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The unit disc ∆ ⊂ C (I).

The unit disc ∆ = {z ∈ C : |z| < 1} has two well-known
symplectic forms ω0 and ωhyp :

ω0 =
i

2
d z ∧ d z,

ωhyp =
ω0

(1− |z|2)2 .

The plane C has also two symplectic forms. Namely,

ω0 =
i

2
d z ∧ d z,

ωFS =
ω0

(1 + |z|2)2 .

Actually, the Fubini-Study form ωFS on C comes from the
standard embedding C ⊂ CP 1 , i.e. z ↪→ (z : 1) .

Notice that (CP 1, ωFS) is the compact dual of the unit disc
(∆, ωhyp).
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The unit disc ∆ ⊂ C (II).

Consider the map Φ : ∆ → C given by

Φ(z) :=
z√

1− |z|2

We claim that:

{
Φ∗ω0 = ωhyp,

Φ∗ωFS = ω0.

A map Φ with the above properties is called a bisymplectomorphism
of (∆, ωhyp, ω0) and (C, ω0, ωFS) .
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The unit disc ∆ ∈ C (III).

What about the uniqueness of the bisymplectomorphism Φ ?

Let Ψ : ∆ → C be another bisymplectomorphism, i.e.
{

Ψ∗ω0 = ωhyp,

Ψ∗ωFS = ω0.

Then the composition f := Φ−1◦Ψ is a bisymplectomorphism
of (∆, ω0, ωhyp), i.e.

f ∗(ω0) = ω0

f ∗(ωhyp) = ωhyp

So we can introduce the group B(∆) of bisymplectomorphisms
of the disc (∆, ω0, ωhyp) .

Thus, the map Φ is unique up to elements of B(∆).
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The unit disc ∆ ⊂ C (IV).

The following theorem gives a description of B(∆).

Theorem 0.1. The elements f ∈ B(∆) are the maps de-
fined by

f (z) = u
(
|z|2

)
z (z ∈ ∆) ,

where u is a smooth function u : [0, 1) → S1 ( U(1) .

In other words, the restriction of a bisymplectomorphism f ∈
B(∆) to a circle of radius r (0 < r < 1) is the rotation u

(
r2

)
.

Notice that if f ∈ B(∆) then f (0) = 0.
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The unit disc ∆ ∈ C (Proof II).

Sketch of the Proof of Theorem 0.1 :

It is not difficult to show that the maps f (z) = u
(
|z|2

)
z ,

where u is a smooth function u : [0, 1) → S1 ( U(1) are
bisymplectomorphisms.

Conversely, assume now that f is a bisymplectomorphism.

• Since f preserves both symplectic forms then f preserves
the quotient ω0

ωhyp
= (1− |z|2)2 . Thus,

|f (z)| = |z|

for z ∈ ∆.

• A simple computation shows that f (z) = v(|z|)z for z ∈
∆ \ {0} and v : (0, 1) → U(1) smooth.

• A Whitney’s Theorem can be used to show that v(|z|) =
u

(
|z|2

)
for a smooth u . !
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The unit disc ∆ ∈ C (Proof I).

To prove that Φ∗(ω0) = ωhyp notice that:

d Φ− d((1− |z|2)−1/2)z = (1− |z|2)−1/2 d z.

So

Φ(d Φ− d((1− |z|2)−1/2).z) = (1− |z|2)−1z d z .

then

− i

2
d Φ ∧ d Φ = − i

2
d(Φ(d Φ− d((1− |z|2)−1/2).z)) =

= − i

2
d((1− |z|2)−1z d z) = ωhyp ,

since Φ d((1−|z|2)−1/2)z = (1−|z|2)−1/2 d((1−|z|2)−1/2)|z|2
is exact.

Thus, we get
ωhyp = Φ∗(ω0) .

The proof that Φ∗(ωFS) = ω0 is similar.
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The Cartan’s domain D1[n] (I).

D1[n] ⊂ Cn2 ∼= Mn(C) is given by

D1[n] := {Z ∈ Mn(C) | In − ZZ∗ >> 0}.

So D1[n] has two standard symplectic forms ω0 and ωhyp
given by:

ω0 =
i

2
d Z ∧ d Z,

ωhyp = − i

2
∂∂ log det(In − ZZ∗).

The complex euclidean space Cn2 ∼= Mn(C) has two symplec-
tic forms:

ω0 =
i

2
d Z ∧ d Z,

ωFS =
i

2
∂∂ log det(In + ZZ∗).
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The Cartan’s domain D1[n] (II).

Notice that

D1[n] ⊂ Cn2 ⊂ Gn(C2n) ↪→ CPN .

