Anton Galaev (Masaryk University, Brno, Czech Republic)

On holonomy of supermanifolds

arXiv:math/0703679 **v3**

Vector superspace: $V = V_{\bar{0}} \oplus V_{\bar{1}} (\mathbb{Z}_2 = \{\bar{0}, \bar{1}\})$

Homogeneous elements: $x \in V_{\bar{0}} \cup V_{\bar{1}}$

 $x \in V_{\bar{0}}$ is called even, $|x| = \bar{0}$;

 $x \in V_{\bar{1}} \setminus \{0\}$ is called odd, $|x| = \bar{1}$;

V and W are vector superspaces

 $\Rightarrow V \otimes W$ and Hom(V, W) are vector superspaces:

$$(V \otimes W)_{\bar{0}} = (V_{\bar{0}} \otimes W_{\bar{0}}) \oplus (V_{\bar{1}} \otimes W_{\bar{1}}) \qquad (V \otimes W)_{\bar{1}} = (V_{\bar{0}} \otimes W_{\bar{1}}) \oplus (V_{\bar{1}} \otimes W_{\bar{0}})$$

$$\operatorname{Hom}(V,W)_{\bar{0}} = \operatorname{Hom}(V_{\bar{0}},W_{\bar{0}}) \oplus \operatorname{Hom}(V_{\bar{1}},W_{\bar{1}})$$

$$= \{ f \in \operatorname{Hom}(V,W) \big| \quad |f(x)| = |x| \} \quad \text{(morphisms)}$$

$$\operatorname{Hom}(V,W)_{\bar{1}} = \operatorname{Hom}(V_{\bar{0}},W_{\bar{1}}) \oplus \operatorname{Hom}(V_{\bar{1}},W_{\bar{0}})$$

$$= \{ f \in \operatorname{Hom}(V,W) \big| \quad |f(x)| = |x| + \bar{1}, \ x \neq 0 \}$$

Superalgebra: $A = A_{\bar{0}} \oplus A_{\bar{1}}, \cdot : A \otimes A \to A, |xy| = |x| + |y|$

A is called *commutative* if $xy = (-1)^{|x||y|}yx$

Example. The Grassmann superalgebra

$$\Lambda(n)=\oplus_{i=0}^n\Lambda^i\mathbb{R}^n=\Lambda^{even}\oplus\Lambda^{odd}$$
 is commutative

Lie superalgebra: $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}, [\cdot, \cdot] : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}, |[x, y]| = |x| + |y|$

1)
$$[x, y] = (-1)^{|x||y|}[y, x]$$

2)
$$[[x,y],z] + (-1)^{|x|(|y|+|z|)}[[y,z],x] + (-1)^{|z|(|x|+|y|)}[[z,x],y] = 0$$

 $\Rightarrow \mathfrak{g}_{\bar{0}}$ is a Lie algebra and $\mathfrak{g}_{\bar{1}}$ is a $\mathfrak{g}_{\bar{0}}$ -module

Example.
$$\mathbb{K} = \mathbb{R} \text{ or } \mathbb{C}$$
 $\mathfrak{gl}(n|m, \mathbb{K}) = \{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \}$

$$\mathfrak{gl}(n|m,\mathbb{K})_{\bar{0}} = \{ \left(\begin{smallmatrix} A & 0 \\ 0 & D \end{smallmatrix} \right) \} \simeq \mathfrak{gl}(n,\mathbb{K}) \oplus \mathfrak{gl}(m,\mathbb{K})$$

$$\mathfrak{gl}(n|m)_{\bar{1}} = \{ \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix} \} \simeq (\mathbb{K}^n \otimes (\mathbb{K}^m)^*) \oplus ((\mathbb{K}^n)^* \otimes \mathbb{K}^m)$$

$$[X,Y] = XY - (-1)^{|X||Y|}YX$$

Supermanifold: $\mathcal{M}^{n|m} = (M, \mathcal{O}_{\mathcal{M}})$ M is a smooth n-dim. manifold, $\mathcal{O}_{\mathcal{M}}$ is a sheaf of superalgebras over \mathbb{R} such that locally

$$\mathcal{O}_{\mathcal{M}}(U) \simeq \mathcal{O}_{M}(U) \otimes \Lambda(m)$$

 (x^{i}) (i = 1, ..., n) coordinates on M, (ξ^{α}) $(\alpha = 1, ..., m)$ a basis of \mathbb{R}^{m} $\Rightarrow (x^{i}, \xi^{\alpha}) = (x^{a})$ are called coordinates on \mathcal{M} (put $x^{n+\alpha} = \xi^{\alpha}$ and assume a = 1, ..., n + m) $f \in \mathcal{O}_{M}(U) \Rightarrow$

