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The unit disc A C C (I).

The unit disc A = {z € C : |2| < 1} has two well-known
symplectic forms wy and Whyp

wO:%dz/\dZ

The plane C has also two symplectic forms. Namely,

1
wozédz/\di,
wo
WFS:(

L+ 222

Actually, the Fubini-Study form wpg on C comes from the
standard embedding C C CP! ie. z — (2:1).

Notice that (CP!,wpg) is the compact dual of the unit disc
(Aa whyp) :



The unit disc A C C (IT).

Consider the map ¢ : A — C given by

Z

V1= |z?

P(z) =

D*wy = Whyps

We claim that: {
(I)*(,UFS = Wy.

A map ® with the above properties is called a bisymplectomorphism

of (A,whyp,wo) and (C, wy, wrs).



The unit disc A € C (I11).

What about the uniqueness of the bisymplectomorphism ¢ 7

Let ¥ : A — C be another bisymplectomorphism, i.e.

Uy = Whyps
\IJ*LUFS = Wy.

Then the composition f := ® 1oV is a bisymplectomorphism
of (A,wo,whyp), i.e.
J (wo) = wo
" @hyp) = “hyp

So we can introduce the group B(A) of bisymplectomorphisms
of the disc (A, wy, whyp) .

Thus, the map ® is unique up to elements of B(A).



The unit disc A C C (IV).

The following theorem gives a description of B(A).

Theorem 0.1. The elements f € B(A) are the maps de-
fined by

fle)=u(zl) = (z€4),

where u is a smooth function v :[0,1) — S' ~U(1).

In other words, the restriction of a bisymplectomorphism f €
B(A) to acircle of radius r (0 < r < 1) is the rotation u (r?) .

Notice that if f € B(A) then f(0) =0.



The unit disc A € C (Proof II).

Sketch of the Proof of Theorem 0.1 :

It is not difficult to show that the maps f(z ( z ) z,
where u is a smooth function u : [0,1) — Sl U(l) are
bisymplectomorphisms.

Conversely, assume now that f is a bisymplectomorphism.

e Since f preserves both symplectic forms then f preserves
the quotient fh—o = (1 — |2/*)?. Thus,
yp

[f(2)] = |2

for z € A.

e A simple computation shows that f(z) = v(|z|)z for z €
A\ {0} and v : (0,1) — U(1) smooth.

e A Whitney’s Theorem can be used to show that v(|z]) =
u (|z]?) for a smooth u. O



The unit disc A € C (Proof I).

To prove that ®*(wg) = Whyp Dotice that:

dd—d((1—|zH) ) z=1—|2)V? d 2
So

DD —d((1— |2V 2) = (1= |z)'zd 2.
then

_% dOAAD = —% A(@(d D —d((1— |2*)7?).2)) =

L Ll gy

sinice Bd((1—[2[2)712)z = (1= [22) 712 d((1 = |2[2)12) 2

1S exact.

Thus, we get
Whyp = O*(wp) -

The proof that ®*(wpg) = wy is similar.



The Cartan’s domain Di|n| (I).

Di[n] € C" =2 M,(C) is given by
Di[n] :={Z € M,(C)| I, — ZZ* >> 0}.

So Di|n] has two standard symplectic forms wy and Whyp

given by:

w():%dZAdZ

I = *
Whyp = —55’5’ logdet(I, — ZZ%).

The complex euclidean space C" = M, (C) has two symplec-
tic forms:

wO:%dZ/\dZ

wrps = %85 logdet(I, + ZZ").



The Cartan’s domain D |n] (IT).

Notice that

Di[n] € €% C GH(C?) — CPV .
The last arrow is the Pliicker embedding

G,(C™) — CPY |

2n
n
mannian of complex n subspaces of C*".

where N = ( ) — 1 and G,(C*") is the complex Grass-

Notice that G,,(C*") is the compact dual of D;[n].

Indeed, the form wgg on C"* comes as the pullback form of
(CPY, wpg) via the above embedding.