The last arrow is the Plücker embedding

Gn(C2n) ↪→ CPN ,

where N =

(
2n
n

)
− 1 and Gn(C2n) is the complex Grass-

mannian of complex n subspaces of C2n .

Notice that Gn(C2n) is the compact dual of D1[n] .

Indeed, the form ωFS on Cn2
comes as the pullback form of

(CPN , ωFS) via the above embedding.
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The Cartan’s domain D1[n] (III).

Now we can ask the following two questions:

• Do there exist a bisymplectomorphism

Φ : (D1[n], ω0, ωhyp) → (Cn2
, ωFS, ω0) , i.e.

a diffeomorphism Φ : D1[n] → Cn2
such that:

Φ∗(ω0) = ωhyp,

Φ∗(ωFS) = ω0 ?

• It is possible to describe the group B(D1[n]) of diffeomor-
phisms f of D1[n] such that:

f ∗(ω0) = ω0

f ∗(ωhyp) = ωhyp ?
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The Cartan’s domain D1[n] (IV).

Claim: The map Φ : D1[n] → Cn2 ∼= Mn(C) given by

Φ(Z) := (In − ZZ∗)−1/2Z

is a bisymplectomorphism. That is to say, Φ is a diffeomor-
phism and :

Φ∗(ω0) = ωhyp,

Φ∗(ωFS) = ω0 .
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The Cartan’s domain D1[n] (V).

First of all observe that we can write

ωhyp = − i

2
∂ ∂ log det(In−ZZ∗) =

i

2
d ∂ log det(In−ZZ∗) =

=
i

2
d ∂ tr log(In − ZZ∗) =

i

2
d tr ∂ log(In − ZZ∗) =

= − i

2
d tr[Z∗(In − ZZ∗)−1 d Z],

where we use the decomposition d = ∂ + ∂̄ and the identity
log detA = tr logA .

By substituting X = (In − ZZ∗)−
1
2Z in the last expression

one gets:

− i

2
d tr[Z∗(In − ZZ∗)−1 d Z] =

= − i

2
d tr(X∗dX) +

i

2
d tr{X∗d[(In − ZZ∗)−

1
2 ]Z .

Finally, notice that the 1-form

tr[X∗ d(In − ZZ∗)−
1
2Z]

is exact being equal to d tr(C2

2 − logC) , where C = (In −
ZZ∗)−

1
2 .

So Φ∗(ω0) = ωhyp .

The proof that Φ∗(ωFS) = ω0 is similar.
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The general picture (I).

Let Ω be a symmetric bounded domain and let Ω∗ be its
compact dual. Assume dimC(Ω) = n .

The following inclusions are well-known:

Ω ⊂ Cn ⊂ Ω∗ ↪→ CPN ,

where the last arrow is the Borel-Weil embedding.

So the compact dual Ω∗ and Cn can be endowed with the
pullback form of the Fubini-Study form ωFS of CPN .

Thus, we can regard Cn as a complex euclidean space equipped
with two symplectic forms ω0 and ωFS .
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The general picture (II).

We can ask about the existence and uniqueness of a symplectic duality
map Φ. Namely,

• Do there exist a bisymplectomorphism

Φ : (Ω, ω0, ωhyp) → (Cn, ωFS, ω0) , i.e.

a diffeomorphism Φ : Ω → Cn such that:

Φ∗(ω0) = ωhyp,

Φ∗(ωFS) = ω0 ?

• It is possible to describe the group B(Ω) of diffeomor-
phisms f of Ω such that:

f ∗(ω0) = ω0

f ∗(ωhyp) = ωhyp ?

14



Related results (I).

The existence of a symplectomorphism:

ψ : (Ω, ωhyp) → (Cn, ω0)

was proved by D. McDuff in The symplectic structure of
Kähler manifolds of non-positive curvature , J. Diff. Ge-
ometry 28 (1988), pp. 467-475.

As a conclusion it follows that the symplectic struture ωhyp
on R2n is not exotic.
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Related results (II).

• Notice that our question is stronger. Namely, we ask about
the existence of a BISYMPLECTOMORPHISM , i.e. :

Φ∗(ω0) = ωhyp,

Φ∗(ωFS) = ω0 ?

• Observe that McDuff’s theorem is existencial ,i.e. there
is not given an explicit symplectomorphism.

Actually, we are going to give an explicit formula for our
bisymplectomorphism Φ.

Moreover, we are going to give an explicit description of
all bysimplectomorphism Φ’s.
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Bounded Symmetric Domains and
Hermitian Jordan Triple systems

(I).