$$f = \tilde{f} + \sum_{r=1}^{m} \sum_{\alpha_1 < \dots < \alpha_r} f_{\alpha_1 \dots \alpha_r} \xi^{\alpha_1} \dots \xi^{\alpha_r}, \quad \tilde{f}, f_{\alpha_1 \dots \alpha_r} \in \mathcal{O}_M(U)$$
$$x \in U \quad \Rightarrow \quad f(x) := \tilde{f}(x)$$

 \Rightarrow f is not determined by its values at all points of U!!!

The tangent sheaf: $\mathcal{T}_{\mathcal{M}} = (\mathcal{T}_{\mathcal{M}})_{\bar{0}} \oplus (\mathcal{T}_{\mathcal{M}})_{\bar{1}}$,

$$(\mathcal{T}_{\mathcal{M}})_{\bar{i}}(U) = \left\{ X : \mathcal{O}_{\mathcal{M}}(U) \to \mathcal{O}_{\mathcal{M}}(U) \middle| \begin{aligned} |X| &= \bar{i}, \ X \text{ is } \mathbb{R}\text{-linear} \\ X(fg) &= X(f)g + (-1)^{|f||g|} f X(g) \end{aligned} \right\}$$

The vector fields $\partial_i = \partial_{x^i}$, $\partial_{\alpha} = \partial_{\xi^{\alpha}}$ form a local basis of $\mathcal{T}_{\mathcal{M}}(U)$

 $\Rightarrow \mathcal{T}_{\mathcal{M}}$ is a locally free sheaf of supermodules over $\mathcal{O}_{\mathcal{M}}$

Example. $E \to M$ a vector bundle $\Rightarrow \mathcal{O}_{\mathcal{M}}(U) := \Lambda(\Gamma(U, E))$ defines a supermanifold \mathcal{M} .

Let \mathcal{E} be a locally free sheaf of supermodules over $\mathcal{O}_{\mathcal{M}}$ of rank p|q.

 $x \in M$ consider the fiber at x: $\mathcal{E}_x := \mathcal{E}(U)/(\mathcal{O}_{\mathcal{M}}(U))_x \mathcal{E}(U)$,

where $x \in U$ and $(\mathcal{O}_{\mathcal{M}}(U))_x \subset \mathcal{O}_{\mathcal{M}}(U)$ are functions vanishing at x.

For $X \in \mathcal{E}(U)$ consider the value $X_x \in \mathcal{E}_x$

Example.
$$\mathcal{E} = \mathcal{T}_{\mathcal{M}} \Rightarrow (\mathcal{T}_{\mathcal{M}})_x = T_x \mathcal{M} \text{ and } (T_x \mathcal{M})_{\bar{0}} = T_x M$$

Consider the vector bundle $E = \bigcup_{x \in M} \mathcal{E}_x \to M$.

We get the projection $\sim: \mathcal{E}(U) \to \Gamma(U, E), \quad X \mapsto \tilde{X}, \quad \tilde{X}_x = X_x$

Let (e_A) A = 1, ..., p + q be a basis of $\mathcal{E}(U)$

$$X \in \mathcal{E}(U) \Rightarrow X = X^A e_A \ (X^A \in \mathcal{O}_{\mathcal{M}}(U)) \Rightarrow \tilde{X} = \tilde{X}^A \tilde{e}_A$$

Connection on \mathcal{E} : $\nabla : \mathcal{T}_{\mathcal{M}} \otimes_{\mathbb{R}} \mathcal{E} \to \mathcal{E}$ $|\nabla_X Y| = |X| + |Y|,$

$$\nabla_{fY}X = f\nabla_{Y}X$$
 and $\nabla_{Y}fX = (Yf)X + (-1)^{|Y||f|}f\nabla_{Y}X$

Locally: $\nabla_{\partial_a} e_B = \Gamma_{aB}^A e_A$, $\Gamma_{aB}^A \in \mathcal{O}_{\mathcal{M}}(U)$

 $\tilde{\nabla} = (\nabla|_{\Gamma(TM)\otimes\Gamma(E)})^{\sim} : \Gamma(TM)\otimes\Gamma(E) \to \Gamma(E)$ is a connection on E $\tilde{\Gamma}_{iB}^A$ are Cristoffel symbols of $\tilde{\nabla}$

 $\gamma: [a,b] \subset \mathbb{R} \to M$ $\tau_{\gamma}: E_{\gamma(a)} \to E_{\gamma(b)}$ the parallel displacement along γ . $\tau_{\gamma}: \mathcal{E}_{\gamma(a)} \to \mathcal{E}_{\gamma(b)}$ is an isomorphism of vector superspaces.

