Contents

1 Main results .. 2

2 Submanifolds and Holonomy 2
 2.1 Real submanifold geometry 2
 2.2 Normal holonomy - real 2
 2.3 Complex submanifolds 3
 2.4 Normal holonomy - complex 3

3 Geometry of focalizations and holonomy tubes 5
 3.1 Parallel focal manifolds 6
 3.2 Holonomy tubes .. 6
 3.3 The canonical foliation 7

4 Complex submanifold geometry 7
 4.1 Complex submanifolds of \(\mathbb{C}^n \) 7
 4.2 Complex submanifolds of \(\mathbb{C}P^n \) 8
1 Main results

Main results

[–, Di Scala]

• computed the holonomy group Φ^\perp of the normal connection of complex symmetric submanifolds of $\mathbb{C}P^n$.

• as a by-product, given a new proof of the classification of complex symmetric submanifolds of $\mathbb{C}P^n$ by using a normal holonomy approach

Then, we prove Berger type theorems for Φ^\perp, namely,

[–, Di Scala, Olmos]

M full, irreducible and complete

1. for \mathbb{C}^n, Φ^\perp acts transitively on the unit sphere of the normal space;

2. for $\mathbb{C}P^n$, if Φ^\perp does not act transitively, then M is the complex orbit, in the complex projective space, of the isotropy representation of an irreducible Hermitian symmetric space of rank greater or equal to 3.

2 Submanifolds and Holonomy

2.1 Real submanifold geometry

Submanifolds of real space forms

$M \hookrightarrow \mathbb{R}^n, S^n, \mathbb{R}H^n$ with induced metric $\langle \cdot, \cdot \rangle$ and Levi-Civita connection ∇

$$\nu_M: \text{normal bundle of } M \text{ with the normal connection } \nabla^\perp$$

$$\nu_0M = \text{maximal parallel and flat subbundle of } \nu_M$$

Notation

α second fundamental form

A shape operator

R^\perp normal curvature tensor

recall $\langle \alpha(X,Y), \xi \rangle = \langle A\xi, X \rangle$, which is symmetric in X, Y

Fundamental equations

Gauss: $\langle [\alpha(X,Z), W], Y \rangle = \langle \alpha(Y, W), \alpha(X,Z) \rangle - \langle \alpha(X,W), \alpha(Y,Z) \rangle$

Codazzi: $\{\tilde{\nabla}_X \alpha(Y,Z)\}$ are symmetric in X, Y, Z

Ricci: $\langle R^\perp \alpha(X,Y), \xi \rangle = \langle [A\xi, A\eta], X \rangle, Y \rangle$

Nullity: $\mathcal{N} = \cap \xi \ker A\xi$

2.2 Normal holonomy for submanifolds of real space forms

Normal holonomy for submanifolds of real space forms

(Restricted) Normal Holonomy Φ^\perp (Φ^\perp^*):

(restricted) holonomy of the normal connection

on the normal bundle of a submanifold

Normal Holonomy Theorem [Olmos]

M submanifold of a space form \overline{M}.

$\Rightarrow \Phi^\perp^* \text{ (at some point } p) \text{ is compact,}$

Φ^\perp acts (up to its fixed point set) as the isotropy representation of a Riemannian symmetric space (s-representation)

Consequences:

The Normal Holonomy Theorem is a very important tool for the study of submanifold geometry, especially in the context of submanifolds with “simple extrinsic geometric invariants”
e.g., isoparametric and homogeneous submanifolds

Distinguished class:

orbits of s-representations = flag manifolds

similar rôle as symmetric spaces in Riemannian geometry

Special cases

Symmetric submanifolds: characterizations
[Ferus, Strübing]

- parallel second fundamental form (\(\nabla \alpha = 0 \))
- distinguished orbits of s-repr. (symmetric R-spaces)

\(K \) compact Lie group

\[M = \text{Ad}(K)X \cong K/K_K \leftarrow (t, -B(,)) \]

standard immersion of a cx flag manifold = cx orbit of s-repr

2.3 Complex submanifolds

Complex submanifolds

\[M \hookrightarrow \mathbb{C}^n, \mathbb{C}P^n, \mathbb{C}H^n \] complex submanifold

\(J \): complex structure (both on \(M \) and on the ambient space)

\[\alpha(X, JY) = J\alpha(X, Y) \iff A\xi = -JA\xi = -A\xi \]

\[\implies [A\xi, A\eta] = J[A\xi, A\eta] - 2JA\xi A\eta \]

for \(\eta = \xi \), by the Ricci equation

\[\langle R^+ (X, Y)\xi, J\xi \rangle = \langle -2JA^2 \xi X, Y \rangle \]

