Symplectic Geometry

Problem Set 8

- 1. a) We consider the Lagrangian embedding $\varphi_1 : S^{n-1} \times S^1 \to (\mathbb{C}^n, \omega_{st})$ from the lecture given by $\varphi_1(x, e^{it}) = (1 + \epsilon e^{it})x$. Prove the claim made in class that the Maslov index of the loop $\gamma : [0, 2\pi] \to S^{n-1} \times S^1$ given as $t \mapsto (x_o, e^{it})$ for some any $x_0 \in S^{n-1}$ is equal to 2.
 - **b)** We now assume n = 2k is even. Then the circle acts freely on S^{n-1} by the diagonal embedding of $S^1 = SO(2) \subseteq SO(2k)$ which simultaneously rotates all two-dimensional factors of $\mathbb{R}^{2k} = \mathbb{R}^2 \times \cdots \times \mathbb{R}^2$. It follows that, for any fixed $x_0 \in S^{n-1}$, the path $\gamma : [0, 2\pi] \to S^{n-1} \times S^1$ given by $t \mapsto (e^{\frac{it}{2}}x_o, e^{\frac{it}{2}})$ connects $(x_0, 1)$ with $(-x_0, -1)$, so it is mapped to a closed loop $\tilde{\gamma}$ under the Lagrangian immersion $\varphi_2 : S^{n-1} \times S^1 \to (\mathbb{C}^n, \omega_{st})$ given by $\varphi_2(x, e^{it}) = e^{it}x$. Prove the assertion made in class that the Maslov index of the loop $\tilde{\gamma}$ in $\varphi_2(S^{n-1} \times S^1)$ (which generates the fundamental group of the image) is equal to n.
- 2. The goal of this exercise is to prove the assertion made in class that for the round metric on S^n , the symplectic reduction of $(S^*S^n, \omega_{\text{can}})$ by the circle action coming from the geodesic flow is diffeomorphic to the hypersurface $X \subseteq \mathbb{C}P^n$ given in homogeneous coordinates $[z_0 : \ldots : z_n]$ by the equation

$$z_0^2 + z_1^2 + \dots + z_n^2 = 0.$$
⁽¹⁾

a) Use the fact that the unit cotangent bundle S^*S^n for the round metric can be identified with the subset

$$\{(x,v) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} : ||x|| = ||v|| = 1, x \perp v\} \subseteq \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$$

to construct an embedding of S^*S^n into the subset $Z \subseteq \mathbb{C}^{n+1}$ given by (1). We denote the image of this embedding by Y.

- b) Prove that the projection $Z \setminus \{0\} \to X$ induced from the projection $\mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{C}P^n$ maps Y surjectively onto X.
- c) Prove that (x, v) and (x', v') are mapped to the same point in X if and only if the geodesic circle through x tangent to v is the same as the geodesic circle through x' tangent to v'.

- **3.** a) Suppose (M, ω) is an exact symplectic manifold, meaning that $\omega = d\lambda$ is an exact form. Prove that if S^1 acts on M by symplectomorphisms preserving the primitive λ , then the action is Hamiltonian with Hamiltonian function $H: M \to \mathbb{R}$ given by $H(x) = \lambda(X(x))$, where X is the vector field on M whose flow is the given S^1 -action.
 - **b)** Deduce that if S^1 acts on a manifold Q, then the induced action on the symplectic manifold (T^*Q, ω_{can}) is Hamiltonian. In particular, if this induced action is free on some level surface of the Hamiltonian function, the quotient space inherits a symplectic structure from ω_{can} .

Remark: The same results will be true for a Hamiltonian group action of an arbitrary group G_{\cdot} .