each z ∈ P1

m we (locally) associate a quaternion orthonormal
frame in the fiber of P → M over m so that the frame is ordered in the way
compatible with respect to the orthogonal complex structure represented by z. If
z varies on P1

m such frames rotates by an element of Sp(n)Sp(1) and the rotation
is unique modulo those by elements of Sp(n)Sp(1) ∩ U(2n). This procedure is
possible only locally on P1

m because this is equivalent to make the (local) section of
the principal Sp(n)Sp(1) ∩ U(2n)-bundle Sp(n)Sp(n) → Sp(n)Sp(1)/U(2n) ∼= P

1.
We extend this construction locally on open set U ⊂ M containing m. This way
we construct local sections of the Sp(n)Sp(1)∩U(2n)-principal bundle P → Z. We
then restrict 1-forms

X0, X1, X2, X3

5 The class of Chow-Yang metrics is not identical to the so called canonical deformation on
the twistor space Z, where the canonical deformation consists of metrics constructed by the sum

of the base metric and scaled fiber metric by using the horizontal distribution. The following

discussion shows that the construction of the Chow-Yang metric is different from the canonical
deformation at least from topological nature.
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and the

Sp(1)-part of the connection form orthogonal to the Sp(n)Sp(1) ∩ U(2n)-fiber

which are defined globally on P (these are contained in the space of 1-forms

spanned by αi’s)

to the above constructed local sections. The Sp(1)-part of the connection form
restricted to the local sections are not necessarily unit 1-forms with respect to the
standard submersion metric on Z coming from the standard Riemannian submer-
sion P → Z (because the local sections are not orthogonal to the Sp(n)Sp(1) ∩
U(2n)-fibers)6. We thus get the system of 1-forms

{X0, X1, X2, X3, α1, α3}

say (this corresponds to the infinitesimal deformation of orthogonal complex struc-
tures at the one defined by the right multiplication of j, as in the following com-
putations), locally at 1 point on Z. We define the metric on Z by requiring that
the above constructed system of 1-forms to be an orthnormal coframe. This means
that the metric

gCY
1 := (α2

1 + α2
3) + tX0X0 + tX1X1 + tX2X2 + tX3X3

is an expression in terms of the orthnormal coframes. In the following arguments
we will consider the metrics of the form

gCY
λ := λ2(α2

1 + α2
3) + tX0X0 + tX1X1 + tX2X2 + tX3X3

on Z (we call this type of metric as a Chow-Yang metric, because Chow and Yang
first constructed such metrics in [C-Y]). These metrics are well-defined (independent
of the choice of the local sections of the Sp(n)Sp(1) ∩ U(2n)-bundle P → Z) and
moreover we can work functorially on differential forms on P using the moving
frame technique.

• We introduce the so called canonical deformation metric

gcan
λ := λ2gFS + gM

(the sum is defined by the horizontal distribution of the twistor fibration Z → M
coming from the Levi-Civita connection).

Theorem 5.1 (continued) (Salamon 1982). (M, g) : positive quaternion Kähler
⇒ ∃ a scaling of the fiber metric s.t. the canonical deformation metric on the twistor
space is positive Kähler-Einstein. In fact gcan

1 is Kähler-Einstein.

• We now compare two families {gCY
λ } and {gcan

λ′ }. The Chow-Yang metric
gCY

λ = λ2(α2
1 + α2

3) + tX0X0 + tX1X1 + tX2X2 + tX3X3 and the canonical defor-
mation metric gcan

λ′ = (λ′)2gFS+gM coincide if and only if λ = λ′ = 1. In particular,

6 Here we define the metric on P just by the sum of the base metric on M and the Killing
metric on the fiber.
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the Chow-Yang metric for λ �= 1 do not belong to the family of canonical defor-
mation metrics. The reason is the following. It is well-known that the canonical
deformation metric is Kähler-Einstein for a unique suitable partial scaling. Our
normalization is that gcan

1 is Kähler-Einstein (Theorem 5.1). In this case the paral-
lel translation along curves in the P1-fiber of the twistor fibration Z →M preserves
the orthogonal complex structure of the twistor space Z and therefore the “rota-
tion” along the P

1-fiber must belong to U(2n). In [C-Y], Chow and Yang proved
that gCY

1 is Kähler-Einstein (see discussions in §6). This means that a canonical
deformation metric gcan

λ and a Chow-Yang metric gCY
λ′ coincide if λ = λ′ = 1.

