The symplectic duality of Hermitian symmetric spaces *[†]

Antonio J. Di Scala ‡

Hamburg, July 2008

^{*-,} Loi, A., Symplectic Duality of Symmetric Spaces, Advances in Mathematics 217 (2008) 2336-2352.

 $^{^{\}dagger}\text{-};$ Loi, A. and Roos, G. The unicity of the symplectic duality, To appear in Transformation Groups.

[‡]Politecnico di Torino

The unit disc $\Delta \subset \mathbb{C}$ (I).

The unit disc $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ has two well-known symplectic forms ω_0 and ω_{hyp} :

$$\begin{split} \omega_0 &= \frac{\mathrm{i}}{2} \,\mathrm{d}\, z \wedge \mathrm{d}\, \overline{z}, \\ \omega_{\mathrm{hyp}} &= \frac{\omega_0}{(1-|z|^2)^2} \;. \end{split}$$

The plane \mathbb{C} has also two symplectic forms. Namely,

$$\omega_0 = \frac{\mathrm{i}}{2} \,\mathrm{d} \, z \wedge \mathrm{d} \,\overline{z},$$
$$\omega_{\mathrm{FS}} = \frac{\omega_0}{(1+|z|^2)^2} \,.$$

Actually, the Fubini-Study form ω_{FS} on \mathbb{C} comes from the standard embedding $\mathbb{C} \subset \mathbb{C}P^1$, i.e. $z \hookrightarrow (z:1)$.

Notice that $(\mathbb{C}P^1, \omega_{\rm FS})$ is the compact dual of the unit disc $(\Delta, \omega_{\rm hyp})$.

The unit disc $\Delta \subset \mathbb{C}$ (II).

Consider the map $\Phi: \Delta \to \mathbb{C}$ given by

$$\Phi(z) := \frac{z}{\sqrt{1 - |z|^2}}$$

A map Φ with the above properties is called a <u>bisymplectomorphism</u> of $(\Delta, \omega_{\text{hyp}}, \omega_0)$ and $(\mathbb{C}, \omega_0, \omega_{\text{FS}})$.

The unit disc $\Delta \in \mathbb{C}$ (III).

What about the uniqueness of the bisymplectomorphism Φ ?

Let $\Psi : \Delta \to \mathbb{C}$ be another bisymplectomorphism, i.e.

$$\begin{cases} \Psi^* \omega_0 = \omega_{\text{hyp}}, \\ \Psi^* \omega_{\text{FS}} = \omega_0. \end{cases}$$

Then the composition $f := \Phi^{-1} \circ \Psi$ is a bisymplectomorphism of $(\Delta, \omega_0, \omega_{\text{hyp}})$, i.e.

$$f^*(\omega_0) = \omega_0$$
$$f^*(\omega_{\rm hyp}) = \omega_{\rm hyp}$$

So we can introduce the group $\mathcal{B}(\Delta)$ of bisymplectomorphisms of the disc $(\Delta, \omega_0, \omega_{\text{hyp}})$.

Thus, the map Φ is unique up to elements of $\mathcal{B}(\Delta)$.

The unit disc $\Delta \subset \mathbb{C}$ (IV).

The following theorem gives a description of $\mathcal{B}(\Delta)$.

Theorem 0.1. The elements $f \in \mathcal{B}(\Delta)$ are the maps defined by

$$f(z) = u(|z|^2) z$$
 $(z \in \Delta),$

where u is a smooth function $u:[0,1)\to S^1\simeq U(1)$.

In other words, the restriction of a bisymplectomorphism $f \in \mathcal{B}(\Delta)$ to a circle of radius $r \ (0 < r < 1)$ is the rotation $u \ (r^2)$.

Notice that if $f \in \mathcal{B}(\Delta)$ then f(0) = 0.

The unit disc $\Delta \in \mathbb{C}$ (Proof II).

Sketch of the Proof of Theorem 0.1:

It is not difficult to show that the maps $f(z) = u(|z|^2) z$, where u is a smooth function $u : [0,1) \to S^1 \simeq U(1)$ are bisymplectomorphisms.

Conversely, assume now that f is a bisymplectomorphism.

• Since f preserves both symplectic forms then f preserves the quotient $\frac{\omega_0}{\omega_{hyp}} = (1 - |z|^2)^2$. Thus,

$$|f(z)| = |z|$$

for $z \in \Delta$.