We use the approach ”via” Jordan Algebras, due to Max Koecher,
to construct all the symmetric bounded domains Ω ⊂ Cn by
starting with a Hermitian Positive Jordan Triple Sys-
tem (V, {, , }) :

• V = Cn and {, , } : V 3 → V ,

• {x, y, z} is C -bilinear in (x, z) and C -anti-linear in y .

• satisfying the Jordan identity :

{x, y, {u, v, w}} − {u, v, {x, y, w}} =

= {{x, y, u}, v, w} − {u, {v, x, y}, w}.

• the sesquilinear form (x | y) := traceD(x, y) is positive,
where D(x, y)(·) := {x, y, ·} .
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Bounded Symmetric Domains and
Hermitian Jordan Triple systems

(II).

Each element x ∈ V has a spectral decomposition :

x = λ1c1 + λ2c2 + · · · + λrcr ,

where λ1 ≥ λ2 ≥ · · · ≥ 0 and (c1, c2, · · · , cr) is a frame a
maximal system of mutually orthogonal tripotents, i.e. {ci, ci, ci} =
0 and D(ci, cj) = 0 for i += j . Unique just for elements x ∈ V
of maximal rank r .

There exist polynomials m1, . . . ,mr on M×M , homoge-
neous of respective bidegrees (1, 1), . . . , (r, r) , such that for
x ∈M , the polynomial

m(T, x, y) = T r −m1(x, y)T r−1 + · · · + (−1)rmr(x, y)

satisfies

m(T, x, x) =
r∏

i=1

(T − λ2
i ),

where x is the spectral decomposition of x =
∑

λjcj .
The inohomogeneous polynomial

N(x, y) = m(1, x, y)

is called the generic norm.
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Bounded Symmetric Domains and
Hermitian Jordan Triple systems

(III).

Construction of the bounded domain Ω.

• The Spectral Norm |z| of z ∈ V is defined as

|z|2 :=
‖D(z, z)‖

2

where ‖·‖ is the operator norm in V endowed with (·| ·) .

• The bounded domain attached to the HPJTS (V, {, , }) is
given by:

Ω := {z ∈ V : |z| < 1} .

That is to say, Ω is the unit sphere w.r.t. the Spectral
Norm .
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Bounded Symmetric Domains and
Hermitian Jordan Triple systems

(IV).

Construction of the symplectic forms ω0, ωhyp of Ω:

• Here is the hyperbolic form ωhyp of Ω:

ωhyp := − i

2
∂ ∂ logN (z) ,

where N (z) = N(z, z) .

• Here is the flat form ω0 of Ω:

ω0 :=
i

2
∂ ∂ m1(z, z) .

Remark: If Ω is irreducible, (i.e. (V, {, , }) is simple), then:

• ωhyp =
ωBerg

g ,

• ω0 =
i
2∂ ∂ trD(z,z)

g =
i
2∂ ∂ (z | z)

g .

The number g above is called the genus of the bounded do-
main and is a natural number, e.g. g = 2 for the unit disc.
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The symplectic duality (I).

The Bergman operator B(u, v) : V → V is given by

B(u, v) := id−D(u, v) + Q(u)Q(v) ,

where 2Q(u)(v) := {u, v, u} .

Let us introduced a map called Φ as follows:

Φ : Ω → V, z .→ B(z, z)−
1
4z ,

The map Φ is a (real analytic) diffeomorphism and its inverse
Φ−1 is given by:

Φ−1 : V → Ω, z .→ B(z,−z)−
1
4z ;
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The symplectic duality (II).

Theorem I : The diffeomorphism Φ(z) = B(z, z)−
1
4z is

a bisymplectomorphism of (Ω, ωhyp, ω0) and (V, ω0, ωFS) .
That is to say:

Φ∗(ω0) = ωhyp ;

Φ∗(ωFS) = ω0 ;

Remark : When Ω = D1[n] then the above map Φ agree
with the map Z .→ (In − ZZ∗)−1/2Z given in the previous
example.
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The symplectic duality (III).

Moreover, Φ has also the following properties:

(H) The map Φ is hereditary in the following sense: for any

(Ω′, 0)
i

↪→ (Ω, 0) complex and totally geodesic embedded
submanifold (Ω′, 0) through the origin 0, i.e. i(0) = 0
one has:

Φ|Ω′ = Φ.

Moreover
Φ(Ω′) = V ′ ⊂ V,

where V ′ is the Hermitian positive Jordan triple system
associated to Ω′ ;

(I) Φ is a (non-linear) interwining map w.r.t. the action of
the isotropy group K ⊂ Iso(Ω) at the origin, where Iso(Ω)
is the group of isometries of Ω, i.e. for every τ ∈ K

Φ ◦ τ = τ ◦ Φ;
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About the uniqueness of Φ.