Suppose next that λ, λ′ �= 1. For gcan
λ , there exists an oriented orthonormal frame

field for the horizontal subspaces defined globally along a P1-fiber of the twistor
fibration (namely, the constant horizontal frame along the P1-fiber). We show that
such a global object does not exist for the Chow-Yang metric gCY

λ′ . To see this, we
fix a P1-fiber of the twistor fibration. We note that for any value of λ′ > 0, any
P1-fiber is totally geodesic w.r.to the metric gCY

λ′ . Therefore the parallel transla-
tion along any curve in the P1-fiber preserves tangent spaces of the P1-fiber and
therefore preserves the horizontal subspaces. On the other hand, as was shown in
[C-Y] by Chow and Yang, the Chow-Yang metric gCY

λ′ for λ′ �= 1 is never Kähler
(see §6). Therefore the holonomy restricted to the horizontal subspace along any
closed curve in the P1-fiber is not contained in U(2n). Therefore the set of all
parallel translations of a given oriented horizontal orthonormal frame along curves
in the P1-fiber must be identical to Sp(n)Sp(1)/Sp(n)Sp(1) ∩ U(2n) ∼= P1. This
implies that there exists no smooth oriented horizontal orthonormal frame field
defined globally along the P1-fiber. Indeed, the existence of such a global object
would correspond to a global section of the principal Sp(n)Sp(1) ∩ U(2n)-bundle
Sp(n)Sp(1) → Sp(n)Sp(1)/Sp(n)Sp(1) ∩ U(2n) ∼= P1 which never exists. We have
thus proved that the Chow-Yang metric gCY

λ′ is never a canonical deformation met-
ric, because the image under all parallel translations along curves in the P1-fiber
of a given oriented orthonormal frame in the horizontal subspace is a Riemannian
invariant and this set has different topological structures for two metrics gcan

λ and
gCY

λ′ (here, λ, λ′ �= 1). Indeed, the set has a global horizontal section along the
P1-fiber for the canonical deformation metric gcan

λ , while this set does not admit
such a global object for the Chow-Yang metric gCY

λ′ .

6. Moving frames on twistor spaces.

• (M4n, g) : a positive quaternion Kähler manifold (n ≥ 2). (Z, J, h) : Z is
the twistor space of (M, g), J is the orthogonal alm. complex structure and h is
the canonical metric with the property that the fiber metric is the Fubini-Study
metric with curvature λ−2 and the base metric is normalized so that the scalar
curvature is the same as HPn whose sectional curvatures range in [1, 4]. The right
multiplication by j defines the canonical identification of TmM with C2n given by

(xa + ixn+a + jx2n+a + kx3n+a)n
a=1

�→ (xa + jx2n+a, xn+a + jx3n+a)n
a=1 .

Pick a point z ∈ Z over m ∈M which induces this identification.
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• Choose the above canonical metric h on Z. t(α1, α3) : orthonormal coframe
in the column real vector notation representing infinitesimal deformation of the
unit imaginary quaternion at j. Introduce the column real vectors X0 := (xa),
X1 := (xn+a), X2 := (x2n+a), X3 := (x3n+a) (a = 1, . . . , n). Then we have the real
notation : {t(λα1, λα3), X0, X1, X2, X3} which gives an orthonormal basis of T ∗

zZ
w.r.to the metric h and the complex notation w.r.to J , i.e., a basis of all (1, 0)
forms w.r.to the orth. alm. cplx. str. of Z at z which is given by λζ0 := λ(α1+iα3),
Z1 = X0 + iX2 (= (xa + ix2n+a)) and Z2 = X1 + iX3 (= (xn+a + ix3n+a)).

• The family of canonical metrics on Z is expressed as (at z ∈ Z)

h = λ2 (α2
1 + α2

3) + tX0 ·X0 + · · ·+ tX3 ·X3

= λ2|ζ0|2 + |Z1|2 + |Z2|2 .

• complex notation w.r.to J ⇒ integrability of J , Kähler-Einstein property of
the canonical metric.

• real notation ⇒ curvature computation for non Kähler canonical metrics.

Fundamentals for Moving Frame Differential Calculus on Z :

• 1-st and 2-nd structure equations of (M, g) :

dX + Γ ∧X = 0
dΓ + Γ ∧ Γ = Ω

• Decomposition of the curvature operator of quaternion Kähler manifolds :

Theorem 6.1 (Alexeevskii 1968, Salamon 1982). The curvature operator
of a quaternion Kähler manifold (M4n, g) (n ≥ 2) decomposes as

Ω = (S/S̃) Ω̃ + Ω′

where Ω̃ is the curvature operator of HPn with the scalar curvature S̃ and

Ω′ ∈ Sym2(sp(n)) ⊂ Sym2(Λ2T ∗M) .

