Symplectic Geometry

Problem Set 12

- **1.** Consider a Kähler manifold (M, ω, J) and suppose that $\varphi : M \to M$ is an isometric involution $(\varphi^2 = \mathrm{id})$ of the corresponding Kähler metric $g_J = \omega(., J.)$ which is antiholomorphic, i.e. such that $\varphi_* \circ J = -J \circ \varphi_*$.
 - a) Prove that φ is antisymplectic, i.e. $\varphi^* \omega = -\omega$.
 - b) Prove that the fixed point set is a Lagrangian submanifold of (M, ω) . Remark: This submanifold can be empty. Can you find simple examples?
 - c) What is the fixed point set of complex conjugation $\gamma : \mathbb{C}P^n \to \mathbb{C}P^n$, given in homogeneous coordinates as

$$\gamma([z_0:\ldots:z_n]) = [\bar{z}_0:\ldots:\bar{z}_n]?$$

Remark: Note that if $X \subseteq \mathbb{C}P^n$ is a smooth complex submanifold given as the zero set of finitely many homogeneous polynomials with **real** coefficients, then γ also induces an antiholomorphic and antisymplectic involution on X. This gives many interesting examples.

- **2.** A holomorphic vector bundle on a complex manifold X is a complex vector bundle $E \to X$ whose transition functions with respect to a suitable atlas of trivializations over open subsets $U_i \subseteq X$ are given by holomorphic maps ψ_{ij} : $U_i \cap U_j \to GL(r, \mathbb{C})$. Prove the following assertions:
 - a) The cotangent bundle $K_{\Sigma} = T^*\Sigma$ of a Riemann surface (Σ, j) is a holomorphic line bundle. It is called the *canonical bundle* of Σ .
 - **b)** We define $U \subseteq \mathbb{C}P^1 \times \mathbb{C}^2$ as the subset

$$U := \{ ([z_0 : z_1], w) \, | \, w \in \mathbb{C} \cdot \begin{pmatrix} z_0 \\ z_1 \end{pmatrix} \}.$$

Then, with the obvious projection $\pi: U \to \mathbb{C}P^1$, this is a holomorphic line bundle over $\mathbb{C}P^1$, called the *universal line bundle* over $\mathbb{C}P^1$. c) Let $\mathcal{U}_i := \{ [z_0 : z_1] | z_i \neq 0 \} \subseteq \mathbb{C}P^1$ be the two open subsets giving the standard covering of $\mathbb{C}P^1$ by charts For every $k \in \mathbb{Z}$ we can define a holomorphic line bundle $E_k \to \mathbb{C}P^1$ by gluing the trivial bundles $E^0 = \mathcal{U}_0 \times \mathbb{C}$ and $E^1 = \mathcal{U}_1 \times \mathbb{C}$ via the transition map

$$\psi_k : E^0|_{\mathcal{U}_0 \cap \mathcal{U}_1} \to E^1|_{\mathcal{U}_0 \cap \mathcal{U}_1}$$
$$([z_0 : z_1], v) \mapsto \left([z_0 : z_1], \left(\frac{z_0}{z_1}\right)^k \cdot v \right).$$

Then the bundle $E_k \to \mathbb{C}P^1$ admits nonzero holomorphic sections $s : \mathbb{C}P^1 \to E_k$ if and only if $k \ge 0$, in which case the dimension of the \mathbb{C} -vector space of holomorphic sections is k + 1.

d) Every holomorphic vector bundle over $\mathbb{C}P^1$ is isomorphic to one of the E_k (you do not need to prove that). To which values of k do the canonical bundle $K_{\mathbb{C}P^1}$ and the universal bundle U correspond?

Remark: One can show that $\langle c_1(E_k), [\mathbb{C}P^1] \rangle = k$.