Definition 0.2. A bisymplectomorphism of Ω is a diffeo-
morphism f : Ω → Ω which satisfies

f ∗ω0 = ω0 ,

f ∗ωhyp = ωhyp .

That is to say, f preserves both symplectic forms ω0 and
ωhyp .

Denote with B(Ω) the group of bisymplectomorphisms of the
bounded domain Ω.

Notice that the bisymplectomorphism

Φ : (Ω, ωhyp, ω0) → (V, ω0, ωFS)

is unique up to elements of B(Ω).
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The group of
bisymplectomorphisms.

A bisymplectomorphism f ∈ B(Ω) can be described by using
the Bergman operator B(z) := B(z, z) . Namely,

Proposition 0.3. Let Ω be a bounded domain. Then a
diffeomorphism f ∈ Diff(Ω) is a bisymplectomorphism if
and only if it satisfies:

• f ∗ω0 = ω0,

• B (f (z)) ◦ d f (z) = d f (z) ◦ B(z) (z ∈ Ω).

Notice that the second condition means that f preserves the
Bergman operator B(z) , i.e. f ∗ B = B
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The rank one case (I).

Let Dn ⊂ Cn be the open unit ball of the standard Hermitian
space Cn , with Hermitian scalar product

(z | t) =
n∑

j=1

zjtj

and associated norm |z| . That is to say,

Dn := {z ∈ Cn : |z| < 1} .

Here is the description of the bisymplectomorphisms.

Theorem 0.4. The bisymplectomorphisms f ∈ B(Dn) are
the maps defined by

f (z) = γ
(
|z|2

)
u(z) (z ∈ Dn) ,

where u ∈ U(n) and γ is a smooth function γ : [0, 1) →
S1 ( U(1) .
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The rank one case (II).

Sketch of the Proof of Theorem 0.4 :

The Bergman operator B(z) is given by:

B(z)(w) := 2(1− |z|2)(w − z(w | z)) .

In particular, notice that for fixed z ∈ Dn the operator
B(z) : Cn → Cn has two eigenspaces. Namely, Vz := C.z
and V ⊥

z .

That is to say
Cn = Vz ⊕ V ⊥

z ,

where Vz and V ⊥
z are B(z)-invariant.

Then Proposition 0.3 implies that f must infinitesimally pre-
serve such decomposition.
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The rank one case (III).

So if f ∈ B(Dn) we get:

• |f (z)| = |z| . Thus, d f (0) is unitary, i.e. d f (0) ∈ U(n) .

• d f (z) preserves the complex line lz ⊂ TzDn spanned by
z , i.e. lz := {w ∈ TzDn : w = λ z} .

• Indeed, f takes complex lines through the origen into com-
plex lines through the origen.

Notice that the complex lines through the origen are the com-
plex totally geodesic discs ∆ of the symmetric domain, i.e.
the complexifications of the flats.

Now we can restrict f to the discs ∆ ⊂ Dn to finish the proof.
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The higher rank case (I).

The rank one case show that the description of B(Ω) depends
upon a good algebraic description of the Bergman operator
B(z) .

The theory of Jordan Algebras gives an algebraic descrip-
tion of the Bergman operator B(z) of all Bounded symmetric
domains Ω.

A principal role is played by the so called Peirce simulta-
neous decomposition relative to z ∈ Ω. That is ex-
actly the generalization of the decomposition in eigenspaces
Cn = Vz⊕V ⊥

z for the Bergman operator of the rank one case.
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The higher rank case (II).

Let Ω ⊂ V = Cn be an irreducible bounded symmetric do-
main attached to the HPJTS (V, {, , }) of rank r .

Let us call radial a bisymplectomorphism f ∈ B(Ω) such

f (∆r) = ∆r ,

for all polydiscs ∆r ⊂ Ω generated by the frames (c1, c2, · · · , cr) ,
i.e. ∆r = Ω

⋂
Cc1 ⊕ · · · ⊕ Ccr .

Theorem II Any f ∈ B(Ω) is of the form

f = u ◦R ,

where R is a radial bisymplectomorphism and u = d f (0) ∈
K , where K is the isotropy group at 0 ∈ Ω of Ω .

Theorem III Let R be a radial bisymplectomorphism.
Then there exists a function h ∈ C∞[0, 1) such that

R(z) = ei h(λ2
1)λ1e1 + ei h(λ2

2)λ2e2 + · · · + ei h(λ2
r)λrer

for all z ∈ M , where z = λ1e1 + λ2e2 + · · · + λrer is the
spectral decomposition of z ∈ M .
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