Of course Theorem 6.1 is a quaternion Kähler version of the fact that the curva-
ture operator of a self-dual Einstein 4-manifold decomposes into the direct sum of
the self-dual part of the Weyl curvature tensor and the (S/S̃)-times the curvature
operator of the standard 4-sphere.

• Curvature of the quaternion projective space

P
n(H) =

Sp(n + 1)
Sp(n)× Sp(1)

=
Sp(n + 1)/Z2

Sp(n)Sp(1)
.

The Sp(1) in the middle is a part of the isotropy group at [1 : 0 : · · · : 0] ∈ Pn(H)
while Sp(1) in the right is the image in SO(4n) of the right action of unit quaternions
on Hn (we must take this difference of the meaning of Sp(1) into account in the
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moving frame computation on Pn(H)). Because Pn(H) is a homogeneous space we
can compute the curvature of Pn(H) from the Maurer-Cartan equation of the big
group Sp(n + 1) ⇒

dãµ − 2ãη ∧ ãν = 2(tXµ ∧X0 + tXη ∧Xν) ,

Ω̃µ
0 = Xµ ∧ tX0 −X0 ∧ tXµ + Xν ∧ tXη −Xη ∧ tXν

+ 2(tXµ ∧X0 + tXη ∧Xν) ,

Ω̃η
ν = −Xµ ∧ tX0 + X0 ∧ tXµ −Xν ∧ tXη + Xη ∧ tXν

+ 2(tXµ ∧X0 + tXη ∧Xν) ,

(η, µ, ν) being any cyclic permutation of (1, 2, 3). In particular the sectional curva-
tures of HPn range in the interval [1, 4].

Computation on Z :

• Aim : We compute the 1-st structure equations for d t(ζ0, tZ1, tZ2) in the
complex notation and d t(λα1, λα2,

tX0, tX1, tX2, tX3) in the real notation. Then
we the corresponding 2-nd structure equations (curvature).

• We remark that even if the description of the Chow-Yang metric is local at 1
point, we can apply the local moving frame computation to the system
{α1, α3, X

0, X1, X2, X3} to compute its curvature. The reason is the following.
We continue to work at a point on z ∈ Z corresponding to the orthogonal complex
structure defined by the right multiplication of j. At points close to z the infinitesi-
mal deformation of the orthogonal complex structures can be expressed as a pair of
1-forms on the P1-fiber of the twistor fibration, which can be written as α1+O(2)α2

and α3 + O(2)α2, where O(2) represents quantities which are of order 2 w.r.to the
distance from the reference point z along the P1-fiber of the twistor fibration. Fur-
thermore, the α2 itself is of O(2) around the point z (because it corresponds to
the complex structure represented by j = (0 : 1 : 0) ∈ P

1 = Sp(1)/SO(2)). There-
fore, the formal computation of the 2-nd structure equation applied to the system
{α1, α3, X

0, X1, X2, X3} gives the curvature.

• The 1-st structure equation on (M, g) ⇔

dZ1 + Z
2 ∧ ζ0 + (A0 + i(A2 + α2)) ∧ Z1

+ (−A1 + iA3) ∧ Z2 = 0 ,

dZ2 − Z
1 ∧ ζ0 + (A1 + iA3) ∧ Z1

+ (A0 − i(A2 − α2)) ∧ Z2 = 0 .

• The 2-nd structure equation on (M, g) plus expression (3) ⇒

Ωµ
0 = dAµ + Aµ ∧A0 + Aη ∧Aν + A0 ∧Aµ −Aν ∧Aη

+ daµ − 2aη ∧ aν ,

Ωη
ν = −dAµ − Aη ∧ Aν − Aµ ∧ A0 + Aν ∧ Aη − A0 ∧Aµ

+ daµ − 2aη ∧ aν .

(4)
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(µ, η, ν) being any cyclic permutation of (1, 2, 3).

• Computation of dζ0. Formula (4) ⇒

Ωµ
0 + Ωη

ν = 2daµ − 4aη ∧ aν .

Combining this with Alexeevskii’s decomposition formula we get

daµ − 2aη ∧ aν =
1
2
(Ωµ

0 + Ωη
ν)

=
1
2
(S/S̃)(Ω̃µ

0 + Ω̃η
ν) +

1
2
(Ω′µ

0 + Ω′η
ν)

= (S/S̃)(dãµ − 2ãη ∧ ãν)

[because Ω′ part does not involve the a-part]

= 2(S/S̃)(tXµ ∧X0 + tXη ∧Xν)

and therefore we get

dζ0 = d(α1 + iα3)

= 2α2 ∧ α3 + (dα1 − 2α2 ∧ α3) + 2iα1 ∧ α2

+ i(dα3 − 2α1 ∧ α2)

= −2iα2 ∧ ζ0 + (S/S̃)(tZ2 ∧ Z1 − tZ1 ∧ Z2) .