- A simple computation shows that f(z) = v(|z|)z for $z \in \Delta \setminus \{0\}$ and $v : (0, 1) \to U(1)$ smooth.
- A Whitney's Theorem can be used to show that $v(|z|) = u(|z|^2)$ for a smooth u. \Box

The unit disc $\Delta \in \mathbb{C}$ (Proof I).

To prove that $\Phi^*(\omega_0) = \omega_{\text{hyp}}$ notice that:

$$d\Phi - d((1 - |z|^2)^{-1/2})z = (1 - |z|^2)^{-1/2} dz.$$

So

$$\overline{\Phi}(\mathrm{d}\,\Phi - \mathrm{d}((1 - |z|^2)^{-1/2}).z) = (1 - |z|^2)^{-1}\overline{z}\,\mathrm{d}\,z\,.$$

then

$$\begin{split} -\frac{\mathrm{i}}{2} \,\mathrm{d}\,\Phi \wedge \mathrm{d}\,\overline{\Phi} &= -\frac{\mathrm{i}}{2} \,\mathrm{d}(\overline{\Phi}(\mathrm{d}\,\Phi - \mathrm{d}((1-|z|^2)^{-1/2}).z)) = \\ &= -\frac{\mathrm{i}}{2} \,\mathrm{d}((1-|z|^2)^{-1}\overline{z} \,\mathrm{d}\,z) = \omega_{\mathrm{hyp}} \;, \end{split}$$

since $\overline{\Phi} d((1-|z|^2)^{-1/2})z = (1-|z|^2)^{-1/2} d((1-|z|^2)^{-1/2})|z|^2$ is exact.

Thus, we get

$$\omega_{\mathrm{hyp}} = \Phi^*(\omega_0)$$
.

The proof that $\Phi^*(\omega_{\rm FS}) = \omega_0$ is similar.

The Cartan's domain $D_1[n]$ (I).

$$D_1[n] \subset \mathbb{C}^{n^2} \cong M_n(\mathbb{C})$$
 is given by
 $D_1[n] := \{ Z \in M_n(\mathbb{C}) \mid I_n - ZZ^* >> 0 \}.$

So $D_1[n]$ has two standard symplectic forms ω_0 and ω_{hyp} given by:

$$\omega_0 = \frac{\mathrm{i}}{2} \,\mathrm{d} \, Z \wedge \mathrm{d} \,\overline{Z},$$
$$\omega_{\mathrm{hyp}} = -\frac{\mathrm{i}}{2} \partial \overline{\partial} \,\log \det(I_n - ZZ^*).$$

The complex euclidean space $\mathbb{C}^{n^2} \cong M_n(\mathbb{C})$ has two symplectic forms:

$$\omega_0 = \frac{\mathrm{i}}{2} \,\mathrm{d} \, Z \wedge \mathrm{d} \, \overline{Z},$$
$$\omega_{\mathrm{FS}} = \frac{\mathrm{i}}{2} \partial \overline{\partial} \, \log \det(I_n + ZZ^*).$$

The Cartan's domain $D_1[n]$ (II).

Notice that

$$D_1[n] \subset \mathbb{C}^{n^2} \subset G_n(\mathbb{C}^{2n}) \hookrightarrow \mathbb{C}P^N$$

The last arrow is the Plücker embedding

$$G_n(\mathbb{C}^{2n}) \hookrightarrow \mathbb{C}P^N$$
,

where $N = \binom{2n}{n} - 1$ and $G_n(\mathbb{C}^{2n})$ is the complex Grassmannian of complex n subspaces of \mathbb{C}^{2n} .

Notice that $G_n(\mathbb{C}^{2n})$ is the compact dual of $D_1[n]$.

Indeed, the form ω_{FS} on \mathbb{C}^{n^2} comes as the pullback form of $(\mathbb{C}P^N, \omega_{FS})$ via the above embedding.

The Cartan's domain $D_1[n]$ (III).

