Residuen II

Beispiel

Für

$$f(z) = \frac{1}{1+z^2}$$

gilt nach 2)

Res
$$(f; i) = \frac{1}{2z}\Big|_{z=i} = \frac{1}{2i}$$
, Res $(f; -i) = \frac{1}{2z}\Big|_{z=-i} = -\frac{1}{2i}$

Reiner Lauterbach (Universität Hamburg)

Komplexe Funktionen

SS 2006

155 / 198

Komplexe Integration

Komplexe Partialbruchzerlegung, Residuensatz

Residuen III

Beispiel

Die Funktion

$$f(z) = \frac{e^{iz}}{z(z^2+1)^2}$$

hat bei $z_0=i$ einen Pol zweiter Ordnung. Nach dem letzten Satz, Teil 3), gilt

Res
$$(f; i) = g'(i) = -\frac{3}{4e}$$

wobei die Funktion g(z) aufgrund der Darstellung

$$f(z) = \frac{e^{iz}}{z(z+i)^2(z-i)^2}$$

durch

$$g(z) = \frac{e^{iz}}{z(z+i)^2}$$

Berechnung reeller Integrale mittels Residuensatz

Satz

Sei r(x) = p(x)/q(x) eine rationale Funktion, die keine Singularitäten auf \mathbb{R} besitzt, und es gelte grad $(q) \geq \operatorname{grad}(p) + 2$. Dann gilt

$$\int_{-\infty}^{\infty} r(x) dx = 2\pi i \sum_{|m|z>0} Res(R; z).$$

Beweis

Wegen $grad(q) \ge grad(p) + 2$ existiert nach dem Majorantenkriterium das oben stehende uneigentliche Integrale, denn für $x\gg 1$ gilt

$$\left|\frac{p(x)}{q(x)}\right| \le \frac{c}{x^2}.$$

Reiner Lauterbach (Universität Hamburg)

Komplexe Funktionen

SS 2006

157 / 198

Komplexe Integration

Berechnung reeller Integrale mittels Residuensatz

Berechnung reeller Integrale mittels Residuensatz II

Beweis

Wir approximieren jetzt das uneigentliche reelle Integral durch ein komplexes Integral entlang einer Kurve. Wir wählen die Kurve wie folgt:

Beweis (Forstsetzung)

Ist r hinreichend groß, so liegen alle Singularitäten z_k von r(z) mit strikt positivem Imaginärteil innerhalb der Kurve $c_1 + c_2$.

Daraus folgt

$$2\pi i \sum_{|Im z_k>0} Res(R; z_k) = \oint_{c_1+c_2} r(z) dz = \int_{c_1} r(z) dz + \int_{c_2} r(z) dz.$$

Nun gilt

$$\int_{c_1} r(z) dz = \int_{-r}^{r} r(z) dz \to \int_{-\infty}^{\infty} r(z) dz \qquad (r \to \infty).$$

Reiner Lauterbach (Universität Hamburg)

Komplexe Funktionen

SS 2006

159 / 198

Komplexe Integration

Berechnung reeller Integrale mittels Kesiduensatz

Beweis des Residuensatzes II

Beweis (Forstsetzung)

Weiter berechnet man

$$\left| \int_{c_2} r(z) dz \right| \leq \max_{|z|=r} |r(z)| \cdot \pi r \leq \pi r \frac{c}{r^2} \to 0 \qquad (r \to \infty).$$

Daraus folgt die Behauptung unmittelbar.

П

Integralberechnung mit Residuensatz - Beispiel

Beispiel

Wir untersuchen das uneigentliche Integral

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^6}.$$

Die Funktion $r(z)=1/(1+z^6)$ besitzt sechs Polstellen, von denen drei in der oberen Halbebene liegen, nämlich $e^{i\frac{\pi}{6}},e^{i\frac{\pi}{2}},e^{i\frac{5\pi}{6}}$. Ferner gilt:

Res
$$(r; z_k) = \frac{1}{6z^5}\Big|_{z_k} = -\frac{z_k}{6}.$$

Reiner Lauterbach (Universität Hamburg)

Komplexe Funktionen

SS 2006

161 / 198

Komplexe Integration

Berechnung reeller Integrale mittels Kesiduensatz

Integralberechnung mit Residuensatz - Beispiel II

Beispiel (Fortsetzung)