Problem: Define holonomy of ∇ (it must give information about all parallel sections of \mathcal{E} !)

Parallel sections

 $X \in \mathcal{E}(M)$ is called parallel if $\nabla X = 0$

$$\nabla X = 0 \Rightarrow \tilde{\nabla} \tilde{X} = 0 \quad (\Leftarrow!!!)$$

Locally:

$$\nabla X = 0 \Leftrightarrow \begin{cases} \partial_{i}X^{A} + X^{B}\Gamma_{iB}^{A} = 0, \\ \partial_{\gamma}X^{A} + (-1)^{|X^{B}|}X^{B}\Gamma_{\gamma B}^{A} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (\partial_{\gamma_{r}}...\partial_{\gamma_{1}}(\partial_{i}X^{A} + X^{B}\Gamma_{iB}^{A}))^{\sim} = 0, & (*) \\ (\partial_{\gamma_{r}}...\partial_{\gamma_{1}}(\partial_{\gamma}X^{A} + (-1)^{|X^{B}|}X^{B}\Gamma_{\gamma B}^{A}))^{\sim} = 0 & (**) \end{cases}$$

$$\tilde{\nabla}\tilde{X} = 0 \Leftrightarrow \partial_{i}\tilde{X}^{A} + \tilde{X}^{B}\tilde{\Gamma}_{iB}^{A} = 0$$

Prop. A parallel section $X \in \mathcal{E}(M)$ is uniquely defined by its value at any point $x \in M$.

Proof. $\nabla X = 0 \Rightarrow \tilde{\nabla} \tilde{X} = 0$; $\tilde{X}_x = X_x$ uniquely determine \tilde{X} , i.e. we know the functions \tilde{X}^A .

Further, use (**): $X_{\gamma}^{A} = -\tilde{X}^{B}\tilde{\Gamma}_{\gamma B}^{A}$,

$$X^A_{\gamma\gamma_1} = -\tilde{X}^B\Gamma^A_{\gamma B\gamma_1} + X^B_{\gamma_1}\tilde{\Gamma}^A_{\gamma B} \dots \Rightarrow \text{we know the functions } X^A$$
. \square

Def. (holonomy algebra) $\mathfrak{hol}(\nabla)_x :=$

$$\left\langle \tau_{\gamma}^{-1} \circ \bar{\nabla}_{Y_{r},\dots,Y_{1}}^{r} R_{y}(Y,Z) \circ \tau_{\gamma} \middle| \begin{array}{c} r \geq 0, \ Y,Z,Y_{i} \in T_{y}\mathcal{M} \\ \bar{\nabla}: \text{ connect on } \mathcal{T}_{\mathcal{M}}|_{U} \end{array} \right\rangle \subset \mathfrak{gl}(\mathcal{E}_{x}) \simeq \mathfrak{gl}(p|q,\mathbb{R})$$

Note: $\mathfrak{hol}(\tilde{\nabla})_x \subset (\mathfrak{hol}(\nabla)_x)_{\bar{0}} \qquad (\neq !)$

Lie supergroup $\mathcal{G} = (G, \mathcal{O}_{\mathcal{G}})$ is a group object in the category of supermanifolds; \mathcal{G} is uniquely given by the Harish-Chandra pair (G, \mathfrak{g}) , where $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$ is a Lie superalgebra, $\mathfrak{g}_{\bar{0}}$ is the Lie algebra of G.

Denote by $\operatorname{Hol}(\nabla)_x^0$ the connected Lie subgroup of $\operatorname{GL}((\mathcal{E}_x)_{\bar{0}}) \times \operatorname{GL}((\mathcal{E}_x)_{\bar{1}})$ corresponding to $(\mathfrak{hol}(\nabla)_x)_{\bar{0}} \subset \mathfrak{gl}((\mathcal{E}_x)_{\bar{0}}) \oplus \mathfrak{gl}((\mathcal{E}_x)_{\bar{1}}) \subset \mathfrak{gl}(\mathcal{E}_x);$