The Cartan’s domain Di|n| (III).

Now we can ask the following two questions:

e Do there exist a bisymplectomorphism

O : (Dl[n},wo,whyp) e ((C"Q,wps,wo) ,1.e.
a diffeomorphism @ : D;[n] — C" such that:
O*(wy) = Whyp
Q" (wpg) = wy 7

e It is possible to describe the group B(D;[n]) of diffeomor-
phisms f of Dj[n| such that:

[ (wo) = wo
I @hyp) = @hyp
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The Cartan’s domain D{n|] (IV).

Claim: The map @ : Dy[n] — C"* 2 M, (C) given by

OZ):=I,— 22?7

is a bisymplectomorphism. That is to say, ¢ is a diffeomor-
phism and :

O*(wy) = Whyp:

(I)*(wFs) =Wy -
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The Cartan’s domain Di[n] (V).

First of all observe that we can write

1, — ) i )
Whyp = —500logdet(l, — 22%) = —ddlogdet(l, — ZZ") =

_ %d 9 tr log(I, — ZZ%) = %d tr dlog(l, — ZZ*) =

- —% d te[Z*(I, — 221 d 2],

where we use the decomposition d = @ + 0 and the identity
logdetA = tr logA.

By substituting X = (I, — ZZ *)_%Z in the last expression
one gets:

—% dte[Z* (I, — 22" 4 7] =

_ _% dtr(X*dX) + %du{X*d[([n — 2747 .

Finally, notice that the 1-form
[ X*d(I, — Z2*)"2Z]

is exact being equal to d tr(%2 — logC'), where C = (I, —
1
Z7*)72.

So P*(wy) = Whyp -
The proof that ®*(wps) = wy is similar.
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The general picture (I).

Let €2 be a symmetric bounded domain and let €2* be its
compact dual. Assume dimc()) =n.

The following inclusions are well-known:

QO c C" c Q — CPV,
where the last arrow is the Borel-Weil embedding.

So the compact dual ©* and C" can be endowed with the
pullback form of the Fubini-Study form wpg of CPY.

Thus, we can regard C™ as a complex euclidean space equipped
with two symplectic forms wy and wpg.
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The general picture (IT).

We can ask about the existence and uniqueness of a symplectic duality

map ¢. Namely,

e Do there exist a bisymplectomorphism

O (Q,wo,whyp) — (C", wps, wp) ,i.e.
a diffeomorphism @ : {2 — C” such that:
P (W()) — whypa

Q" (wpg) = wp 7

e [t is possible to describe the group B(2) of diffeomor-
phisms f of ) such that:



Related results (I).

The existence of a symplectomorphism:

¢ : (Qawhyp> — (Cn7w0>

was proved by D. McDuff in The symplectic structure of
Kahler manifolds of non-positive curvature , J. Diff. Ge-
ometry 28 (1988), pp. 467-475.

As a conclusion it follows that the symplectic struture Whyp

on R?" is not exotic.
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Related results (IT).

e Notice that our question is stronger. Namely, we ask about

the existence of a BISYMPLECTOMORPHISM , i.e. :

O*(wy) = Whyp:

(I)*(wFs) = Wy ?

e Observe that McDuft’s theorem is existencial i.e. there
is not given an explicit symplectomorphism.

Actually, we are going to give an explicit formula for our
bisymplectomorphism .

Moreover, we are going to give an explicit description of
all bysimplectomorphism ®’s.
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Bounded Symmetric Domains and
Hermitian Jordan Triple systems

(1)-

We use the approach ”via” Jordan Algebras, due to Max Koecher,
to construct all the symmetric bounded domains €2 C C" by
starting with a Hermitian Positive Jordan Triple Sys-

tem (V,{,,}):

e V=C"and {,,}: V3=V,
o {z,y,z} is C-bilinear in (z,z) and C-anti-linear in y.

e satisfying the Jordan identity :

{z,y, {u,v,w}} — {u, v, {x,y,w}} =
= {{CL’,y, u},v,w} - {u7 {U,aﬁ,y},w}.

e the sesquilinear form (x |y) := traceD(x,y) is positive,
where D(z,)() = {,9,}.
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Bounded Symmetric Domains and
Hermitian Jordan Triple systems

(I1).