Damit folgt

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^6} = 2\pi i \left(-\frac{1}{6} e^{i\frac{\pi}{6}} - \frac{1}{6} e^{i\frac{\pi}{2}} - \frac{1}{6} e^{i\frac{5\pi}{6}} \right)$$
$$= \frac{\pi}{3} \left(\sin\frac{\pi}{6} + \sin\frac{\pi}{2} + \sin\frac{5\pi}{6} \right) = \frac{\pi}{3} \left(2\sin\frac{\pi}{6} + 1 \right)$$

Residuen und Integralberechnung – Beispiel

Beispiel

Wir untersuchen das Integral

$$\int_{-\infty}^{\infty} \frac{e^{i\omega x}}{x^2 + a^2} dx, \quad a > 0, \quad \omega > 0.$$

Der letzte Satz läßt sich nicht direkt anwenden, aber wegen

$$\left| \frac{e^{i\omega z}}{z^2 + a^2} \right| = \frac{e^{-\omega y}}{|z^2 + a^2|} \le \frac{1}{|z^2 + a^2|} \le \frac{c}{|z|^2} \qquad (y \ge 0)$$

entlang des Weges c_2 , gilt die Aussage analog.

Reiner Lauterbach (Universität Hamburg)

Komplexe Funktionen

SS 2006

163 / 198

Komplexe Integration

Berechnung reeller Integrale mittels Kesiduensatz

Residuen und Integralberechnung – Beispiel II

Beispiel

Wir erhalten also

$$\int_{-\infty}^{\infty} \frac{e^{i\omega x}}{x^2 + a^2} dx = 2\pi i \sum_{\text{Im } z_k > 0} \text{Res}\left(\frac{e^{i\omega z}}{z^2 + a^2}; z_k\right) = 2\pi i \text{ Res}\left(\frac{e^{i\omega z}}{z^2 + a^2}; ia\right)$$
$$= 2\pi i \left.\frac{e^{i\omega z}}{2z}\right|_{z=ia} = \frac{\pi}{a} e^{-\omega a}.$$

Weitere Anwendungen

Satz

Sei f(z) holomorph auf $\{z : Im z > -\varepsilon\}$, $\varepsilon > 0$, mit Ausnahme endlich vieler Singularitäten in der oberen Halbebene Im z > 0. Gilt

$$\lim_{|z|\to\infty,y\geq0}f(z)=0,$$

so folgt

CHW
$$\int_{-\infty}^{\infty} f(x)e^{ix} dx = 2\pi i \sum_{\lim z_k > 0} Res(f(z)e^{iz}; z_k).$$

Reiner Lauterbach (Universität Hamburg)

Komplexe Funktionen

SS 2006

165 / 198

Komplexe Integration

Berechnung reeller Integrale mittels Residuensatz

Weitere Anwendungen II

Beispiel

Es gilt

$$\int_{-\infty}^{\infty} \frac{\cos x}{1+x^2} dx = \frac{\pi}{e}, \qquad \int_{-\infty}^{\infty} \frac{\sin x}{1+x^2} dx = 0$$

Weitere Anwendungen des Residuensatzes

Satz

Sei r(z) eine rationale Funktion ohne Polstellen in $0 \le x < \infty$ und es gelte grad $q > \operatorname{grad} p$. Für $0 < \alpha < 1$ gilt

$$\int_{0}^{\infty} \frac{r(x)}{x^{\alpha}} dx = \frac{2\pi i}{1 - e^{-2\pi\alpha i}} \sum_{z_{k} \in \mathbb{C} \setminus \{0\}} Res\left(\frac{r(z)}{z^{\alpha}}; z_{k}\right).$$

Dabei ist folgender Zweig von z^{α} zu wählen:

$$z = re^{i\phi}, \quad 0 < \phi < 2\pi \quad \Rightarrow \quad z^{\alpha} = r^{\alpha}e^{i\alpha\phi}.$$

Reiner Lauterbach (Universität Hamburg)

Komplexe Funktionen

SS 2006

167 / 198

Komplexe Integration

Berechnung reeller Integrale mittels Kesiduensatz

Weitere Anwendungen des Residuensatzes II

Beispiel

Man berechnet

$$\int_{0}^{\infty} \frac{1}{x^{\alpha}(1+x)} dx = \frac{\pi}{\sin(\pi\alpha)}.$$