 $\operatorname{Hol}(\nabla)_x := \operatorname{Hol}(\nabla)_x^0 \cdot \operatorname{Hol}(\tilde{\nabla})_x \subset \operatorname{GL}((\mathcal{E}_x)_{\bar{0}}) \times \operatorname{GL}((\mathcal{E}_x)_{\bar{1}}).$

Def. Holonomy group: $\mathcal{H}ol(\nabla)_x := (\operatorname{Hol}(\nabla)_x, \mathfrak{hol}(\nabla)_x);$ the restricted holonomy group: $\mathcal{H}ol(\nabla)_x^0 := (\operatorname{Hol}(\nabla)_x^0, \mathfrak{hol}(\nabla)_x).$

Def. (infinitesimal holonomy algebra) $\mathfrak{hol}(
abla)^{inf}_x :=$

$$<\tau_{\gamma}^{-1}\circ\bar{\nabla}^{r}_{Y_{r},...,Y_{1}}R_{x}(Y,Z)\circ\tau_{\gamma}|r\geq0,\ Y,Z,Y_{1},...,Y_{r}\in T_{x}\mathcal{M}>\subset\mathfrak{hol}(\nabla)_{x}$$

Theorem. If \mathcal{M} , \mathcal{E} and ∇ are analytic, then $\mathfrak{hol}(\nabla)_x = \mathfrak{hol}(\nabla)_x^{inf}$.

Theorem.

$$\{X \in \mathcal{E}(M), \ \nabla X = 0\} \longleftrightarrow \begin{cases} X_x \in \mathcal{E}_x \text{ annihilated by } \mathfrak{hol}(\nabla)_x \\ \text{and preserved by } \operatorname{Hol}(\tilde{\nabla})_x \end{cases}$$

Proof.
$$\longrightarrow: \nabla X = 0 \Rightarrow \bar{\nabla}^r_{Y_r,\dots,Y_1} R(Y,Z) X = 0$$

$$\nabla X = 0 \quad \Rightarrow \quad \tilde{\nabla} \tilde{X} = 0 \quad \Rightarrow \quad \tilde{X} \text{ is preserved by } \operatorname{Hol}(\tilde{\nabla})_x$$

$$\implies \bar{\nabla}^r_{Y_r,\dots,Y_1} R_y(Y,Z) \circ \tau_\gamma X_x = 0 \implies X_x \text{ is annihilated by } \mathfrak{hol}(\nabla)_x$$

←-:

$$\operatorname{Hol}(\tilde{\nabla})_x$$
 preserves $X_x \in \mathcal{E}_x \Longrightarrow \exists X_0 \in \Gamma(E), \ \tilde{\nabla} X_0 = 0, \ (X_0)_x = X_x$

$$X_0 = X_0^A \tilde{e}_A, \ X_0^A \in \mathcal{O}_M(U)$$

(**) defines
$$X_{\gamma\gamma_1...\gamma_r}^A \in \mathcal{O}_M(U)$$
 for all $\gamma < \gamma_1 < \cdots < \gamma_r, 0 \le r \le m-1$.

We get
$$X^A \in \mathcal{O}_{\mathcal{M}}(U)$$
, consider $X = X^A e_A \in \mathcal{E}(U)$.

Claim: $\nabla X = 0$. To prove (by induction over r):

$$X^A$$
 satisfy (*) and (**) for all $\gamma_1 < \cdots < \gamma_r, 0 \le r \le m$

$$(\partial_{\gamma_{r}}...\partial_{\gamma_{1}}(\partial_{i}X^{A} + X^{B}\Gamma_{iB}^{A}))^{\sim} = (\partial_{\gamma_{r}}...\partial_{\gamma_{2}}((-1)^{(|A|+|B|)|X^{B}|}R_{B\gamma_{1}i}^{A}X^{B}))^{\sim}$$

$$= (\partial_{\gamma_{r}}...\partial_{\gamma_{3}}((-1)^{(|A|+|B|)|X^{B}|}\bar{\nabla}_{\gamma_{2}}R_{B\gamma_{1}i}^{A}X^{B}))^{\sim}$$

$$= \cdots = ((-1)^{(|A|+|B|)|X^{B}|}\bar{\nabla}_{\gamma_{r},...,\gamma_{2}}^{r-1}R_{B\gamma_{1}i}^{A}X^{B})^{\sim} = 0,$$

this proves (*)

Parallel subsheaves

A subsheaf $\mathcal{F} \subset \mathcal{E}$ of $\mathcal{O}_{\mathcal{M}}$ -supermodules is called a *locally direct* if locally there exists a basis of $\mathcal{E}(U)$ some elements of which form a basis of $\mathcal{F}(U)$

A distribution on \mathcal{M} is a locally direct subsheaf of $\mathcal{T}_{\mathcal{M}}$

 $\mathcal{F} \subset \mathcal{E}$ is parallel if $\nabla_Y X \in \mathcal{F}(U)$ for all $Y \in \mathcal{T}_{\mathcal{M}}(U)$ and $X \in \mathcal{F}(U)$

Theorem.