Consequence: [Di Scala]

\(M \hookrightarrow \mathbb{C}^n \) is full (not contained in any proper affine hyperplane) \(\iff \nu_0 M \) is trivial

[Indeed if \(\xi \) is a section of \(\nu_0 M \), \(R^+ (X, Y)\xi = 0 \implies A\xi = 0 \implies M \) not full]

2.4 Normal holonomy for submanifolds of complex space forms

Normal holonomy for complex (Kähler) submanifolds

- \(M \hookrightarrow \mathbb{C}^n \)

[Di Scala]: \(M \) is irreducible (up a totally geodesic factor) \(\iff \Phi^+ \) acts irreducibly

(extrinsic analogue of the de Rham decomposition theorem)

- \(M \hookrightarrow \mathbb{C}P^n, \mathbb{C}H^n \)

Theorem [Alekseevsky-Di Scala]

If \(\Phi^+ \) acts irreducibly on \(\nu_p M \) \(\implies \Phi^+ \) is linear isomorphic to the holonomy group of an irreducible Hermitian symmetric space.

\(M \) full & \(\mathcal{N} = \{0\} \implies \Phi^+ \) acts irreducibly
Homogeneous Kähler submanifolds

Calabi rigidity theorem of complex submanifolds $M \hookrightarrow \mathbb{CP}^N \implies$ isometric and holomorphic immersions are equivariant: any intrinsic isometry can be extended to \mathbb{CP}^N.

Borel-Weil construction

G simple Lie group, d positive integer

$\rho : G \rightarrow \mathfrak{gl}(\mathbb{C}^N)$ irreducible representation of G with highest weight $d\Lambda_j$

$(\Lambda_j$ fundamental weight corresponding to the simple root $\alpha_j)$

Induces a unitary representation of G

$M = G/[p] \hookrightarrow \mathbb{CP}^N$

d-th canonical embedding of M

$\Phi_\perp : \nu_{\perp} \big(\mathbb{C}^N\big) \rightarrow \dim \mathbb{C}\big(\nu_{\perp}(M)\big) = \dim \mathbb{C}(H/S)$

Φ_\perp acts on $\nu_{\perp}(M)$ as the isotropy repr. of S on $T_{\mathbb{CP}^N}(H/S)$.

Φ_\perp computation of the 3rd column in the Table

Symmetric complex submanifolds $M \subset \mathbb{CP}^n$

$M \subset \mathbb{CP}^n$ symmetric \iff $\nabla \alpha = 0$

Arise as unique complex orbits in \mathbb{CP}^n of the isotropy representation of an irreducible Hermitian symmetric space

[Nakagawa-Takagi]

\bullet computed the holonomy group of the normal connection of complex symmetric submanifolds of the complex projective space.

\bullet as a by-product, given a new proof of the classification of complex symmetric submanifolds by using a normal holonomy approach

Symmetric complex submanifolds $M \subset P(T|_{\mathfrak{k}}/G/K)$

[Nakagawa-Takagi]:

\iff computation of the 3rd column in the Table

Idea of the proof

Use [Alekseevsky-Di Scala] to get

Lemma 1. $M = G/K$ Hermitian symmetric space

$M \hookrightarrow \mathbb{CP}^N$ full embedding with $\nabla \alpha = 0$

$\implies \exists$ an irreducible Hermitian symmetric space H/S such that

$\Phi_{\perp} = S = K/\mathfrak{i}$ where $I \subset K$ is a normal subgroup,

$\dim_{\mathbb{C}}(\nu_{\perp}(M)) = \dim_{\mathbb{C}}(H/S)$ and

Φ_{\perp} acts on $\nu_{\perp}(M)$ as the isotropy repr. of S on $T_{\mathbb{CP}^N}(H/S)$.

\iff computation of the 3rd column in the Table
Alternate proof of classification of complex symmetric submanifolds of \mathbb{CP}^N

A tool is Theorem 2. Let $f_d : G/K \to \mathbb{CP}^N$ be the d-th canonical embedding of G/K.

If $\nabla \alpha = 0$ and f_d is not the Veronese embedding, f_d is the first canonical embedding f_1.

\Rightarrow look at 1st canonical embeddings only.

The following theorem gives a sharp description.

Theorem 3. If the first canonical embedding f_1 of an irreducible Hermitian symmetric space M of higher rank (≥ 1) has $\nabla \alpha = 0$, $\Rightarrow \text{rank}(M) = 2$.

