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The unit disc ∆ ⊂ C (I).

The unit disc ∆ = {z ∈ C : |z| < 1} has two well-known
symplectic forms ω0 and ωhyp :

ω0 =
i

2
d z ∧ d z,

ωhyp =
ω0

(1− |z|2)2 .

The plane C has also two symplectic forms. Namely,

ω0 =
i

2
d z ∧ d z,

ωFS =
ω0

(1 + |z|2)2 .

Actually, the Fubini-Study form ωFS on C comes from the
standard embedding C ⊂ CP 1 , i.e. z ↪→ (z : 1) .

Notice that (CP 1, ωFS) is the compact dual of the unit disc
(∆, ωhyp).
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The unit disc ∆ ⊂ C (II).

Consider the map Φ : ∆ → C given by

Φ(z) :=
z√

1− |z|2

We claim that:

{
Φ∗ω0 = ωhyp,

Φ∗ωFS = ω0.

A map Φ with the above properties is called a bisymplectomorphism
of (∆, ωhyp, ω0) and (C, ω0, ωFS) .
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The unit disc ∆ ∈ C (III).

What about the uniqueness of the bisymplectomorphism Φ ?

Let Ψ : ∆ → C be another bisymplectomorphism, i.e.
{

Ψ∗ω0 = ωhyp,

Ψ∗ωFS = ω0.

Then the composition f := Φ−1◦Ψ is a bisymplectomorphism
of (∆, ω0, ωhyp), i.e.

f ∗(ω0) = ω0

f ∗(ωhyp) = ωhyp

So we can introduce the group B(∆) of bisymplectomorphisms
of the disc (∆, ω0, ωhyp) .

Thus, the map Φ is unique up to elements of B(∆) .
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The unit disc ∆ ⊂ C (IV).

The following theorem gives a description of B(∆) .

Theorem 0.1. The elements f ∈ B(∆) are the maps de-
fined by

f (z) = u
(
|z|2

)
z (z ∈ ∆) ,

where u is a smooth function u : [0, 1) → S1 ( U(1) .

In other words, the restriction of a bisymplectomorphism f ∈
B(∆) to a circle of radius r (0 < r < 1) is the rotation u

(
r2

)
.

Notice that if f ∈ B(∆) then f (0) = 0.
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The unit disc ∆ ∈ C (Proof II).

Sketch of the Proof of Theorem 0.1 :

It is not difficult to show that the maps f (z) = u
(
|z|2

)
z ,

where u is a smooth function u : [0, 1) → S1 ( U(1) are
bisymplectomorphisms.

Conversely, assume now that f is a bisymplectomorphism.

• Since f preserves both symplectic forms then f preserves
the quotient ω0

ωhyp
= (1− |z|2)2 . Thus,

|f (z)| = |z|

for z ∈ ∆ .

• A simple computation shows that f (z) = v(|z|)z for z ∈
∆ \ {0} and v : (0, 1) → U(1) smooth.

• A Whitney’s Theorem can be used to show that v(|z|) =
u

(
|z|2

)
for a smooth u . !
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The unit disc ∆ ∈ C (Proof I).

To prove that Φ∗(ω0) = ωhyp notice that:

d Φ− d((1− |z|2)−1/2)z = (1− |z|2)−1/2 d z.

So

Φ(d Φ− d((1− |z|2)−1/2).z) = (1− |z|2)−1z d z .

then

− i

2
d Φ ∧ d Φ = − i

2
d(Φ(d Φ− d((1− |z|2)−1/2).z)) =

= − i

2
d((1− |z|2)−1z d z) = ωhyp ,

since Φ d((1− |z|2)−1/2)z = (1− |z|2)−1/2 d((1− |z|2)−1/2)|z|2
is exact.

Thus, we get
ωhyp = Φ∗(ω0) .

The proof that Φ∗(ωFS) = ω0 is similar.
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The Cartan’s domain D1[n] (I).

D1[n] ⊂ Cn2 ∼= Mn(C) is given by

D1[n] := {Z ∈ Mn(C) | In − ZZ∗ >> 0}.

So D1[n] has two standard symplectic forms ω0 and ωhyp
given by:

ω0 =
i

2
d Z ∧ d Z,

ωhyp = − i

2
∂∂ log det(In − ZZ∗).

The complex euclidean space Cn2 ∼= Mn(C) has two symplec-
tic forms:

ω0 =
i

2
d Z ∧ d Z,

ωFS =
i

2
∂∂ log det(In + ZZ∗).
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The Cartan’s domain D1[n] (II).

Notice that

D1[n] ⊂ Cn2 ⊂ Gn(C2n) ↪→ CPN .