{parallel locally direct subsheaves $\mathcal{F} \subset \mathcal{E}$ of rank $p_1|q_1$ }

 \longleftrightarrow $\{\mathcal{F}_x \subset \mathcal{E}_x \text{ of dimension } p_1|q_1 \text{ preserved by } \mathfrak{hol}(\nabla)_x \text{ and } \operatorname{Hol}(\tilde{\nabla})_x\}$

Linear connections

$$\nabla$$
 a connection on $\mathcal{E} = \mathcal{T}_{\mathcal{M}}, \qquad E = \bigcup_{y \in M} T_y \mathcal{M} = T \mathcal{M}, \quad E_{\bar{0}} = T M$
 $\mathfrak{hol}(\nabla) \subset \mathfrak{gl}(n|m,\mathbb{R}), \qquad \operatorname{Hol}(\tilde{\nabla}) \subset \operatorname{GL}(n,\mathbb{R}) \times \operatorname{GL}(m,\mathbb{R})$

Theorem.

$$\left\{
\begin{array}{l}
\text{Parallel tensor fields} \\
\text{of type } (p,q) \text{ on } \mathcal{M}
\end{array}
\right\} \longleftrightarrow
\left\{
\begin{array}{l}
A_x \in T_x^{p,q} \mathcal{M} \text{ annihilated by } \mathfrak{hol}(\nabla)_x \\
\text{and preserved by } \operatorname{Hol}(\tilde{\nabla})_x
\end{array}
\right\}$$

Let g be a bilinear form on a vector superspace V.

$$g \text{ is } even \text{ if } g(V_{\bar{0}}, V_{\bar{1}}) = g(V_{\bar{1}}, V_{\bar{0}}) = 0$$

$$g \text{ is } odd \text{ if } g(V_{\bar{0}}, V_{\bar{0}}) = g(V_{\bar{1}}, V_{\bar{1}}) = 0$$

g is supersymmetric if
$$g(x,y) = (-1)^{|x||y|}g(y,x)$$

$$g$$
 is $super skew-symmetric$ if $g(x,y)=-(-1)^{|x||y|}g(y,x)$

Example. Let g be non-degenerate even and supersymmetric

 $\Rightarrow g|_{V_{\bar{0}} \times V_{\bar{0}}}$ is a usual non-degenerate symmetric bilinear form (of sign. (p,q))

and $g|_{V_{\bar{1}}\times V_{\bar{1}}}$ is a usual non-degenerate skew-symmetric bilinear form

$$\mathfrak{so}(p,q|2k,\mathbb{R})$$
 is a subalgebra of $\mathfrak{gl}(p+q|2k,\mathbb{R})$ preserving g

$$\mathfrak{so}(p,q|2k,\mathbb{R}) = \left\{ \begin{pmatrix} A & B_1 & B_2 \\ -B_2^t & C_1 & C_2 \\ B_1^t & C_3 & -C_1^t \end{pmatrix} \middle| A \in \mathfrak{so}(p,q), \ C_2^t = C_2, \ C_3^t = C_3 \right\}$$

$$\mathfrak{so}(p,q|2k,\mathbb{R})_{\bar{0}} \simeq \mathfrak{so}(p,q) \oplus \mathfrak{sp}(2k,\mathbb{R}), \quad \mathfrak{so}(p,q|2k,\mathbb{R})_{\bar{1}} \simeq \mathbb{R}^{p+q} \otimes \mathbb{R}^{2k}$$