Remark: list of images of the 1st can. embedding of an irreducible Hermitian symmetric space of rank two.

Higher canonical embedding and holonomy

Theorem [-, Di Scala]

Let $f_d : G/K \hookrightarrow \mathbb{CP}^N$ be the d-th canonical embedding of an irreducible Hermitian symmetric space. If $d \geq 2$ then the normal holonomy group is the full unitary group of the normal space (unless it is the Veronese embedding Ver_2).

Motivated by the above theorem we have the following

Question

$M \hookrightarrow \mathbb{CP}^N$ complete (connected) and full (i.e. not contained in a proper hyperplane) complex submanifold. Is it true in general that if the normal holonomy group is not the full unitary group, then M has parallel second fundamental form?

The answer is YES.

3 Geometry of parallel focal manifolds and holonomy tubes

A Berger type Theorem

[-, Di Scala, Olmos]

$M \hookrightarrow \mathbb{C}P^r$, $\mathbb{C}P^\alpha$ full, irreducible and complete

1. For $\mathbb{C}P^r$, Φ_r^+ acts transitively on the unit sphere of the normal space; $\Rightarrow \Phi_r^+ = U_0(\nu_0M)$, since it acts as an s-representation.

2. For $\mathbb{C}P^\alpha$, if Φ_α^- does not act transitively, then M is the complex orbit, in the complex projective space, of the isotropy representation of an irreducible Hermitian symmetric space of rank greater or equal to 3.

(\Rightarrow it is extrinsic symmetric)
False if M is non complete (counterexamples)

The methods in the proofs rely heavily on the singular data of appropriate holonomy tubes (after lifting the submanifold to the complex Euclidean space, in the $\mathbb{C}P^n$ case) and basic facts of complex submanifolds.

Some geometry needed in the proof

Endpoint map

$$t_\xi : M \to \mathbb{R}^n$$

$$x \mapsto x + \xi(x) = \exp(\xi(x))$$

ξ focal point in direction $\xi = \text{critical value of } t_\xi$.

$$x + \xi(x) \text{ focal point in dir. of } \xi \iff \ker(id - A_\xi(x)) \text{ is non trivial}$$

3.1 Parallel focal manifolds

Parallel focal manifolds

ξ parallel normal field, $\text{im}(t_\xi) = M_\xi = \{x + \xi(x) | x \in M\}$

- if 1 is not an eigenvalue of A_ξ, parallel manifold
- if 1 is a constant eigenvalue of A_ξ, parallel focal manifold

$$T_xM = T_{x+\xi(x)}M_\xi \oplus \ker(id - A_\xi(x))$$

integrable

$\pi : M \to M_\xi : x \mapsto x + \xi(x)$,

$\pi^{-1}(p)$ isoparametric in $\nu_p M_\xi$

(by Olmos’ Normal Holonomy Theorem)

3.2 Holonomy tubes

Holonomy tube

$$M_{\eta_p} = \{c(1) + \eta(1)\} = \{c(1) + \nabla^\perp_{c(1)} \eta_p\},$$

where $c : [0, 1] \to M$ is an arbitrary curve starting at p and $\eta(t)$ is the ∇^\perp-parallel transport of η_p along $c(t)$.

Proposition

M_{η_p} has flat normal bundle (\iff full holonomy tube)

$\Phi_{\pi(p)} : (p - \pi(p))$ is maximal dimensional

\mathcal{H}^p horizontal subspace of $\pi : N = M_{\eta_p} \to N_\eta = M$

tube formulae
\[A_M^N = A_M^N (\text{id} - A_M^N (x))^{-1}, \quad \xi_x \in V_N \]

\[A_M^N |_{\mathcal{H}_x} = A_M^N (\text{id} - A_M^N (x))^{-1}, \quad \xi_x \in V_N \]

3.3 The canonical foliation

The canonical foliation

\[N \to \mathbb{R}^n, \text{ take } M = N_{\xi_p} \text{ full holonomy tube} \]

Assume:

- \(\Phi^\top \) acts irreducibly and not transitively on \(V_p N \)
- \(0 \) is a constant eigenvalue of \(A_M^N \),
 i.e. \(E_{\xi}^0 \) is non-trivial

The canonical foliation

\[\text{def.}: x \sim y \text{ if } \exists \text{ curve } \gamma \text{ in } M \text{ from } x \text{ to } y: \dot{\gamma}(t) \perp E_{\xi}^0, \forall t \]

\[H_{\xi}^\top (x) = \{ y \in M : x \sim y \} \]

the orthogonal distribution \(\mathcal{V}_x^\top \) to the foliation \(H_{\xi}^\top (p) \) is integrable.

