Universität Hamburg Janko Latschev

Symplectic Geometry

Problem Set 2

1. a) Prove that the linear map $A : \mathbb{R}^2 \to \mathbb{R}^2$ associated to the matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

satisfies $A^2 = -1$ if and only if d = -a and ad - bc = 1.

- **b)** Deduce that the subset $\mathcal{J} \subseteq \mathrm{SL}(2,\mathbb{R}) \cong \mathrm{Sp}(2,\mathbb{R})$ of all such maps has two connected components, one containing J_{st} and the other containing $-J_{\mathrm{st}}$.
- c) What is the condition on a map A as above to be tamed by ω_{st} ? To be compatible with ω_{st} ?
- **2.** A diffeomorphism $\varphi : Q \to Q'$ between manifolds lifts to a diffeomorphism $\Phi: T^*Q \to T^*Q'$ given by the formula

$$\Phi(x,\alpha) := \left(\varphi(x), \alpha \circ (\varphi_{*,x})^{-1}\right),\,$$

where $\varphi_{*,x}: T_x Q \to T_{\varphi(x)} Q'$ is the differential of φ at $x \in Q$.

- a) Prove that $\Phi^*(\lambda'_{can}) = \lambda_{can}$, and so Φ is a symplectomorphism from T^*Q to $T^*Q'!$
- b) Let $Y: Q \to TQ$ be a complete vector field, and denote by ψ_t its flow. Let $X: T^*Q \to T(T^*Q)$ be the vector field generating the corresponding flow Ψ_t on T^*Q . Prove that X is the Hamiltonian vector field associated to the function $H: T^*Q \to \mathbb{R}$ defined as

$$H(x,\alpha) := \alpha(Y(x)).$$

3. Show that if $\varphi : M \to M$ is any symplectomorphism of (M, ω) and $H : M \to \mathbb{R}$ is smooth, then the Hamiltonian vector fields of the functions H and $H \circ \varphi^{-1}$ are related by

$$X_{H \circ \varphi^{-1}}(\varphi(x)) = \varphi_*(X_H(x)),$$

where $\varphi_*: TM \to TM$ is the differential of φ .

4. A diffeomorphism of a symplectic manifold (M, ω) is called an *autonomous Ha*miltonian diffeomorphism if it is the time one map of the flow of a Hamiltonian function $H : M \to \mathbb{R}$. The support of a diffeomorphism $\varphi : M \to M$ is the closure of the set of all points with $\varphi(x) \neq x$.

In this exercise, we consider the special case $(M, \omega) = (\mathbb{R}^{2n}, \omega_{st}).$

- a) Prove that for every pair of points $x, y \in \mathbb{R}^{2n}$ there exists an autonomous Hamiltonian diffeomorphism $\varphi : (\mathbb{R}^{2n}, \omega_{st}) \to (\mathbb{R}^{2n}, \omega_{st})$ such that $\varphi(x) = y$.
- **b)** Prove that for every point $x \in B^{2n}(0,1)$ there exists an autonomous Hamiltonian diffeomorphism $\varphi : (\mathbb{R}^{2n}, \omega_{st}) \to (\mathbb{R}^{2n}, \omega_{st})$ with $\operatorname{supp} \varphi \subseteq B^{2n}(0,1)$ such that $\varphi(0) = x$.