Examples of parallel structures on (\mathcal{M}, ∇) and the corresponding holonomy

parallel structure on \mathcal{M}	$\mathfrak{hol}(\nabla)$ is	$\operatorname{Hol}(\tilde{\nabla})$ is	restriction
	contained in	contained in	
complex structure	$\mathfrak{gl}(k l,\mathbb{C})$	$\mathrm{GL}(k,\mathbb{C}) \times \mathrm{GL}(l,\mathbb{C})$	n = 2k, l = 2m
odd complex structure,	$\mathfrak{q}(n,\mathbb{R})$	$\bigg \left\{ \left(\begin{smallmatrix} A & 0 \\ 0 & A \end{smallmatrix} \right) \middle A \in \mathrm{GL}(n, \mathbb{R}) \right\}$	m = n
i.e. odd automorphism	(queer Lie		
$J \text{ of } \mathcal{T}_{\mathcal{M}} \text{ with } J^2 = -\operatorname{id}$	superalgebra)		
Riemannian supermetric,	$\mathfrak{osp}(p_0,q_0 2k)$	$O(p_0, q_0) \times \operatorname{Sp}(2k, \mathbb{R})$	$n = p_0 + q_0, m = 2k$
i.e. even non-degenerate			
supersymmetric metric			
even non-degenerate	$\mathfrak{osp}^{\mathrm{sk}}(2k p,q)$	$\operatorname{Sp}(2k,\mathbb{R}) \times \operatorname{O}(p,q)$	n = 2k, m = p + q
super skew-symmetric metric			
odd non-degenerate	$\mathfrak{pe}(n,\mathbb{R})$	$\left\{ \left(\begin{smallmatrix} A & 0 \\ 0 & A \end{smallmatrix} \right) \middle A \in \mathrm{GL}(n, \mathbb{R}) \right\}$	m = n
supersymmetric metric	(periplectic Lie		
	superalgebra)		
odd non-degenerate super	$\mathfrak{pe}^{sk}(n,\mathbb{R})$	$\left\{ \left(\begin{smallmatrix} A & 0 \\ 0 & A \end{smallmatrix} \right) \middle A \in \mathrm{GL}(n, \mathbb{R}) \right\}$	m = n
skew-symmetric metric			

Riemannian supermanifolds

On (\mathcal{M}, g) exists a unique Levi-Civita connection ∇

$$\mathfrak{hol}(\mathcal{M},g) \subset \mathfrak{osp}(p_0,q_0|2k) \text{ and } \mathrm{Hol}(\tilde{\nabla}) \subset \mathrm{O}(p_0,q_0) \times \mathrm{Sp}(2k,\mathbb{R})$$

Special geometries of Riemannian supermanifolds and the corresponding holonomies

type of (\mathcal{M}, g)	$\mathfrak{hol}(\mathcal{M},g)$ is	$\operatorname{Hol}(\tilde{\nabla})$ is	restriction
	contained in	contained in	
Kählerian	$\mathfrak{u}(p_0,q_0 p_1,q_1)$	$U(p_0,q_0) \times U(p_1,q_1)$	$n = 2p_0 + 2q_0,$
			$m = 2p_1 + 2q_1$
special Kählerian	$\mathfrak{su}(p_0,q_0 p_1,q_1)$	$U(1)(SU(p_0, q_0) \times SU(p_1, q_1))$	$n = 2p_0 + 2q_0,$
(by def.)			$m = 2p_1 + 2q_1$
hyper-Kählerian	$\mathfrak{hosp}(p_0,q_0 p_1,q_1)$	$\operatorname{Sp}(p_0, q_0) \times \operatorname{Sp}(p_1, q_1)$	$n = 4p_0 + 4q_0,$
			$m = 4p_1 + 4q_1$
quaternionic-	$\mathfrak{sp}(1) \oplus \mathfrak{hosp}(p_0,q_0 p_1,q_1)$	$\mathrm{Sp}(1)(\mathrm{Sp}(p_0,q_0)\times\mathrm{Sp}(p_1,q_1))$	$n = 4p_0 + 4q_0 \ge 8,$
Kählerian			$m = 4p_1 + 4q_1$

Ric $(Y,Z) := \operatorname{str} \left(X \mapsto (-1)^{|X||Z|} R(Y,X) Z \right), \quad \operatorname{str} \left(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix} \right) = \operatorname{tr} A - \operatorname{tr} D$ **Prop.** Let (\mathcal{M},g) be a Kählerian supermanifold, then Ric = 0 if and only if $\mathfrak{hol}(\mathcal{M},g) \subset \mathfrak{su}(p_0,q_0|p_1,q_1)$. In particular, if (\mathcal{M},g) is special Kählerian, then Ric = 0; if M is simply connected, (\mathcal{M},g) is Kählerian and Ric = 0, then (\mathcal{M},g) is special Kählerian.