\[\Sigma_x \xi(x) \text{: leaf of } \mathcal{V}_x^\top \text{ through } x \]

Note: \(\mathcal{V}_x^\top \subseteq N = \bigcap \ker A_M^N \text{ (nullity)} \Rightarrow \text{the foliation is indep. on } \xi \mid E_{\xi}^0 \neq \{0\} \)

The canonical foliation

\[\mathcal{H} : \text{the horizontal distribution in } M \text{ (w. r. to } \pi : M \to N) \]

Technical Lemma

Assume that \(\exists \text{ parallel } \xi, \xi' \text{ such that } \mathcal{H} \subseteq (\ker A_M^N + \ker A_M^N) \]

\[\Rightarrow \forall x \in M, H_{\xi}^\top (x) = H_{\xi'}^\top (x) \text{ is an isoparametric submanifold.} \]

(we are around a generic point s. t. (\(\ker A_M^N + \ker A_M^N \)) is a distribution of \(M \))

Projecting down to \(N \),

\[N = \bigcup_{y \in \pi \Sigma_x (x)} (\pi(H_{\xi}^\top (x)))_{y - \pi(x)} \]

Using Thorbergsson Theorem

Corollary of the Technical Lemma

\(\exists \text{ compact group } K \text{ of isometries of } \mathbb{R}^n \text{ acting as an irred. } s\text{-representation s. t. (loc) } K \cdot \pi(x) = \pi(H_{\xi}^\top (x)), \)

for all \(x \in M \).

\[\Rightarrow N \text{ is locally given, around a generic point } q, \text{ as} \]

\[N = \bigcup_{y \in (V_q(K \cdot q))_0} (K \cdot q)_y. \]

Moreover the nullity space of \(N \) at \(p \) is \(A_{N_p}^N = (V_q(K \cdot p))_p \).

4 Complex submanifold geometry

4.1 Complex submanifolds of \(\mathbb{C}^n \)

Complex submanifolds of \(\mathbb{C}^n \)

\[N \to \mathbb{C}^n \text{ full, irreducible complex submanifold for which } \Phi^\top \text{ does not act transitively} \]

on the unit sphere of the normal space

Choose \(\xi_0^1 \in V_q N \mid \Phi_q^\top \cdot [\xi_0^1] \in \mathbb{C}P(V_q N) \text{ (unique) complex orbit} \]
Lemma 2

Complex submanifolds of O’Neill’s type formula

Proof of the Berger-type Theorem for submanifolds of symmetric space such that Hermitian

4.2 Complex submanifolds of C

Assume that M ↪ C

Now choose 0 ≠ ξ2 ∈ (ξ1) ⊕ ∩ vξΦ−1 ξ1 · ξ1 q cx subsp. (non trivial by non-transitivity!)

Since RξX ∈ L(Φq), \(0 = \langle [A_N^N, A_N^N], X, Y \rangle \),

The same is true if we replace ξ2/q by Jξq, \(|A_N^N, A_N^N| = 0 \).

By complex geometry \(\overline{A_N^N A_N^N} = A_N^N A_N^N = 0 \)

Take the holonomy tube \(\overline{M} := (Nξ1)_\overline{ξ1} = N\overline{ξ1} + \overline{ξ1} \)

\(\overline{ξ1} \overline{ξ2} \sim \parallel v \cdot f \). \(\overline{ξ1} \overline{ξ2} \) on M

Tube formula \(\Rightarrow \overline{A_M^N A_M^N} = 0 \) \(\Rightarrow \mathcal{H} \subset (\ker A_M^N + \ker A_M^N) \)

⇒ Technical Lemma and its corollary apply

Complex submanifolds of \(\mathbb{C}^n \)

⇒ \(\exists \) compact group K of isometries of \(\mathbb{C}^n \), which acts as the isotropy representation of an irreducible

Hermitian symmetric space such that

\[N = \bigcup_{v \in (v_0(K, q))_q} (K \cdot q)_v \]

Moreover \(\mathcal{A}^N = (v_0(K, p))_p \).

⇒

Proof of the Berger-type Theorem for submanifolds of \(\mathbb{C}^n \)

We assume that 0 is the fixed point of K.