Now we can ask the following two questions:

• Do there exist a bisymplectomorphism

$$\Phi: (D_1[n], \omega_0, \omega_{\text{hyp}}) \to (\mathbb{C}^{n^2}, \omega_{\text{FS}}, \omega_0) , i.e.$$

a diffeomorphism $\Phi: D_1[n] \to \mathbb{C}^{n^2}$ such that:

 $\Phi^*(\omega_0) = \omega_{\text{hyp}},$ $\Phi^*(\omega_{\text{FS}}) = \omega_0 ?$

• It is possible to describe the group $\mathcal{B}(D_1[n])$ of diffeomorphisms f of $D_1[n]$ such that:

$$f^*(\omega_0) = \omega_0$$

$$f^*(\omega_{\mathrm{hyp}}) = \omega_{\mathrm{hyp}}$$
 ?

The Cartan's domain $D_1[n]$ (IV).

<u>Claim</u>: The map $\Phi: D_1[n] \to \mathbb{C}^{n^2} \cong M_n(\mathbb{C})$ given by

$$\Phi(Z) := (I_n - ZZ^*)^{-1/2}Z$$

is a bisymplectomorphism. That is to say, Φ is a diffeomorphism and :

$$\begin{split} \Phi^*(\omega_0) &= \omega_{hyp}, \\ \Phi^*(\omega_{FS}) &= \omega_0 \ . \end{split}$$

The Cartan's domain $D_1[n]$ (V).

First of all observe that we can write

$$\begin{split} \omega_{\text{hyp}} &= -\frac{\mathrm{i}}{2} \partial \overline{\partial} \log \det(I_n - ZZ^*) = \frac{\mathrm{i}}{2} \,\mathrm{d} \partial \log \det(I_n - ZZ^*) = \\ &= \frac{\mathrm{i}}{2} \,\mathrm{d} \partial \operatorname{tr} \log(I_n - ZZ^*) = \frac{\mathrm{i}}{2} \,\mathrm{d} \operatorname{tr} \partial \log(I_n - ZZ^*) = \\ &= -\frac{\mathrm{i}}{2} \,\mathrm{d} \operatorname{tr}[Z^*(I_n - ZZ^*)^{-1} \,\mathrm{d} Z], \end{split}$$

where we use the decomposition $d = \partial + \bar{\partial}$ and the identity $\log \det A = \operatorname{tr} \log A$.

By substituting $X = (I_n - ZZ^*)^{-\frac{1}{2}}Z$ in the last expression one gets:

$$-\frac{1}{2} \operatorname{d} \operatorname{tr}[Z^*(I_n - ZZ^*)^{-1} \operatorname{d} Z] =$$

= $-\frac{i}{2} \operatorname{d} \operatorname{tr}(X^* dX) + \frac{i}{2} \operatorname{d} \operatorname{tr}\{X^* d[(I_n - ZZ^*)^{-\frac{1}{2}}]Z.$

Finally, notice that the 1-form

$$\operatorname{tr}[X^* \operatorname{d}(I_n - ZZ^*)^{-\frac{1}{2}}Z]$$

is exact being equal to $d \operatorname{tr}(\frac{C^2}{2} - \log C)$, where $C = (I_n - ZZ^*)^{-\frac{1}{2}}$.

So $\Phi^*(\omega_0) = \omega_{\text{hyp}}$. The proof that $\Phi^*(\omega_{\text{FS}}) = \omega_0$ is similar.

The general picture (I).

Let Ω be a symmetric bounded domain and let Ω^* be its compact dual. Assume $\dim_{\mathbb{C}}(\Omega) = n$.

The following inclusions are well-known:

$$\Omega \subset \mathbb{C}^n \subset \Omega^* \hookrightarrow \mathbb{C}P^N ,$$

where the last arrow is the Borel-Weil embedding.

So the compact dual Ω^* and \mathbb{C}^n can be endowed with the pullback form of the Fubini-Study form ω_{FS} of $\mathbb{C}P^N$.

Thus, we can regard \mathbb{C}^n as a complex euclidean space equipped with two symplectic forms ω_0 and ω_{FS} .

The general picture (II).

We can ask about the existence and uniqueness of a symplectic duality map Φ . Namely,

• Do there exist a bisymplectomorphism

$$\Phi: (\Omega, \omega_0, \omega_{\text{hyp}}) \to (\mathbb{C}^n, \omega_{\text{FS}}, \omega_0) , i.e.$$

a diffeomorphism $\Phi: \Omega \to \mathbb{C}^n$ such that:

 $\Phi^*(\omega_0) = \omega_{hyp},$ $\Phi^*(\omega_{FS}) = \omega_0 ?$

• It is possible to describe the group $\mathcal{B}(\Omega)$ of diffeomorphisms f of Ω such that:

$$f^*(\omega_0) = \omega_0$$

$$f^*(\omega_{\mathrm{hyp}}) = \omega_{\mathrm{hyp}}$$
 ?