A generalization of the Wu theorem

the product $\mathcal{M} \times \mathcal{N} = (M \times N, \mathcal{O}_{\mathcal{M} \times \mathcal{N}})$:

Let $(U, x^1, ..., x^n, \xi^1, ..., \xi^m)$ and $(V, y^1, ..., y^p, \eta^1, ..., \eta^q)$ be coordinate systems on \mathcal{M} and \mathcal{N}

by definition,
$$\mathcal{O}_{\mathcal{M}\times\mathcal{N}}(U\times V):=\mathcal{O}_{M\times N}(U\times V)\otimes\Lambda_{\xi^1,\dots,\xi^m,\eta^1,\dots,\eta^q}$$

a supersubalgebra $\mathfrak{g} \subset \mathfrak{osp}(p_0, q_0|2k)$ is weakly-irreducible if it does not preserve any non-degenerate vector supersubspace of $\mathbb{R}^{p_0+q_0} \oplus \Pi(\mathbb{R}^{2k})$.

Theorem. Let (\mathcal{M}, g) be a Riemannian supermanifold such that the pseudo-Riemannian manifold (M, \tilde{g}) is simply connected and geodesically complete. Then there exist Riemannian supermanifolds

 $(\mathcal{M}_0, g_0), (\mathcal{M}_1, g_1), ..., (\mathcal{M}_r, g_r)$ such that

$$(\mathcal{M}, g) = (\mathcal{M}_0 \times \mathcal{M}_1 \times \cdots \times \mathcal{M}_r, g_0 + g_1 + \cdots + g_r), \quad (1)$$

the supermanifold (\mathcal{M}_0, g_0) is flat and the holonomy algebras of the supermanifolds $(\mathcal{M}_1, g_1), ..., (\mathcal{M}_r, g_r)$ are weakly-irreducible. In particular,

$$\mathfrak{hol}(\mathcal{M},g)=\mathfrak{hol}(\mathcal{M}_1,g_1)\oplus\cdots\oplus\mathfrak{hol}(\mathcal{M}_r,g_r).$$

For general (\mathcal{M}, g) decomposition (1) holds locally.

Proof. local version: $x \in M$, if $\mathfrak{hol}(\mathcal{M}, g)_x$ is not weakly-irreducible, then $\mathfrak{hol}(\mathcal{M}, g)_x$ preserves $F_1, F_2 \subset T_x \mathcal{M}, \quad F_1 \oplus F_2 = T_x \mathcal{M}$

- $\Rightarrow \exists$ parallel distributions \mathcal{F}_1 and \mathcal{F}_2 over \mathcal{M}
- $\Rightarrow \mathcal{F}_1$ and \mathcal{F}_2 are involutive $\Rightarrow \exists$ maximal integral submanifolds \mathcal{M}_1 and \mathcal{M}_2 of \mathcal{M} passing through the point x
- $\Rightarrow \exists$ local coordinates $x^1, ..., x^n, \xi^1, ..., \xi^m$ (resp., $y^1, ..., y^n, \eta^1, ..., \eta^m$) on \mathcal{M} such that $x^1, ..., x^{n_1}, \xi^1, ..., \xi^{m_1}$ (resp., $y^1, ..., y^{n-n_1}, \eta^1, ..., \eta^{m-m_1}$) are coordinates on \mathcal{M}_1 (resp., on \mathcal{M}_2).

 $\Rightarrow x^1, ..., x^{n_1}, y^1, ..., y^{n-n_1}, \xi^1, ..., \xi^{m_1}, \eta^1, ..., \eta^{m-m_1}$ are coordinates on \mathcal{M} and \mathcal{M} is locally isomorphic to a domain in the product $\mathcal{M}_1 \times \mathcal{M}_2$.

 g_1 and g_2 do not depend on the coordinates $y^1,...,y^{n-n_1},\eta^1,...,\eta^{m-m_1}$ and $x^1,...,x^{n_1},\xi^1,...,\xi^{m_1}$, respectively.

 (\mathcal{M}_1, g_1) and (\mathcal{M}_2, g_2) are Riemannian supermanifolds and $g = g_1 + g_2$.

global version:

 $(F_1)_{\bar{0}}, (F_2)_{\bar{0}} \subset T_x M$ are non-degenerate and preserved by $\operatorname{Hol}(M, \tilde{g})_x$ the Wu theorem $\Rightarrow M \simeq M_1 \times M_2$

the underlying manifolds of the supermanifolds \mathcal{M}_1 and \mathcal{M}_2 are M_1 and M_2 , respectively

local version $\Rightarrow \mathcal{M} = \mathcal{M}_1 \times \mathcal{M}_2$ and $g = g_1 + g_2$