We are now ready to right down the 1-st structure equation of the twistor space
(Z, h) .

• The 1-st structure equation of (Z, h) in complex notation:

d


 ζ0

Z1

Z2


 = −


 2iα2 −(S/S̃)tZ2 (S/S̃)tZ1

Z
2

A0 + iA2 + iα2 −A1 + iA3

−Z
1

A1 + iA3 A0 − iA2 + iα2


 ∧


 ζ0

Z1

Z2


 .

RHS contains no (0, 2)-forms
⇒ the alm. cplx. str. defined by the basis {ζ0, Z1, Z2} on Z of (1, 0)-forms (i.e.,
the orthogonal alm. cplx. str. on Z) is integrable.

The matrix in RHS is skew-Hermitian
⇔ scaling is chosen s.t. S/S̃ = 1
⇔ the canonical metric is Kähler if and only if the scaling of (M, g) is chosen so
that S/S̃ = 1 (the fiber Fubini-Study metric is normalized so that the curvature 1).

• 2-nd structure equation ⇒ the curvature form Ω of the Kähler metric

ζ0 ∧ ζ
0

+ tZ1 ∧ Z
1
+ tZ2 ∧ Z

2
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is


2ζ0 ∧ ζ
0

+ tZ1 ∧ Z
1

ζ0 ∧ tZ
1

ζ0 ∧ tZ
2

+tZ2 ∧ Z
2

Z1 ∧ ζ
0

Ω0
0 + i Ω2

0 −1
2{Ω1

0 + Ω3
2 − i (Ω3

0 + Ω3
1)}

−Z
2 ∧ tZ2 + ζ0 ∧ ζ

0
+tZ

2 ∧ tZ1

Z2 ∧ ζ
0 1

2{Ω1
0 + Ω3

2 + i (Ω3
0 + Ω2

1)} Ω0
0 + i Ω3

1

+Z
1 ∧ tZ2 −Z

1 ∧ tZ1 + ζ0 ∧ ζ
0




which is certainly skew-Hermitian. Its Ricci form is

Ric(Ω) = tr(Ω) = 2(n + 1)
{

ζ0 ∧ ζ
0

+ tZ1 ∧ Z
1

+ tZ2 ∧ Z
2
}

,

meaning that the Kähler metric

ζ0 ∧ ζ
0

+ tZ1 ∧ Z
1
+ tZ2 ∧ Z

2

is Kähler-Einstein.

Structure Equations w.r.to Non-Kähler Canonical Metrics

We work on a canonical metric with a scaling parameter λ > 0 :

gλ := λ2 (α2
1 + α2

3) + tX0 ·X0 + tX1 ·X0 + tX1 ·X1 + tX2 ·X2 + tX3 ·X3

where λ = 1 corresponds to the Kähler-Einstein metric.

• 1-st structure equation in real notation is :

d




λα1

λα3

X0

X1

X2

X3




= −




0 −2α2 −λtX1 λtX0 λtX3 −λtX2

2α2 0 −λtX3 λtX2 −λtX1 λtX0

λ−1X1 λ−1X3 A0 −A1 −A2 − α2 −A3

−λ−1X0 −λ−1X2 A1 A0 −A3 A2 − α2

−λ−1X3 λ−1X1 A2 + α2 A3 A0 −A1

λ−1X2 −λ−1X0 A3 −A2 + α2 A1 A0







λα1

λα3

X0

X1

X2

X3


 .

• 2-nd structure equation dΓλ + Γλ ∧ Γλ = Ωλ gives the curvature

Ωλ =




Ωλ
−2
−2 Ωλ

−2
−1 Ωλ

−2
0 Ωλ

−2
1 Ωλ

−2
2 Ωλ

−2
3

Ωλ
−1
−2 Ωλ

−1
−1 Ωλ

−1
0 Ωλ

−1
1 Ωλ

−1
2 Ωλ

−1
3

Ωλ
0
−2 Ωλ

0
−1 Ωλ

0
0 Ωλ

0
1 Ωλ

0
2 Ωλ

0
3

Ωλ
1
−2 Ωλ

1
−1 Ωλ

1
0 Ωλ

1
1 Ωλ

1
2 Ωλ

1
3

Ωλ
2
−2 Ωλ

2
−1 Ωλ

2
0 Ωλ

2
1 Ωλ

2
2 Ωλ

2
3

Ωλ
3
−2 Ωλ

3
−1 Ωλ

3
0 Ωλ

3
1 Ωλ

3
2 Ωλ

3
3



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where

Ωλ
−2
−2 = 0 , Ωλ

−1
−1 = 0 ,

Ωλ
−1
−2 = 4α3 ∧ α1 + 4(tX2 ∧X0 + tX3 ∧X1)