The last arrow is the Plücker embedding

Gn(C2n) ↪→ CPN ,

where N =

(
2n
n

)
− 1 and Gn(C2n) is the complex Grass-

mannian of complex n subspaces of C2n .

Notice that Gn(C2n) is the compact dual of D1[n] .

Indeed, the form ωFS on Cn2
comes as the pullback form of

(CPN , ωFS) via the above embedding.
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The Cartan’s domain D1[n] (III).

Now we can ask the following two questions:

• Do there exist a bisymplectomorphism

Φ : (D1[n], ω0, ωhyp) → (Cn2
, ωFS, ω0) , i.e.

a diffeomorphism Φ : D1[n] → Cn2
such that:

Φ∗(ω0) = ωhyp,

Φ∗(ωFS) = ω0 ?

• It is possible to describe the group B(D1[n]) of diffeomor-
phisms f of D1[n] such that:

f ∗(ω0) = ω0

f ∗(ωhyp) = ωhyp ?
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The Cartan’s domain D1[n] (IV).

Claim: The map Φ : D1[n] → Cn2 ∼= Mn(C) given by

Φ(Z) := (In − ZZ∗)−1/2Z

is a bisymplectomorphism. That is to say, Φ is a diffeomor-
phism and :

Φ∗(ω0) = ωhyp,

Φ∗(ωFS) = ω0 .
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The Cartan’s domain D1[n] (V).

First of all observe that we can write

ωhyp = − i

2
∂ ∂ log det(In−ZZ∗) =

i

2
d ∂ log det(In−ZZ∗) =

=
i

2
d ∂ tr log(In − ZZ∗) =

i

2
d tr ∂ log(In − ZZ∗) =

= − i

2
d tr[Z∗(In − ZZ∗)−1 d Z],

where we use the decomposition d = ∂ + ∂̄ and the identity
log detA = tr logA .

By substituting X = (In − ZZ∗)−
1
2Z in the last expression

one gets:

− i

2
d tr[Z∗(In − ZZ∗)−1 d Z] =

= − i

2
d tr(X∗dX) +

i

2
d tr{X∗d[(In − ZZ∗)−

1
2 ]Z .

Finally, notice that the 1-form

tr[X∗ d(In − ZZ∗)−
1
2Z]

is exact being equal to d tr(C2

2 − logC) , where C = (In −
ZZ∗)−

1
2 .

So Φ∗(ω0) = ωhyp .

The proof that Φ∗(ωFS) = ω0 is similar.
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The general picture (I).

Let Ω be a symmetric bounded domain and let Ω∗ be its
compact dual. Assume dimC(Ω) = n .

The following inclusions are well-known:

Ω ⊂ Cn ⊂ Ω∗ ↪→ CPN ,

where the last arrow is the Borel-Weil embedding.

So the compact dual Ω∗ and Cn can be endowed with the
pullback form of the Fubini-Study form ωFS of CPN .

Thus, we can regard Cn as a complex euclidean space equipped
with two symplectic forms ω0 and ωFS .
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The general picture (II).

We can ask about the existence and uniqueness of a symplectic duality
map Φ . Namely,

• Do there exist a bisymplectomorphism

Φ : (Ω, ω0, ωhyp) → (Cn, ωFS, ω0) , i.e.

a diffeomorphism Φ : Ω → Cn such that:

Φ∗(ω0) = ωhyp,

Φ∗(ωFS) = ω0 ?

• It is possible to describe the group B(Ω) of diffeomor-
phisms f of Ω such that:

f ∗(ω0) = ω0

f ∗(ωhyp) = ωhyp ?
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Related results (I).

The existence of a symplectomorphism:

ψ : (Ω, ωhyp) → (Cn, ω0)

was proved by D. McDuff in The symplectic structure of
Kähler manifolds of non-positive curvature , J. Diff. Ge-
ometry 28 (1988), pp. 467-475.

As a conclusion it follows that the symplectic struture ωhyp
on R2n is not exotic.
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Related results (II).

• Notice that our question is stronger. Namely, we ask about
the existence of a BISYMPLECTOMORPHISM , i.e. :

Φ∗(ω0) = ωhyp,

Φ∗(ωFS) = ω0 ?

• Observe that McDuff’s theorem is existencial ,i.e. there
is not given an explicit symplectomorphism.

Actually, we are going to give an explicit formula for our
bisymplectomorphism Φ .

Moreover, we are going to give an explicit description of
all bysimplectomorphism Φ ’s.
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Bounded Symmetric Domains and
Hermitian Jordan Triple systems

(I).