Related results (I).

The existence of a symplectomorphism:

$$\psi: (\Omega, \omega_{\text{hyp}}) \to (\mathbb{C}^n, \omega_0)$$

was proved by D. McDuff in *The symplectic structure of* Kähler manifolds of non-positive curvature, J. Diff. Geometry 28 (1988), pp. 467-475.

As a conclusion it follows that the symplectic struture $\omega_{\rm hyp}$ on \mathbb{R}^{2n} is not <u>exotic</u>.

Related results (II).

• Notice that our question is stronger. Namely, we ask about the existence of a BISYMPLECTOMORPHISM , i.e. :

 $\Phi^*(\omega_0) = \omega_{\text{hyp}},$

 $\Phi^*(\omega_{\rm FS}) = \omega_0 ?$

• Observe that McDuff's theorem is *existencial*, i.e. there is not given an explicit symplectomorphism.

Actually, we are going to give an explicit formula for our bisymplectomorphism Φ .

Moreover, we are going to give an explicit description of all by simplectomorphism Φ 's.

Bounded Symmetric Domains and Hermitian Jordan Triple systems (I).

We use the approach "via" Jordan Algebras, due to Max Koecher, to construct all the symmetric bounded domains $\Omega \subset \mathbb{C}^n$ by starting with a **Hermitian Positive Jordan Triple System** $(V, \{,,\})$:

- $V = \mathbb{C}^n$ and $\{,,\}: V^3 \to V$,
- $\{x, y, z\}$ is \mathbb{C} -bilinear in (x, z) and \mathbb{C} -anti-linear in y.
- satisfying the *Jordan identity* :

$$\{x, y, \{u, v, w\}\} - \{u, v, \{x, y, w\}\} =$$

= { { { x, y, u }, v, w } - { u, { v, x, y }, w }.

• the sesquilinear form $(x \mid y) := trace D(x, y)$ is positive, where $D(x, y)(\cdot) := \{x, y, \cdot\}$.

Bounded Symmetric Domains and Hermitian Jordan Triple systems (II).

Each element $x \in V$ has a spectral decomposition :

$$x = \lambda_1 c_1 + \lambda_2 c_2 + \dots + \lambda_r c_r$$
,

where $\lambda_1 \geq \lambda_2 \geq \cdots \geq 0$ and (c_1, c_2, \cdots, c_r) is a *frame* a maximal system of mutually orthogonal tripotents, i.e. $\{c_i, c_i, c_i\} = 0$ and $D(c_i, c_j) = 0$ for $i \neq j$. Unique just for elements $x \in V$ of maximal rank r.

There exist polynomials m_1, \ldots, m_r on $\mathcal{M} \times \overline{\mathcal{M}}$, homogeneous of respective bidegrees $(1, 1), \ldots, (r, r)$, such that for $x \in \mathcal{M}$, the polynomial

$$m(T, x, y) = T^{r} - m_{1}(x, y)T^{r-1} + \dots + (-1)^{r}m_{r}(x, y)$$

satisfies

$$m(T, x, x) = \prod_{i=1}^{r} (T - \lambda_i^2),$$

where x is the spectral decomposition of $x = \sum \lambda_j c_j$. The inohomogeneous polynomial

$$N(x,y) = m(1,x,y)$$

is called the *generic norm*.

Bounded Symmetric Domains and Hermitian Jordan Triple systems (III).

Construction of the <u>bounded domain Ω .</u>

• The **Spectral Norm** |z| of $z \in V$ is defined as

$$|z|^2 := \frac{\|D(z,z)\|}{2}$$

where $\|\cdot\|$ is the operator norm in V endowed with $(\cdot|\cdot)$.

• The bounded domain attached to the HPJTS $(V, \{,,\})$ is given by:

$$\Omega := \{ z \in V : |z| < 1 \} .$$

That is to say, Ω is the unit sphere w.r.t. the Spectral Norm .

Bounded Symmetric Domains and Hermitian Jordan Triple systems (IV).