− tX3 ∧X1 − tX2 ∧X0 + tX1 ∧X3 + tX0 ∧X2

and

Ωλ
0
−2 = λ−1(X0 ∧ α1 + X2 ∧ α3), Ωλ

0
−1 = λ−1(X0 ∧ α3 −X2 ∧ α1)

Ωλ
1
−2 = λ−1(X1 ∧ α1 + X3 ∧ α3), Ωλ

1
−1 = λ−1(X1 ∧ α3 −X3 ∧ α1)

Ωλ
2
−2 = λ−1(−X0 ∧ α3 + X2 ∧ α1), Ωλ

2
−1 = λ−1(X0 ∧ α1 + X2 ∧ α3)

Ωλ
3
−2 = λ−1(−X1 ∧ α3 + X3 ∧ α1), Ωλ

3
−1 = λ−1(X1 ∧ α1 + X3 ∧ α3)

Ωλ
−2
0 = λ(α1 ∧ tX0 + α3 ∧ tX2), Ωλ

−1
0 = λ(α3 ∧ tX0 − α1 ∧ tX2)

Ωλ
−2
1 = λ(α1 ∧ tX1 + α3 ∧ tX3), Ωλ

−1
1 = λ(α3 ∧ tX1 − α1 ∧ tX3)

Ωλ
−2
2 = λ(−α3 ∧ tX0 + α1 ∧ tX2), Ωλ

−1
2 = λ(α1 ∧ tX0 + α3 ∧ tX2)

Ωλ
−2
3 = λ(−α3 ∧ tX1 + α1 ∧ tX3), Ωλ

−1
3 = λ(α1 ∧ tX1 + α3 ∧ tX3) .

and

Ωλ
0
0 = Ω0

0 −X1 ∧ tX1 −X3 ∧ tX3, Ωλ
1
1 = Ω0

0 −X0 ∧ tX0 −X2 ∧ tX2

Ωλ
2
2 = Ω0

0 −X1 ∧ tX1 −X3 ∧ tX3, Ωλ
3
3 = Ω0

0 −X0 ∧ tX0 −X2 ∧ tX2

and

Ωλ
1
0 = Ω1

0 + X0 ∧ tX1 + X2 ∧ tX3 − (dα1 − 2α2 ∧ α3)

Ωλ
2
0 = Ω2

0 + X3 ∧ tX1 −X1 ∧ tX3 − (dα2 − 2α3 ∧ α1) + dα2

Ωλ
3
0 = Ω3

0 −X2 ∧ tX1 + X0 ∧ tX3 − (dα3 − 2α1 ∧ α2)

Ωλ
2
1 = Ω2

1 −X3 ∧ tX0 + X1 ∧ tX2 + (dα3 − 2α1 ∧ α2)

Ωλ
3
1 = Ω3

1 + X2 ∧ tX0 −X0 ∧ tX2 − (dα2 − 2α3 ∧ α1) + dα2

Ωλ
3
2 = Ω3

2 + X2 ∧ tX3 + X0 ∧ tX1 + (dα1 − 2α2 ∧ α3) .

Alexeevskii’s decomposition formula ⇒

Ωµ
0 = Ω̃µ

0 + Ω′µ
0

= Xµ ∧ tX0 −X0 ∧ tXµ + Xν ∧ tXη −Xη ∧ tXν

+ 2(tXµ ∧X0 + tXη ∧Xν) + Ω′µ
0 ,

Ωη
ν = Ω̃η

ν + Ω′η
ν

= −Xµ ∧ tX0 + X0 ∧ tXµ −Xν ∧ tXη + Xη ∧ tXν

+ 2(tXµ ∧X0 + tXη ∧Xν) + Ω′η
ν ,

Ricci tensor of a non-Kähler Chow-Yang metric.
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Proposition 6.1. The “hyper-Kähler part” Ω′µ
ν has no contribution to the Ricci

tensor. Therefore we can ignore the Ω′µ
ν -part in the computation of the Ricci tensor.

The dependency on the point of the full curvature does not contribute to the
Ricci map g �→ Ric(g).

• Set up : {ξ−2, ξ−1, ξ0, . . . , ξ3} : the frame on Z dual to
the coframe {a1, a3, X

0, . . . , X3} (unitary w.r.to the KE metrix) ⇒

{λ−1ξ−2, λ
−1ξ−1, ξ0, . . . , ξ3}

is the frame dual to the coframe

{λa1, λa3, X
0, . . . , X3} .