Berger superalgebras

Problem: Classify possible irreducible holonomy algebras of torsion-free linear connections

Va vector superspace, $\mathfrak{g}\subset\mathfrak{gl}(V)$ a supersubalgebra

The space of algebraic curvature tensors of type g:

$$\mathcal{R}(\mathfrak{g}) = \left\{ R \in V^* \land V^* \otimes \mathfrak{g} \middle| \begin{array}{l} R(X,Y)Z + (-1)^{|X|(|Y| + |Z|)}R(Y,Z)X \\ + (-1)^{|Z|(|X| + |Y|)}R(Z,X)Y = 0 \\ \text{for all homogeneous } X,Y,Z \in V \end{array} \right\}$$

 $\mathfrak{g} \subset \mathfrak{gl}(V)$ is a Berger superalgebra if

$$\operatorname{span}\{R(X,Y)|R\in\mathcal{R}(\mathfrak{g}),\ X,Y\in V\}=\mathfrak{g}$$

Prop. Let \mathcal{M} be a supermanifold of dimension n|m with a linear torsion-free connection ∇ . Then its holonomy algebra $\mathfrak{hol}(\nabla) \subset \mathfrak{gl}(n|m,\mathbb{R})$ is a Berger superalgebra.

Examples of Berger superalgebras

$$\mathfrak{g}_0 \subset \mathfrak{gl}(V), \quad V := \mathfrak{g}_{-1}$$
 The k-prolongation:

$$\mathfrak{g}_k := \{ \varphi \in \operatorname{Hom}(\mathfrak{g}_{-1}, \mathfrak{g}_{k-1}) | \varphi(x)y = (-1)^{|x||y|} \varphi(y)x \} \quad (k \ge 1)$$

$$0 \longrightarrow \mathfrak{g}_2 \longrightarrow \mathfrak{g}_{-1}^* \otimes \mathfrak{g}_1 \longrightarrow \mathcal{R}(\mathfrak{g}_0) \longrightarrow H_{\mathfrak{g}_0}^{2,2} \longrightarrow 0$$

Computation of $H_{\mathfrak{g}_0}^{2,2}$: Leites, Serganova, Poletaeva...

Prop. The following are Berger superalgebras:

1)
$$\mathfrak{gl}(n|m)$$
, $\mathfrak{sl}(n|m)$, $\mathfrak{osp}^{sk}(n|2m)$ and $\mathfrak{spe}^{sk}(k)$ $(k \geq 3)$

2)
$$\mathfrak{c}(\mathfrak{sl}(n-p|q) \oplus \mathfrak{sl}(p|m-q))$$
 and $\mathfrak{sl}(n-p|q) \oplus \mathfrak{sl}(p|m-q)$
if $n \neq m, n-p+q \geq 2, m-q+p \geq 2,$
 $\mathfrak{sl}(n-p|q) \oplus \mathfrak{sl}(p|n-q)$ if $n \geq 3, n-p+q \geq 2, n-q+p \geq 2,$
 $\mathfrak{cosp}(n|2k), \mathfrak{osp}(n|2k), \mathfrak{ps}(\mathfrak{q}(p) \oplus \mathfrak{q}(n-p))$ and $\mathfrak{p}(\mathfrak{sq}(p) \oplus \mathfrak{sq}(n-p));$

- **3)** $\mathfrak{gl}(l|k)$ and $\mathfrak{sl}(l|k)$ acting on $\Lambda^2(\mathbb{R}^l \oplus \Pi(\mathbb{R}^k))$;
- **4)** $\mathfrak{sl}(p|n-p)$ acting on both $\Pi(S^2(\mathbb{R}^p \oplus \Pi(\mathbb{R}^{n-p}))) \text{ and } \Pi(\Lambda^2(\mathbb{R}^p \oplus \Pi(\mathbb{R}^{n-p})));$
- 5) $\operatorname{\mathfrak{spe}}(n), \operatorname{\mathfrak{pe}}(n), \operatorname{\mathfrak{cspe}}(n), \operatorname{\mathfrak{cpe}}(n);$

Prop. Let \mathfrak{g}_0 be a simple complex Lie superalgebra, $\mathfrak{g}_{-1} = \Pi(\mathfrak{g}_0)$, then $\mathfrak{g}_1 \simeq \Pi(\mathbb{C})$, $\mathfrak{g}_2 = 0$ and $\mathfrak{g}_0 \subset \mathfrak{gl}(\Pi(\mathfrak{g}_0))$ is a Berger superalgebra.