We use the approach ”via” Jordan Algebras, due to Max Koecher,
to construct all the symmetric bounded domains Ω ⊂ Cn by
starting with a Hermitian Positive Jordan Triple Sys-
tem (V, {, , }) :

• V = Cn and {, , } : V 3 → V ,

• {x, y, z} is C -bilinear in (x, z) and C -anti-linear in y .

• satisfying the Jordan identity :

{x, y, {u, v, w}}− {u, v, {x, y, w}} =

= {{x, y, u}, v, w}− {u, {v, x, y}, w}.

• the sesquilinear form (x | y) := traceD(x, y) is positive,
where D(x, y)(·) := {x, y, ·} .
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Bounded Symmetric Domains and
Hermitian Jordan Triple systems

(II).

Each element x ∈ V has a spectral decomposition :

x = λ1c1 + λ2c2 + · · · + λrcr ,

where λ1 ≥ λ2 ≥ · · · ≥ 0 and (c1, c2, · · · , cr) is a frame a
maximal system of mutually orthogonal tripotents, i.e. {ci, ci, ci} =
0 and D(ci, cj) = 0 for i += j . Unique just for elements x ∈ V
of maximal rank r .

There exist polynomials m1, . . . ,mr on M ×M , homoge-
neous of respective bidegrees (1, 1), . . . , (r, r) , such that for
x ∈M , the polynomial

m(T, x, y) = T r −m1(x, y)T r−1 + · · · + (−1)rmr(x, y)

satisfies

m(T, x, x) =
r∏

i=1

(T − λ2
i ),

where x is the spectral decomposition of x =
∑

λjcj .
The inohomogeneous polynomial

N(x, y) = m(1, x, y)

is called the generic norm.
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Bounded Symmetric Domains and
Hermitian Jordan Triple systems

(III).

Construction of the bounded domain Ω .

• The Spectral Norm |z| of z ∈ V is defined as

|z|2 :=
‖D(z, z)‖

2

where ‖ ·‖ is the operator norm in V endowed with (·| ·) .

• The bounded domain attached to the HPJTS (V, {, , }) is
given by:

Ω := {z ∈ V : |z| < 1} .

That is to say, Ω is the unit sphere w.r.t. the Spectral
Norm .
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Bounded Symmetric Domains and
Hermitian Jordan Triple systems

(IV).

Construction of the symplectic forms ω0, ωhyp of Ω :

• Here is the hyperbolic form ωhyp of Ω :

ωhyp := − i

2
∂ ∂ logN (z) ,

where N (z) = N(z, z) .

• Here is the flat form ω0 of Ω :

ω0 :=
i

2
∂ ∂ m1(z, z) .

Remark: If Ω is irreducible, (i.e. (V, {, , }) is simple), then:

• ωhyp =
ωBerg

g ,

• ω0 =
i
2∂ ∂ trD(z,z)

g =
i
2∂ ∂ (z | z)

g .

The number g above is called the genus of the bounded do-
main and is a natural number, e.g. g = 2 for the unit disc.
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The symplectic duality (I).

The Bergman operator B(u, v) : V → V is given by

B(u, v) := id−D(u, v) + Q(u)Q(v) ,

where 2Q(u)(v) := {u, v, u} .

Let us introduced a map called Φ as follows:

Φ : Ω → V, z .→ B(z, z)−
1
4z ,

The map Φ is a (real analytic) diffeomorphism and its inverse
Φ−1 is given by:

Φ−1 : V → Ω, z .→ B(z,−z)−
1
4z ;
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The symplectic duality (II).

Theorem I : The diffeomorphism Φ(z) = B(z, z)−
1
4z is

a bisymplectomorphism of (Ω, ωhyp, ω0) and (V, ω0, ωFS) .
That is to say:

Φ∗(ω0) = ωhyp ;

Φ∗(ωFS) = ω0 ;

Remark : When Ω = D1[n] then the above map Φ agree
with the map Z .→ (In − ZZ∗)−1/2Z given in the previous
example.
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The symplectic duality (III).

Moreover, Φ has also the following properties:

(H) The map Φ is hereditary in the following sense: for any

(Ω′, 0)
i

↪→ (Ω, 0) complex and totally geodesic embedded
submanifold (Ω′, 0) through the origin 0, i.e. i(0) = 0
one has:

Φ|Ω′ = Φ.

Moreover
Φ(Ω′) = V ′ ⊂ V,

where V ′ is the Hermitian positive Jordan triple system
associated to Ω′ ;

(I) Φ is a (non-linear) interwining map w.r.t. the action of
the isotropy group K ⊂ Iso(Ω) at the origin, where Iso(Ω)
is the group of isometries of Ω , i.e. for every τ ∈ K

Φ ◦ τ = τ ◦ Φ;
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About the uniqueness of Φ.