• Computation of the Ricci tensor. Using the formula

Ric(ei, ej) =
dim∑
k=1

g ( Ωj
k (ei, ek) ej , ej) ,

we get

Ricλ(λ−1ξ−2, λ
−1ξ−2) = Ricλ(λ−1ξ−1, λ

−1ξ−1)

=
4
λ2

+ 4n ,

Ricλ(λ−1ξ−2, λ
−1ξ−1) = 0 ,

Ricλ(λ−1ξ−2, ξ0) = Ricλ(λ−1ξ−2, ξ1) = Ricλ(λ−1ξ−2, ξ2)

= Ricλ(λ−1ξ−2, ξ3) = Ricλ(λ−1ξ−1, ξ0) = Ricλ(λ−1ξ−1, ξ1)

= Ricλ(λ−1ξ−1, ξ2) = Ricλ(λ−1ξ−1, ξ3)
= 0

and

Ric(ξ0, ξ0) = Ricλ(ξ1, ξ1) = Ricλ(ξ2, ξ2) = Ricλ(ξ3, ξ3)

=
2
λ2

+ (4n + 2) ,

Ric(ξ0, ξ1) = Ricλ(ξ0, ξ2) = Ricλ(ξ0, ξ3) = Ricλ(ξ1.ξ2)

= Ricλ(ξ1, ξ3) = Ricλ(ξ2, ξ3)
= 0 .

Theorem 6.2. The Ricci tensor of the metric gλ on the twistor space Z is given
by the formula

Ricλ = 4 (1 + nλ2) (α2
1 + α2

3)

+ 2 (λ−2 + 2n + 1) (tX0 ·X0 + tX1 ·X1 + tX2 ·X2 + tX3 ·X3) .
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In other words,

Ricλ = 2λ−2 {1 + (2n + 1)λ2} gr
2λ2(1+nλ2)
1+(2n+1)λ2

.

This means that the 2-parameter family

F = {ρ gλ}ρ,λ>0

of the (scaled) 2-parameter family of the canonical metrics on Z is stable under the
Ricci map.

Remark 6.3. If λ = 1 we get

Ric1 = 4 (n + 1) g1 .

Remark 6.4 (orbifold case). Of course we can construct locally irreducible pos-
itive quaternion Kähler orbifolds which are uniformized by one of the Wolf spaces.
On the other hand, many examples of non locally symmetric positive quaternion
Kähler orbifolds are constructed in [G-L]. Here we remark that the moving frame
computation in §2 does not necessarily generalize to positive quaternion Kähler
orbifold case. Indeed, given a locally irreducible positive quaternion Kähler orb-
ifold, the attempt constructing its twistor space with its complex structure may not
work. Moreover, even if the orbifold version of the twistor space exists, the orbifold
version of the Chow-Yang metric is not defined.

Here we explain the reason.
If we take a local uniformization of the orbifold along the locus of orbifold singu-

larities, we locally get a non-singular irreducible quaternion Kähler manifold with
a finite group G acting isometrically preserving the local quaternion Kähler struc-
ture. In the case where G operates on the local holonomy reduction Ploc of the
oriented orthonormal frame bundle, we can construct the orbifold version of the
twistor space to this case just by working equivariantly. However, in the case where
the group G does not operate on Ploc, we cannot generalize the arguments in §2.
Indeed, the action of G can be defined in the SO(4n)-principal bundle of the full
space of oriented orthonormal frames of M and the space on which G can act con-
sists of two copies of Ploc whose fibers over the loci on which the G-action is not free
coincide. In other wards, the holonomy of the orbifold under question along a loop
which approaches to the orbifold singular loci and go around it and come back is
not contained in Sp(n)Sp(1) and the holonomy group becomes a disconnected sub-
group of SO(4n) whose identity component is a subgroup of Sp(n)Sp(1). Therefore,
in this case, the twistor space cannot be defined as a usual Kähler orbifold.

Suppose next that G operates on the local holonomy reduction Ploc of the ori-
ented orthonormal frame bundle. In this case we can construct the orbifold version
of the twistor space. To see what happens to the construction of the orbifold Chow-
Yang metric, we work on the local uniformization level. The Chow-Yang metric
at a point z in the P1-fiber over m ∈ M of the twistor fibration Z → M in the
local uniformization level, the coframe, say, {α1, α3, X

0, X1, X2, X3} is chosen so
that {X0, X1, X2, X3} is a unitary basis of TmM with respect to the orthogonal
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complex structure corresponding to z. However, in the local uniformization level,
we must work equivariantly with respect to the finite group action. This group
action identifies different orthogonal complex structures and induces in general a
non trivial rotation in the space P1

m of orthogonal complex structures of TmM in
the local uniformization level. Therefore we cannot define the Chow-Yang metric
in the equivariant way and this implies that the orbifold Chow-Yang metric is not
defined in general (the case where the Chow-Yang metric is defined equivariantly
corresponds to orbifolds uniformlized by the Wolf spaces).