Construction of the symplectic forms $\omega_0, \omega_{\text{hyp}}$ of Ω :

• Here is the <u>hyperbolic form</u> ω_{hyp} of Ω :

$$\omega_{\text{hyp}} := -\frac{\mathrm{i}}{2} \partial \,\overline{\partial} \log \mathcal{N}(z) \,\,,$$

where $\mathcal{N}(z) = N(z, z)$.

• Here is the <u>flat form</u> ω_0 of Ω : $\omega_0 := \frac{i}{2} \partial \overline{\partial} m_1(z, z)$.

Remark: If Ω is irreducible, (i.e. $(V, \{,,\})$ is simple), then:

•
$$\omega_{\text{hyp}} = \frac{\omega_{Berg}}{g}$$
,
• $\omega_0 = \frac{\frac{i}{2}\partial \overline{\partial} tr D(z,z)}{g} = \frac{\frac{i}{2}\partial \overline{\partial} (z \mid z)}{g}$

The number g above is called the *genus* of the bounded domain and is a natural number, e.g. g = 2 for the unit disc.

The symplectic duality (I).

The Bergman operator $B(u, v) : V \to V$ is given by

$$\mathbf{B}(u,v) := \mathrm{id} - D(u,v) + Q(u)Q(v) ,$$

where $2Q(u)(v) := \{u, v, u\}.$

Let us introduced a map called Φ as follows:

$$\Phi: \Omega \to V, z \mapsto \mathcal{B}(z, z)^{-\frac{1}{4}}z$$
,

The map Φ is a (real analytic) *diffeomorphism* and its inverse Φ^{-1} is given by:

$$\Phi^{-1}: V \to \Omega, \ z \mapsto \mathcal{B}(z, -z)^{-\frac{1}{4}}z;$$

The symplectic duality (II).

<u>Theorem I</u>: The diffeomorphism $\Phi(z) = B(z, z)^{-\frac{1}{4}z}$ is a bisymplectomorphism of $(\Omega, \omega_{hyp}, \omega_0)$ and $(V, \omega_0, \omega_{FS})$. That is to say:

> $\Phi^*(\omega_0) = \omega_{hyp} ;$ $\Phi^*(\omega_{FS}) = \omega_0 ;$

Remark : When $\Omega = D_1[n]$ then the above map Φ agree with the map $Z \mapsto (I_n - ZZ^*)^{-1/2}Z$ given in the previous example.

The symplectic duality (III).

Moreover, Φ has also the following properties:

(H) The map Φ is *hereditary* in the following sense: for any $(\Omega', 0) \stackrel{i}{\hookrightarrow} (\Omega, 0)$ complex and totally geodesic embedded submanifold $(\Omega', 0)$ through the origin 0, i.e. i(0) = 0 one has:

$$\Phi_{|_{\Omega'}} = \Phi.$$

Moreover

$$\Phi(\Omega') = V' \subset V,$$

where V' is the Hermitian positive Jordan triple system associated to Ω' ;

(I) Φ is a (non-linear) *interwining* map w.r.t. the action of the isotropy group $K \subset \text{Iso}(\Omega)$ at the origin, where $\text{Iso}(\Omega)$ is the group of isometries of Ω , i.e. for every $\tau \in K$

$$\Phi \circ \tau = \tau \circ \Phi;$$

About the uniqueness of Φ .

Definition 0.2. A bisymplectomorphism of Ω is a diffeomorphism $f: \Omega \to \Omega$ which satisfies

 $f^*\omega_0 = \omega_0 \; ,$

$$f^*\omega_{hyp} = \omega_{hyp} \,.$$

That is to say, f preserves both symplectic forms ω_0 and ω_{hyp} .

Denote with $\mathcal{B}(\Omega)$ the group of bisymplectomorphisms of the bounded domain Ω .

Notice that the bisymplectomorphism

$$\Phi: (\Omega, \omega_{\text{hyp}}, \omega_0) \to (V, \omega_0, \omega_{FS})$$

is unique up to elements of $\mathcal{B}(\Omega)$.

The group of bisymplectomorphisms.

A bisymplectomorphism $f \in \mathcal{B}(\Omega)$ can be described by using the Bergman operator B(z) := B(z, z). Namely,

Proposition 0.3. Let Ω be a bounded domain. Then a diffeomorphism $f \in \text{Diff}(\Omega)$ is a bisymplectomorphism if and only if it satisfies:

•
$$f^*\omega_0 = \omega_0,$$

• $B(f(z)) \circ d f(z) = d f(z) \circ B(z)$ $(z \in \Omega).$

Notice that the second condition means that f preserves the Bergman operator B(z), i.e. $f^* B = B$

The rank one case (I).