Definition 0.2. A bisymplectomorphism of Ω is a diffeo-
morphism f : Ω → Ω which satisfies

f ∗ω0 = ω0 ,

f ∗ωhyp = ωhyp .

That is to say, f preserves both symplectic forms ω0 and
ωhyp .

Denote with B(Ω) the group of bisymplectomorphisms of the
bounded domain Ω .

Notice that the bisymplectomorphism

Φ : (Ω, ωhyp, ω0) → (V, ω0, ωFS)

is unique up to elements of B(Ω) .
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The group of
bisymplectomorphisms.

A bisymplectomorphism f ∈ B(Ω) can be described by using
the Bergman operator B(z) := B(z, z) . Namely,

Proposition 0.3. Let Ω be a bounded domain. Then a
diffeomorphism f ∈ Diff(Ω) is a bisymplectomorphism if
and only if it satisfies:

• f ∗ω0 = ω0,

• B (f (z)) ◦ d f (z) = d f (z) ◦ B(z) (z ∈ Ω).

Notice that the second condition means that f preserves the
Bergman operator B(z) , i.e. f ∗ B = B
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The rank one case (I).

Let Dn ⊂ Cn be the open unit ball of the standard Hermitian
space Cn , with Hermitian scalar product

(z | t) =
n∑

j=1

zjtj

and associated norm |z| . That is to say,

Dn := {z ∈ Cn : |z| < 1} .

Here is the description of the bisymplectomorphisms.

Theorem 0.4. The bisymplectomorphisms f ∈ B(Dn) are
the maps defined by

f (z) = γ
(
|z|2

)
u(z) (z ∈ Dn) ,

where u ∈ U(n) and γ is a smooth function γ : [0, 1) →
S1 ( U(1) .
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The rank one case (II).

Sketch of the Proof of Theorem 0.4 :

The Bergman operator B(z) is given by:

B(z)(w) := 2(1− |z|2)(w − z(w | z)) .

In particular, notice that for fixed z ∈ Dn the operator
B(z) : Cn → Cn has two eigenspaces. Namely, Vz := C.z
and V ⊥

z .

That is to say
Cn = Vz ⊕ V ⊥

z ,

where Vz and V ⊥
z are B(z)-invariant.

Then Proposition 0.3 implies that f must infinitesimally pre-
serve such decomposition.
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The rank one case (III).

So if f ∈ B(Dn) we get:

• |f (z)| = |z| . Thus, d f (0) is unitary, i.e. d f (0) ∈ U(n) .

• d f (z) preserves the complex line lz ⊂ TzDn spanned by
z , i.e. lz := {w ∈ TzDn : w = λ z} .

• Indeed, f takes complex lines through the origen into com-
plex lines through the origen.

Notice that the complex lines through the origen are the com-
plex totally geodesic discs ∆ of the symmetric domain, i.e.
the complexifications of the flats.

Now we can restrict f to the discs ∆ ⊂ Dn to finish the proof.
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The higher rank case (I).

The rank one case show that the description of B(Ω) depends
upon a good algebraic description of the Bergman operator
B(z) .

The theory of Jordan Algebras gives an algebraic descrip-
tion of the Bergman operator B(z) of all Bounded symmetric
domains Ω .

A principal role is played by the so called Peirce simulta-
neous decomposition relative to z ∈ Ω . That is ex-
actly the generalization of the decomposition in eigenspaces
Cn = Vz⊕V ⊥

z for the Bergman operator of the rank one case.
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The higher rank case (II).

Let Ω ⊂ V = Cn be an irreducible bounded symmetric do-
main attached to the HPJTS (V, {, , }) of rank r .

Let us call radial a bisymplectomorphism f ∈ B(Ω) such

f (∆r) = ∆r ,

for all polydiscs ∆r ⊂ Ω generated by the frames (c1, c2, · · · , cr) ,
i.e. ∆r = Ω

⋂
Cc1 ⊕ · · ·⊕ Ccr .

Theorem II Any f ∈ B(Ω) is of the form

f = u ◦R ,

where R is a radial bisymplectomorphism and u = d f (0) ∈
K , where K is the isotropy group at 0 ∈ Ω of Ω .

Theorem III Let R be a radial bisymplectomorphism.
Then there exists a function h ∈ C∞[0, 1) such that

R(z) = ei h(λ2
1)λ1e1 + ei h(λ2

2)λ2e2 + · · · + ei h(λ2
r)λrer

for all z ∈ M , where z = λ1e1 + λ2e2 + · · · + λrer is the
spectral decomposition of z ∈ M .
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