We thus conclude that the arguments in §2 cannot be generalized to quaternion
Kähler orbifolds.

For comparison, we compute (using O’Neill’s formula) the Ricci tensor of the
canonical deformation metric gcan

λ . The result is

Ric(gcan
λ ) = (1 + nλ4)gFS + (n + 2− λ2)gM .

Therefore gcan
λ is Einstein iff λ2 = 1 and λ2 = 1

n+1
. The case λ2 = 1 corresponds

to the submersion metric coming from P → Z which is Kähler-Einstein. Another
Einstein metric (corresponding to the case λ2 = 1

n+1 ) is non-Kähler. In this case
the Ricci flow equation ∂tg = −2Ricg reduces to the following system of ODE’s on
the family of canonical deformation metrics {ρgcan

λ }λ,ρ :




dλ2

dt
= −2

ρ
(λ2 − 1){(n + 1)λ2 − 1}

dρ

dt
= −2(n + 2− λ2) .

It turns out that the behavior is completely different from the Ricci flow defined
on the family of Chow-Yang metrics {ρgCY

λ }λ,ρ (see Theorem 7.1).
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7. Ricci flow.

The family F is stable under the scaling by positive numbers and the convex
sum. Therefore the family F is stable under the Ricci flow equation. Here, for
a time dependent metrics g(x, t) is said to satisfy the Ricci flow equation if the
evolution equation

∂t g = −2 Ricg

holds.

Theorem 7.1. (1) The Ricci flow equation

∂tg = −2 Ricg

on the twistor space Z with initial metric in the family F reduces to the system of
ordinary differential equations




d

dt
(ρ(t)λ2(t)) = −8 (1 + n λ2(t)) ,

d

dt
ρ(t) = −4 (λ(t)−2 + 2n + 1) .

(2) For any initial metric at time t = 0 in the homothetically extended family
of Chow-Yang metrics on Z, the system of ordinary differential equations (12) has
a solution defined on (−∞, T ), i.e. the solution is extended for all negative reals
(such a solution is called an ancient solution) and extinct at some finite time T
(i.e., as t → T the solution shrinks the space and become extinct at time T ). The
extinction time T depends on the choice of the initial metric.

(3) Suppose that ρ(0) = 1. If λ(0) = 1, then the metric remains Kähler-Einstein
(λ(t) ≡ 1) and the solution evolves just by homothety ρ(t) = 1− 4(n + 1)t (in this
case T = 1

4(n+1)).
If λ(0) < 1, then

lim
t→−∞λ(t) = 1 lim

t→−∞ ρ(t) =∞ ,

lim
t→T

λ(t) = 0 , lim
t→T

ρ(t) = 0 .

If λ(0) > 1, then

lim
t→−∞ λ(t) = 1 , lim

t→−∞ ρ(t) =∞ ,

lim
t→T

λ(t) =∞ , lim
t→T

ρ(t) = 0 , lim
t→T

ρ(t)λ2(t) = 0 .

Suppose that λ(0) �= 1. Then, as t becomes larger in the future direction, the
deviation |1 − λ(t)| of the solution from being Kähler-Einstein becomes larger as
well. As t becomes larger in the past direction, then the solution becomes backward
asymptotic to the solution in the case of λ(0) = 1, i.e., the Kähler-Einstein metric
is the asymptotic soliton of the Ricci flow under consideration.
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(4) Suppose that λ(0) < 1. Then the Gromov-Hausdorff limit of the Ricci flow
solution as t → T , scaled with the factor ρ(t)−1, is the original quaternion Kähler
metric on M .

(5) Suppose that λ(0) > 1. Then the Gromov-Haussdorff limit of the Ricci flow
solution as t → T , scaled with the factor ρ(t)−1, is the sub-Riemmanian metric
defined on the horizontal distribution of the twistor space Z which projects isomet-
rically to the original quaternion Kähler metric on M .

Application of Theorem 6.2 and 7.1.

Theorem 6.1 and 7.1 imply that the 2-parameter family F is foliated by the
trajectories of the Ricci flow solutions all of which are ancient solutions.

We can draw the picture of this foliation.