Each element x € V' has a spectral decomposition :
r=AcCp+ Aocy+ -+ A\cp

where \y > Ao > -+ > 0 and (¢1,¢,- -+ ,¢) is a frame a
maximal system of mutually orthogonal tripotents, i.e. {¢;, ¢;, ¢} =
0 and D(c;, ¢j) = 0 for i # j. Unique just for elements x € V

of maximal rank r.

There exist polynomials my,...,m, on M x M, homoge-
neous of respective bidegrees (1,1),...,(r,7), such that for
x € M, the polynomial

m(T,z,y) =T" = m(2,y) T + -+ (=1)'m(z,y)

satisfies .

m(T,z,z) = | [(T = A}),
i=1
where x is the spectral decomposition of = =) Ajc;.
The inohomogeneous polynomial

N(z,y) =m(l,z,y)
is called the generic norm.
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Bounded Symmetric Domains and
Hermitian Jordan Triple systems
(I1T).

Construction of the bounded domain §2.

e The Spectral Norm |z| of z € V is defined as

‘Z‘Q — HD(Za Z)H
' 2
where |- || is the operator norm in V' endowed with (-|-).

e The bounded domain attached to the HPJTS (V,{,,}) is
given by:

Q={zeV: |z|<1}.

That is to say, {2 is the unit sphere w.r.t. the Spectral
Norm .
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Bounded Symmetric Domains and
Hermitian Jordan Triple systems

(IV).

Construction of the symplectic forms wy, Whyp of ):

e Here is the hyperbolic form Whyp of Q):

Whyp = —%8510@;/\/'(2) :
where N (z) = N(z, 2).

e Here is the flat form wy of €:

wp = %05m1(z,z) :

Remark: If () is irreducible, (i.e. (V,{,,}) is simple), then:

WhBerg

* “hyp = Ty
Y00 trD(z,2 200 (2|2
o = 2D _ DGl

The number ¢ above is called the genus of the bounded do-
main and is a natural number, e.g. g = 2 for the unit disc.
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The symplectic duality (I).

The Bergman operator B(u,v) : V — V is given by
B(u,v) :=id —D(u,v) + Q(u)Q(v) ,
where 2Q(u)(v) = {u,v,u}.

Let us introduced a map called ® as follows:

CI>:Q—>V,zI—>B(z,z)_%Iz,

The map @ is a (real analytic) diffeomorphism and its inverse
d~1 is given by:

1

OV Q2 Bz, —2) 12,
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The symplectic duality (IT).

Theorem 1 : The diffeomorphism ®(z) = B(z,z)_%!z is
a bisymplectomorphism of (Q,whyp,wo) and (V,wp, wrs) -
That s to say:

Q" (wy) = Whyp

P*(wps) = wp ;

Remark : When ) = D;[n] then the above map ® agree
with the map Z — (I, — ZZ*)"Y2Z given in the previous
example.
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The symplectic duality (I1I).

Moreover, @ has also the following properties:

(H) The map @ is hereditary in the following sense: for any
(€Y,0) = (€,0) complex and totally geodesic embedded
submanifold (€',0) through the origin 0, i.e. (0) = 0
one has:

®, = .
Moreover
Q) =V"CV,
where V' is the Hermitian positive Jordan triple system
associated to €V

(I) @ is a (non-linear) interwining map w.r.t. the action of
the isotropy group K C Iso(€2) at the origin, where Iso(€2)
is the group of isometries of €2, i.e. for every 7 € K

Qo1 =700;
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About the uniqueness of o.