Let $D_n \subset \mathbb{C}^n$ be the open unit ball of the standard Hermitian space \mathbb{C}^n , with Hermitian scalar product

$$(z \mid t) = \sum_{j=1}^{n} z_j \overline{t}_j$$

and associated norm |z|. That is to say,

$$D_n := \{ z \in \mathbb{C}^n : |z| < 1 \}.$$

Here is the description of the bisymplectomorphisms.

Theorem 0.4. The bisymplectomorphisms $f \in \mathcal{B}(D_n)$ are the maps defined by

$$f(z) = \gamma\left(|z|^2\right)u(z) \qquad (z \in D_n),$$

where $u \in U(n)$ and γ is a smooth function $\gamma:[0,1) \to S^1 \simeq U(1)$.

The rank one case (II).

Sketch of the Proof of Theorem 0.4:

The Bergman operator B(z) is given by:

$$B(z)(w) := 2(1 - |z|^2)(w - z(w | z)).$$

In particular, **notice** that for fixed $z \in D_n$ the operator $B(z) : \mathbb{C}^n \to \mathbb{C}^n$ has two eigenspaces. Namely, $V_z := \mathbb{C}.z$ and V_z^{\perp} .

That is to say

$$\mathbb{C}^n = V_z \oplus V_z^{\perp} ,$$

where V_z and V_z^{\perp} are B(z)-invariant.

Then Proposition 0.3 implies that f must infinitesimally preserve such decomposition.

The rank one case (III).

So if $f \in \mathcal{B}(D_n)$ we get:

- |f(z)| = |z|. Thus, d f(0) is unitary, i.e. $d f(0) \in U(n)$.
- d f(z) preserves the complex line $l_z \subset T_z D_n$ spanned by z, i.e. $l_z := \{ w \in T_z D_n : w = \lambda z \}$.
- Indeed, f takes complex lines through the origen into complex lines through the origen.

Notice that the complex lines through the origen are the *complex totally geodesic discs* Δ of the symmetric domain, i.e. the complexifications of the flats.

Now we can restrict f to the discs $\Delta \subset D_n$ to finish the proof.

The higher rank case (I).

The rank one case show that the description of $\mathcal{B}(\Omega)$ depends upon a good algebraic description of the Bergman operator B(z).

The theory of **Jordan Algebras** gives an algebraic description of the Bergman operator B(z) of all Bounded symmetric domains Ω .

A principal role is played by the so called **Peirce simulta**neous decomposition relative to $z \in \Omega$. That is exactly the generalization of the decomposition in eigenspaces $\mathbb{C}^n = V_z \oplus V_z^{\perp}$ for the Bergman operator of the rank one case.

The higher rank case (II).

Let $\Omega \subset V = \mathbb{C}^n$ be an irreducible bounded symmetric domain attached to the HPJTS $(V, \{,,\})$ of rank r.

Let us call **radial** a bisymplectomorphism $f \in \mathcal{B}(\Omega)$ such

$$f(\Delta^r) = \Delta^r \; ,$$

for all polydiscs $\Delta^r \subset \Omega$ generated by the frames (c_1, c_2, \cdots, c_r) , i.e. $\Delta^r = \Omega \bigcap \mathbb{C}c_1 \oplus \cdots \oplus \mathbb{C}c_r$.

<u>Theorem II</u> Any $f \in \mathcal{B}(\Omega)$ is of the form

 $f = u \circ R ,$

where R is a radial bisymplectomorphism and $u = d f(0) \in K$, where K is the isotropy group at $0 \in \Omega$ of Ω .

<u>Theorem III</u> Let R be a radial bisymplectomorphism. Then there exists a function $h \in C^{\infty}[0, 1)$ such that

$$R(z) = e^{ih(\lambda_1^2)}\lambda_1e_1 + e^{ih(\lambda_2^2)}\lambda_2e_2 + \dots + e^{ih(\lambda_r^2)}\lambda_re_r$$

for all $z \in M$, where $z = \lambda_1 e_1 + \lambda_2 e_2 + \cdots + \lambda_r e_r$ is the spectral decomposition of $z \in M$.