Applying the curvature derivative estimates for the Ricci flow due to Bando and
Shi ([B], [Shi], see also presentation in [C-K]) to the ancient solutions in Theorem
7.1 (together with the curvature computation in §6), we get the following (for a
proof of Theorem 7.2, see [K-O1] arXiv:0801.2605 [math.DG].) :

Theorem 7.2. We have the limit formula

lim
λ→∞

|∇gCY
λ RmgCY

λ |gCY
λ

= 0 .

This supports the LeBrun-Salamon Conjecture. If LeBrun-Salamon Conjecture
is true, we must have

∇Rm = 0

for the original quaternion Kähler metric g on M4n.

As gλ tends to the sub-Riemannian metric on Z which covers the original
(M4n, g) (n ≥ 2) isometrically, there is a possibility that the limit formula

lim
λ→∞

|∇gCY
λ RmgCY

λ |gCY
λ

= 0

in Theorem 7.2 implies the LeBrun-Salamon conjecture

∇Rm = 0 ,

i.e., the original (M4n, g) is isometric to one of the Wolf spaces. In fact, we can
prove the following Theorem 7.3, full detail of which can be found in [K-O1],
arXiv:0801.2605 [math.DG].

Theorem 7.3. Any irreducible positive quaternion Kähler manifold (M4n, g) is
isometric to one of the Wolf spaces.

Outline of Proof. We choose an orthonormal basis (eA) of the tangent space
(TmM, gm) (m ∈ M) and extend it to an orthonormal frame on a neighborhood
of m by parallel transportation along geodesics emanating from m. This defines
a (4n)-dimensional surface S centered at (eA) ∈ P (P being the holonomy reduc-
tion of the principal bundle of orthonormal frames of M) which is transversal to
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the vertical foliation. This determines a (4n)-dimensional surface S′ in the twistor
space Z centered at a point m̃ on a P1-fiber over m, which is transversal to the
P1-fibration. The covariant derivative of the curvature tensor at m is computed
by differentiating the components of the curvature tensor w.r.to the orthonormal
frames represented by points of S (identified with S′ in Z) in the direction of a
horizontal tangent vector at m̃ (identified with a tangent vector of M at m). In §6,
we computed the curvature form of the metric gλ = λ2(α2

1 + α2
3) +

∑3
i=0

tX i ·X i

on Z. For our purpose, we need:

Ωλ
0
0 = Ω0

0 −X1 ∧ tX1 −X3 ∧ tX3

Ωλ
1
1 = Ω0

0 −X0 ∧ tX0 −X2 ∧ tX2

Ωλ
2
2 = Ω0

0 −X1 ∧ tX1 −X3 ∧ tX3

Ωλ
3
3 = Ω0

0 −X0 ∧ tX0 −X2 ∧ tX2

and

Ωλ
1
0 = Ω1

0 + X0 ∧ tX1 + X2 ∧ tX3 − (dα1 − 2α2 ∧ α3)

Ωλ
2
0 = Ω2

0 + X3 ∧ tX1 −X1 ∧ tX3 − (dα2 − 2α3 ∧ α1)
+ dα2

Ωλ
3
0 = Ω3

0 −X2 ∧ tX1 + X0 ∧ tX3 − (dα3 − 2α1 ∧ α2)

Ωλ
2
1 = Ω2

1 −X3 ∧ tX0 + X1 ∧ tX2 + (dα3 − 2α1 ∧ α2)

Ωλ
3
1 = Ω3

1 + X2 ∧ tX0 −X0 ∧ tX2 − (dα2 − 2α3 ∧ α1)
+ dα2

Ωλ
3
2 = Ω3

2 + X2 ∧ tX3 + X0 ∧ tX1 + (dα1 − 2α2 ∧ α3) .

Taking the component in the X i (i = 0, 1, 2, 3) direction of the curvature tensor and
taking the covariant derivative in the X i (i = 0, 1, 2, 3) direction, we immediately
conclude that the covariant derivatives of the X i (i = 0, 1, 2, 3) part of the curvature
tensor of the metric gCY

λ of the twistor space Z at m̃ in the horizontal direction
is equal to the covariant derivative in the corresponding direction of the curvature
tensor of the quaternion Kähler manifold (M, g) under question. On the other
hand, we have from Theorem 7.2 the limit formula

lim
λ→∞

|∇gCY
λ RmgCY

λ |gCY
λ

= 0 .

This implies that the curvature tensor of the positive quaternion Kähler manifold
(M, g) must satisfy the condition ∇R ≡ 0 from the beginning. This implies that
(M, g) is a symmetric space. Since we assumed that (M, g) is irreducible, (M, g)
must be isometric to one of the Wolf spaces. �
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