Definition 0.2. A bisymplectomorphism of €2 s a diffeo-
morphism f : €2 — Q which satisfies

f*wo = Wwo ,
P @hyp = “hyp-

That 1s to say, [ preserves both symplectic forms wy and

whyp'

Denote with B(€2) the group of bisymplectomorphisms of the
bounded domain €.

Notice that the bisymplectomorphism
D : (Q,whyp,wo) — (V,wo, wrs)

is unique up to elements of B(€2).
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The group of
bisymplectomorphisms.

A bisymplectomorphism f € B(Q2) can be described by using
the Bergman operator B(z) := B(z, z). Namely,

Proposition 0.3. Let ) be a bounded domain. Then a
diffeomorphism f € Diff(2) is a bisymplectomorphism if
and only if it satisfies:

. JHwo = wo,
o B(f(2))odf(z) =df(z) oB(2) (2 € Q).

Notice that the second condition means that f preserves the
Bergman operator B(z),ie. f*B=B

25



The rank one case (I).

Let D,, C C" be the open unit ball of the standard Hermitian
space C", with Hermitian scalar product

n

(z]1) =) 2

j=1
and associated norm |z|. That is to say,

D, ={ze€C":|z| < 1}.

Here is the description of the bisymplectomorphisms.

Theorem 0.4. The bisymplectomorphisms f € B(D,,) are
the maps defined by

f) =7 (1) ulz) (=€ D),

where u € U(n) and v is a smooth function v :[0,1) —
St~U(1) .
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The rank one case (IT).

Sketch of the Proof of Theorem 0.4 :

The Bergman operator B(z) is given by:
B(z)(w) = 2(1 — [2]*)(w — 2(w | 2)).
In particular, notice that for fixed z € D, the operator

B(z) : C" — C" has two eigenspaces. Namely, V, = C.z
and V1.

That is to say

(Cn:‘/jz@‘/zj_ )

where V, and V. are B(z)-invariant.

Then Proposition 0.3 implies that f must infinitesimally pre-
serve such decomposition.
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The rank one case (I11).

Soif f e B(D,,) we get:

e |f(2)] =|z|. Thus, d f(0) is unitary, i.e. d f(0) € U(n).

e d f(z) preserves the complex line [, C T, D,, spanned by
zoie L, ={weT.D,:w=M\z}.

e Indeed, f takes complex lines through the origen into com-
plex lines through the origen.

Notice that the complex lines through the origen are the com-
plex totally geodesic discs A of the symmetric domain, i.e.
the complexifications of the flats.

Now we can restrict f to the discs A C D,, to finish the proof.
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The higher rank case (I).

The rank one case show that the description of B(f2) depends
upon a good algebraic description of the Bergman operator

B(z).

The theory of Jordan Algebras gives an algebraic descrip-
tion of the Bergman operator B(z) of all Bounded symmetric
domains (2.

A principal role is played by the so called Peirce simulta-
neous decomposition relative to z € ). That is ex-
actly the generalization of the decomposition in eigenspaces
C" = V. @ V2 for the Bergman operator of the rank one case.
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The higher rank case (IT).

Let Q@ C V = C" be an irreducible bounded symmetric do-
main attached to the HPJTS (V,{,,}) of rank r.

Let us call radial a bisymplectomorphism f € B(f2) such
fAT) = A",

for all polydiscs A" C §2 generated by the frames (¢y, o, -+ , ¢,
ie. "=Q N Cea®---dCc, .

Theorem II  Any f € B(Q)) is of the form

f=uoR,

where R is a radial bisymplectomorphism and u = d f(0) €
K, where K 1s the isotropy group at 0 € €2 of ).

Theorem III  Let R be a radial bisymplectomorphism.
Then there exists a function h € C*[0,1) such that

R(Z) = eih(/\%))\lel + eih(A%))\QQQ S Gih()‘%b\?«er

for all z € M, where z = A\eg + Agey + - -+ + A€, is the
spectral decomposition of z € M .
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