N is complete \(\Rightarrow \) if \(p \in N \), the line \(\{ t \mapsto tp \} \subset N \)

\(\forall t \), \(T_pN = T_pN \), as subspaces of \(\mathbb{C}^n \) \(\Rightarrow \)

the isotropy \(K_p \) must leave this subspace invariant.

A contradiction for \(t = 0 \), since K acts irreducibly.

Thus the normal holonomy group must be transitive.

4.2 Complex submanifolds of \(\mathbb{C}P^n \)

Complex submanifolds of \(\mathbb{C}P^n \)

Let \(M \hookrightarrow \mathbb{C}P^n \) be a full complex submanifold.

Consider \(\pi : \mathbb{C}^{n+1}\setminus\{0\} \rightarrow \mathbb{C}P^n \)

\(\widetilde{M} : \text{lift } M \text{ to } \mathbb{C}^{n+1}\setminus\{0\}, \text{i.e. } \widetilde{M} := \pi^{-1}(M) \)

\(\mathcal{V} \) : vertical distribution of the submersion \(\pi : \widetilde{M} \rightarrow M \).

It is standard to show that \(\mathcal{V} \subset \mathcal{A}^M \).

If X is a tang. vector to \(M \) we let \(\tilde{X} \) be its horiz. lift to \(\mathbb{C}^{n+1}\setminus\{0\} \).

\(\pi : \mathbb{C}^{n+1}\setminus\{0\} \rightarrow \mathbb{C}P^n \) is not a Riemannian submersion. Anyway.

O’Neill’s type formula

Let \(X, Y \in \Gamma(\mathbb{C}^{n+1}\setminus\{0\}) \) be the horizontal lift of the vector fields \(X, Y \in \Gamma(\mathbb{C}P^n) \). Then,

\[(D_X \widetilde{Y})_\widetilde{p} = (\nabla_X^\mathcal{V} Y)_\widetilde{p} + \mathcal{O}(\tilde{X}, \tilde{Y}) \]

where \(\mathcal{O}(\tilde{X}, \tilde{Y}) \in \mathcal{V} \) is vertical.

Complex submanifolds of \(\mathbb{C}P^n \)

Lemma 1

\(M \subset \mathbb{C}P^n \), \(\widetilde{M} \subset \mathbb{C}^{n+1} \) be its lift to \(\mathbb{C}^{n+1} \).

Assume that the tangent vector \(\overline{v}_p \in T_p\widetilde{M} \) is not a complex multiple of the position vector \(\overline{p} \).

If \(\overline{v}_p \in \mathcal{A}^M \Rightarrow v_p \in \mathcal{A}^M \).

Lemma 2

Assume that \(M \subset \mathbb{C}P^n \) is full and \(\Phi^1 = M \) does not act transitively on \(\mathcal{V}_p(M) \).
\[\Phi \cdot \tilde{M} \text{ does not act transitively on } \nu_{\tilde{p}}(\tilde{M}), \text{ where } \pi(\tilde{p}) = p. \]

Important fact (special case of a Theorem in [Abe-Magid])

Let \(M \subset \mathbb{C}P^n \) complete full with \(\Phi \cdot \nu \) not transitive

\[\Rightarrow \forall M = \{0\} \]

Proof of the Berger-type Theorem for submanifolds of \(\mathbb{C}P^n \)

\[N = \tilde{M} \subset \mathbb{C}^{n+1} \Rightarrow \tilde{M} = \bigcup_{v \in (\nu_D(K \cdot q))_v} (K \cdot q)_v \]
(\(K \) is the isotropy group of a irreducible Hermitian symmetric space)

Observe also that \(\nu_D(K \cdot q)_q \) is a complex subspace (= \(N \cdot M \))

Then Lemma 1 and special case of Abe-Magid \(\Rightarrow \dim_{\mathbb{C}}(\nu_D(K \cdot q)_q) = 1 \), otherwise the nullity of the second fundamental form of \(M \) would be not trivial.

Since \(M \) is full \(\Rightarrow \) the unique fixed point of \(K \) is \(0 \in \mathbb{C}^{n+1} \).

So the leaves of the nullity distribution \(\nu \cdot M \) are just the complex lines given by the fibers of the submersion \(\pi : \tilde{M} \to M \).

Thus, \(K \) acts transitively on the complex submanifold \(M \subset \mathbb{C}P^n \).

Therefore, \(M \) is a complex orbit of the projectivization of an irreducible Hermitian s-representation.

References

[1] S. Console, A. Di Scala,
Parallel submanifolds of complex projective space and their normal holonomy,

A Berger type normal holonomy theorem for complex submanifolds,